
Genome analysis

BamSnap: a lightweight viewer for sequencing reads

in BAM files

Minseok Kwon, Soohyun Lee, Michele Berselli , Chong Chu and Peter J. Park *

Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on September 8, 2020; revised on December 7, 2020; editorial decision on December 24, 2020; accepted on December 28, 2020

Abstract

Summary: Despite the improvement in variant detection algorithms, visual inspection of the read-level data remains
an essential step for accurate identification of variants in genome analysis. We developed BamSnap, an efficient
BAM file viewer utilizing a graphics library and BAM indexing. In contrast to existing viewers, BamSnap can gener-
ate high-quality snapshots rapidly, with customized tracks and layout. As an example, we produced read-level
images at 1000 genomic loci for >2500 whole-genomes.

Availability and implementation: BamSnap is freely available at https://github.com/parklab/bamsnap.

Contact: peter_park@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the advances in sequencing technology, an increasingly large
number of genomes are being sequenced. Although algorithms for
alignment of sequenced reads and identification of genomic vari-
ation have improved substantially over the years, the resulting set of
variants still contain false positives due to inaccurate alignment (es-
pecially near repetitive sequences), incomplete reference sequence,
insufficient sequence coverage, PCR duplicates, DNA contamination
and other reasons (Dou et al., 2018; Li, 2014). To ascertain the ac-
curacy of called variants (single nucleotide variants, indels, re-
arrangement breakpoints, etc.), visual inspection of the read
configuration is critical, as it reveals features whose contributions
may not have been optimally weighted for a specific variant in the
algorithm. For instance, the impact of a nearby low-complexity re-
gion—which can induce mistaken indel calls—is variable depending
on the context and is difficult to incorporate into an algorithm, but
it becomes apparent in manual inspection.

For visualizing aligned reads, several methods have been pro-
posed. BamView (Carver et al., 2010) from the Sanger Institute is an
interactive Java application; Integrative Genomics View (IGV)
(Robinson et al., 2011) from the Broad Institute is coded in Java and
JavaScript and supports a graphic user interface for multiple data
types including BAM files; PyBamViewer (Gymrek, 2014) is a web-
based viewer which provides base-wise alignment plot similar to the
samtools view (Li et al., 2009); and pileup.js (Vanderkam et al.,
2016) is a web-based JavaScript viewer with similar features as IGV.
But because these tools were created for interactive exploration,
they are designed to deal with a small number of BAM files at a
time. Accessing a large number of BAM files to generate read align-
ment maps in real time often results in memory errors or is time-

consuming. It is possible to write custom scripts to capture images
from interactive viewers, but it is slow and cumbersome.

Here, we describe BamSnap, a highly efficient viewer to generate
read-level view across thousands BAM or CRAM files at a time.
BamSnap supports visualization of genomic tracks for reference
sequences, mapped reads (paired or unpaired), read depth (cover-
age), variants and gene annotations (Fig. 1). The web viewer gener-
ated by BamSnap can be easily customized and incorporated into a
data portal without the need to access the original alignment files.

2 Basic usage and features

Users can run BamSnap on sorted and indexed BAM files and VCF
(or gzip/bgzip-compressed VCF) files with multi-threading, using
simple commands as illustrated here:

bamsnap -bam NA12877.bam NA12878.bam NA12879.bam -

vcf trio.vcf -out test -thread 20

Various options for layout and input/output format are avail-
able. BamSnap has the following distinguishing features compared
to existing tools (a detailed comparison is in Supplementary Table
S1):

1. A snap-image based viewer: it does not require access to the

BAM files to show the alignment and enables fast loading and

navigation; the images can be easily shared and/or published.

2. Batch processing: images can be generated for multiple variants

and multiple BAM (or CRAM) files with a single command.

3. High-quality images: PNG, SVG and PDF are supported.

VC The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 263

Bioinformatics, 37(2), 2021, 263–264

doi: 10.1093/bioinformatics/btaa1101

Advance Access Publication Date: 8 January 2021

Applications Note

http://orcid.org/0000-0001-8577-9137
http://orcid.org/0000-0001-9378-960X
https://github.com/parklab/bamsnap
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1101#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1101#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1101#supplementary-data
https://academic.oup.com/


4. Flexible layout: the image layout (color set, margin, track height,

etc.) can be customized by modifying the configuration file.

5. Additional tracks: UCSC browser and ENSEMBL annotation

tracks (e.g. conservation score, mappability) can be appended.

6. Command line interface (CLI): CLI offers additional flexibility

and facilitates repetitive tasks and automated pipelines.

7. Jupiter notebook implementation: Users can implement the

alignment image in Jupiter notebook using a Python API.

8. Multi-threading: an almost linear speedup with the increase in

the number of cores used.

3 Implementations

BamSnap is a Python-based CLI application; for a web viewer, it uti-
lizes Python application programming interface (API). The work-
flow consists of two parts: (i) generation of a snap image from BAM
files using Pillow (v2.0.0), a Python image library based on the GD
graphic library, and (ii) a web viewer implementation. To quickly
fetch data from specific genomic regions of interest, it uses Pytabix
(v0.1) and Pysam library (v0.11.2.2), which use indexed BAM (or
CRAM) and VCF files. The BamSnap view is implemented using
HTML5 and Web 2DGL-based Pixi.js for fast and effective viewing
in a web browser. It supports the latest versions of the major brows-
ers available at this time: Chrome 84þ, Firefox 79þ, Safari 13þ and
Microsoft Edge 84þ.

4 An example use case

We generated images for 1000 common variants (6100 bp neigh-
borhood) across 2504 samples with whole genome sequencing data
(27 high- and 2477 low-coverage) (1000 Genomes Project
Consortium et al., 2015). We ran BamSnap on a 3.8 GHz Intel Xeon
CPU with 20 GB RAM and 30 threads, and obtained images of 2.5
million genomic sites in �3.8 h. The average times of image gener-
ation for a single site were 1.63 s and 0.15 s, respectively, for high-

and low-coverage. The results are available at https://github.com/
parklab/bamsnap.

5 Conclusion

We built a lightweight visualization tool for generation of
publication-quality graphics based on BAM (or CRAM) and VCF
files. Researchers and clinicians can use BamSnap to inspect a large
number of candidate variants quickly and share their images in a
HTML wrapper without having to share the raw data. Developers
can easily implement BamSnap in their own systems using CLI and
API.

Funding

This work was supported by National Institutes of Health [U01MH106883].

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium. et al. (2015) A global reference for human

genetic variation. Nature, 526, 68.

Carver,T. et al. (2010) BamView: viewing mapped read alignment data in the

context of the reference sequence. Bioinf. Oxf. Engl., 26, 676–677.

Dou,Y. et al. (2018) Detecting somatic mutations in normal cells. Trends

Genet., 34, 545–557.

Gymrek,M. (2014) PyBamView: a browser-based application for viewing

short read alignments. Bioinformatics, 30, 3405–3407.

Li,H. et al.; 1000 Genome Project Data Processing Subgroup. (2009) The

Sequence Alignment/Map format and SAMtools. Bioinformatics, 25,

2078–2079.

Li,H. (2014) Toward better understanding of artifacts in variant calling from

high-coverage samples. Bioinformatics, 30, 2843–2851.

Robinson,J.T. et al. (2011) Integrative genomics viewer. Nat. Biotechnol., 29,

24–26.

Vanderkam,D. et al. (2016) pileup.js: a JavaScript library for interactive and

in-browser visualization of genomic data. Bioinformatics, 32, 2378–2379.

Fig. 1. BamSnap viewer. A read alignment view of the chr20:143,723 G>A variant was generated across 2504 samples from the 1000 Genomes Project

264 M.Kwon et al.

https://github.com/parklab/bamsnap
https://github.com/parklab/bamsnap

