Skip to main content
. 2021 Apr 14;17:1077–1087. doi: 10.2147/NDT.S304434

Table 5.

Comparison of the Performance of the Five Machine Learning Algorithms (Test; n=21)

Lasso Ridge Random Forest LDA SVM
% of good classification (95% CI) 85.7% (71.4, 95.2) 81.0% (61.9, 95.2) 76.2% (52.4, 90.5) 81.0% (66.7, 95.2) 85.7% (68.9, 1.00)
Sensitivity 83.3% (60.7, 100) 83.3% (57.7, 100) 83.3% (61.5, 100) 83.3% (60.7, 100) 91.7% (72.0, 100)
Specificity 88.9% (65.1, 100) 77.8% (50.0, 100) 66.7% (26.7, 92.3) 77.8% (46.3, 100) 77.8% (46.3, 100)
ROC curve AUC 0.861 (0.64, 1.00) 0.806 (0.52, 0.98) 0.796 (0.50, 0.94) 0.870 (0.58, 1.00) 0.806 (0.56, 1.00)

Abbreviations: AUC, area under the curve; LDA, linear discriminant analysis; ROC, Receiving Operating Characteristic; SVM, support vector machine.