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Abstract

The Sustainable Development Goals call for a total reduction of preventable child mortality before 

2030. Further, the goals state the desirability to have subnational mortality estimates. Estimates at 

this level are required for health interventions at the subnational level. In a low and middle income 

countries context, the data on mortality typically consist of household surveys, which are carried 

out with a stratified, cluster design, and census microsamples. Most household surveys collect full 

birth history (FBH) data on birth and death dates of a mother’s children, but censuses collect 

summary birth history (SBH) data which consist only of the number of children born and the 

number that died. In previous work, direct (survey-weighted) estimates with associated variances 

were derived from FBH data and smoothed in space and time. Unfortunately, the FBH data from 

household surveys are usually not sufficiently abundant to obtain yearly estimates at the Admin-2 

level (at which interventions are often made). In this paper we describe four extensions to previous 

work: (i) combining SBH data with FBH data, (ii) modeling on a yearly scale, to combine data on 

a yearly scale with data at coarser time scales, (iii) adjusting direct estimates in Admin-2 areas 

where we do not observe any deaths due to small sample sizes, (iv) acknowledge differences in 

data sources by modeling potential bias arising from the various data sources. The methods are 

illustrated using household survey and census data from Kenya and Malawi, to produce mortality 

estimates from 1980 to the time of the most recent survey, and predictions to 2020.
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1 | INTRODUCTION

The under-five mortality rate (U5MR) is an important indicator of overall mortality levels 

and health in a population. The United Nations (UN) Sustainable Development Goals 

(SDGs) introduce targets of child mortality reduction for countries.1 Specifically, SDG 3.2 

states, “By 2030, end preventable deaths of newborns and children under 5 years of age, 

with all countries aiming to reduce neonatal mortality to at least as low as 12 per 1,000 live 

births and under-5 mortality to at least as low as 25 per 1,000 live births.” The ability to 

make estimates at a finer administrative level than the national level allows for identification 

of administrative areas that are relatively slow or fast in achieving their reduction goals. This 

is useful for governments and organizations trying to efficiently allocate resources and 

implement interventions. However, many low and middle income countries (LMIC) lack 

vital registration, so U5MR and other demographic measures must be estimated from census 

and survey data. The two main data types collected for estimating U5MR are full birth 

history (FBH) data, where a surveyed mother provides birth and death dates for all her 

children, and summary birth history (SBH) data, where a mother provides the number of 

children she has had and the number who have died. FBH data are preferable as they provide 

information about the age at death of the child and the period in which they were alive. 

Common sources of FBH data are complex household surveys such as the Demographic and 

Health Surveys2 (DHS) and UNICEF’s Multiple Indicator Cluster Surveys3 (MICS). 

Censuses and some older MICS provide only SBH data.

Currently, the United Nations Inter-agency group for Child Mortality Estimation (UN 

IGME) use the Bayesian B-spline bias reduction model for estimation of child mortality.4 

However, this method was developed for national estimation and is not designed to deal with 

within-country variability. The model cannot incorporate surveys that are not carried out at 

the national level, which is referred to as Admin-0. Countries are further divided into finer 

administrative divisions, with the first subnational division being Admin-1, and the next 

coarsest division being Admin-2. Mercer et al5 developed a discrete space-time smoothing 

method to produce areal estimates that account for the complex survey design from FBH 

data.5 This method has been applied to 35 countries at the spatial resolution of the Admin-1 

area, in work supported by UN IGME.6 However this method only uses DHS FBH data, and 

does not incorporate MICS FBH data or any SBH data.

We extend these methods to incorporate MICS surveys (both FBH and SBH data) and 

census data. Moreover, we apply this method to make estimates at a finer administrative 

level. We illustrate for the 47 counties of Kenya and the 28 districts of Malawi. Though 

Kenya redefined their Admin-1 level to be 47 counties, it was originally defined to be eight 

regions. Figure 1 shows the Admin-1 regions by color with the counties or districts of each 

country outlined with white borders. Most household surveys in Kenya were stratified at the 

eight region level, not the 47 counties. In Malawi, most surveys were stratified at the level of 

three regions. From here on we will refer to the 47 counties and the 28 districts of Kenya and 

Malawi, respectively, as Admin-2 areas.
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2 | DATA

To construct estimates of U5MR for Admin-2 areas over the period 1980 to 2014 for Kenya 

and 1980 to 2015 for Malawi, we make use of DHS survey data, MICS survey data and 

census data. Table 1 breaks down the data sources by type for each country. The FBH data 

come from either DHS surveys or MICS surveys, which have a stratified two-stage cluster 

design. Sampling frames are constructed from the most recent census, and consist of 

collections of households, labeled as enumeration areas (EAs) or clusters. Each of these 

clusters is classified as either urban or rural, as defined by each country (and these 

definitions can change over time, as new censuses are performed). Depending on the total 

number of clusters to be sampled, the strata consist of some administrative level (usually 

Admin-1) crossed with urban/rural. After this stratification, two-stage cluster sampling is 

performed selecting first EAs within strata and then households within EAs.7–13 All women 

aged 15 to 49 who slept in a selected household the night before are eligible to be 

interviewed. In all DHS, and recent MICS, mothers are asked for the birth and death dates of 

all of their children in addition to many other questions. In certain older MICS and in 

censuses, only SBH data are collected. Full census data does not typically contain 

subnational geographic information, so we use 10% census samples with geographical 

information, as published by IPUMS-International.14 As Table 1 shows, in time periods 

where IPUMS census samples are available, they comprise an overwhelming proportion of 

births. Although they do not provide birth and death dates, which drastically reduces the 

effective amount of information.

3 | METHODS

Even when considering both household survey and census data, the amount of information is 

sparse in some cells defined by Admin-2 areas and years. We are in a classic small area 

estimation (SAE) context and, in general, when one analyzes survey data with a complex 

design one may follow design-based or model-based approaches. The former leans on 

traditional survey sampling techniques based on weighted estimates while the latter models 

the outcome (a count in our case) directly, and attempts to include terms in the model to 

account for the design. In either case, the sparsity of data across time and space leads to the 

necessity of using spatiotemporal smoothing models to borrow information.

The approach we take for smoothing is an extension of the famous Fay-Herriot15 model in 

which, in each time period and area, the observed data are summarized via a weighted 

estimate and its associated variance. These estimates are then modeled within a hierarchical 

framework, which we describe in this section. We refer to the overall method as smoothed 
direct since it takes the direct estimates (SAE terminology for estimates based on response 

data only from the area/time period for which estimates are required) and then smooths them 

across space and time. Among SAE models, an important distinction is between area-level 

models, such as the Fay-Herriot model, and unit-level models.16 We adopt area-level models 

in this paper, though in other work17 we use unit-level models, with the units corresponding 

to the sampled clusters in the FBH data. Currently, it is more difficult to use unit-level 

models when FBH and SBH data are combined.
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The information in the FBH data allow the fitting of a discrete survival model, in order to 

estimate the U5MR. However, sparsity of data means that the data often require aggregating 

over multiple years, in order to obtain point and variance estimates. Specialized methods are 

required to exploit the limited information in the SBH data, but to use the smoothed direct 

method, all that is required is a point estimate and variance, and here we utilize the Brass 

method18 which provides an estimate (and SE) of U5MR in a particular year. In Section 3.1 

we will review the method that we have previously used for making smoothed Admin-1 

estimates of U5MR from DHS FBH data.5,6 Section 3.2 then provides a review of the Brass 

method that we will use to analyze SBH data. In Section 3.3 we describe the latent temporal 

model that allows combination of 1-year and 5-year estimates. Next, Section 3.4 outlines the 

adjustment required for areas with small sample sizes.

3.1 | Review of smoothed direct estimation

FBH data are collected via household surveys with stratified, multistage cluster sampling 

designs. To estimate the U5MR in a particular area and time, we fit a discrete hazards model. 

Using a weighted likelihood we account for the sampling scheme in our analysis. The birth 

dates and age at death are collected to the nearest month, or imputed where needed. Within 

the first 5 years of life, the hazard function varies greatly. In particular, deaths in the first 

month of life (neonatal deaths) were estimated to account for 47% of all under five deaths 

worldwide, in 2018.19 Due to the rapidly changing hazard function over ages 0 to 60 

months, we follow the majority of previous approaches and adopt a discrete hazards model, 

on a monthly age scale.6,20–23

To this end, we begin by expanding a child’s reported birth date and death date into months, 

where the response in each month is whether the child died or not. Using traditional 

demographic notation, we let

qxn = Pr(death before age x + n survival until age x),

where x and n are in months. Thus, the probability of death before a child’s fifth birthday 

(60th month of life), is denoted 60q0. Following previous work,5,6 we do not have a distinct 
discrete hazard for each of the 60 months, but rather we assume that the hazard is constant 

within each of six age-bands indexed by a = 1, 2, … ,6, and corresponding to months in the 

intervals [0, 1), [1, 12), [12, 24), [24, 36), [36, 48), [48, 60). This allows the model the 

flexibility to be able to make estimates for other important demographic measures such as 

the neonatal mortality rate, 1q0, and the infant mortality rate, 11q1. Note that, to be consistent 

with the literature we are referring to rates (including the U5MR) but we are actually 

modeling probabilities of death. It turns out that, in spite of the dependent observations on 

each child, the hazards can be estimated using a binomial likelihood with a logistic 

regression model.24 Specifically, if we consider areas i = 1, … , n, time periods t = 1, … , T 
and data source s = 1 … , S, we have,

logit( qx, its1 ) = βa[x], its, (1)
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where a[x] is a function that maps monthly age x to one of our six age bands a = 1, … ,6 and 

1qx,its is the probability of death within 1 month given survival to age x for a child in area i 
and time t from data source s. To account for the complex design by which the data are 

collected, a pseudolikelihood method25 is used to estimate the coefficients in (1). The 

method uses the survey weights provided by the DHS, which account for each child’s 

probability of being sampled and adjust for nonresponse, to weight each observation’s 

contribution to the score function that is used to estimate the hazards. This approach yields 

design-consistent estimates of the monthly hazard for each age band along with the 

estimated 6 × 6 variance-covariance of the estimates, Σits using a sandwich estimator.25 The 

model is fitted in R using the survey package.26

We model the logit of the weighted estimate of the U5MR. From the estimates βa[x], its, one 

can derive an estimate of 60q0,its,

q0, its60 = 1 −
a

(1 − qa[x], its1 )n[a],

where n[a] = 1, 11, 12, 12, 12, 12 for a = 1, 2, 3, 4, 5, 6, corresponding to the number of 

months in each of the six previously defined age intervals. The key idea in the Fay-Herriott 

approach is to take as observed data the weighted estimate (or some function of it) and then 

smooth. We let

yits = logit( q0, its60 ) .

The design-based variance of the estimator, V its, can be obtained using the delta method and 

based on Σits, details are available in the supplementary materials of Mercer et al.5 Our 

hierarchical smoothing model begins with a likelihood which is taken as the asymptotic 

distribution of the estimator,

yits |ηits ∼ N(ηits, V its) . (2)

We then decompose the logit of the true (unobserved) probability as,

ηits = μ + αt + γt + θi + ϕi + δit + vs, (3)

where μ is the overall mean, and the remainder of the terms smooth to either locally 

(dependent terms) or globally (independent terms) in space, time, or both. The terms 

νs ∼ NIID 0, κν−1 , where IID is short hand for independent and identically distributed, 

estimate the bias of estimates from data source s, relative to μ. Together, γt and αt comprise 

the temporal components of the model. Random “shocks” in time are modeled with 

αt ∼ NIID 0, κα−1 . The smooth temporal trend is modeled by assigning γt, a random walk of 

order 2 (RW2). This model is defined by placing a prior on second differences,
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π(γ |κγ) ∝ κγ(T − 2)/2exp −
κγ
2 t = 1

T − 2
(γt − 2γt + 1 + γt + 2)2 = κγ(T − 2)/2exp −

κγ
2 γTQγγ ,

where Qγ specifies the second order dependency between time points and has rank T – 2, so 

that the prior is improper.27 Following Besag, York and Mollié28 (BYM), ϕi ∼ NIID (0, κϕ
−1), 

and θi is an intrinsic conditional autoregressive (ICAR) spatial random effect. The improper 

prior for θi encourages the borrowing of information from area i’s neighbors, which we 

define as those areas that share a common boundary,

θi |θj, j ∼ i, κθ ∼ N 1
ni j ∼ i

θj, 1
niκθ

,

where j~i indexes the neighbors of area i and ni are the number of such neighbors. The joint 

“distribution” is compactly written as

π(θ |κθ) ∝ κθ
(n − 1)/2exp −

κθ
2 θTQθθ ,

where Qθ encodes the neighbors. Finally, the space-time interaction, δit, is a Type IV 

interaction as defined by Knorr-Held.29 This model accounts for contributions to the fit 

beyond the main effects by assuming the interactions have temporal and spatial structure. 

Specifically, the precision matrix is the kronecker product of the precision matrices of a 

RW2 and an ICAR, that is, Qδ = Qγ ⊗ Qθ. We can write the joint “distribution” as,

π(δ |κδ) ∝ κδ
(n − 1)(T − 2)/2exp −

κδ
2 δTQδδ .

This form is improper, since the matrix Qδ has rank (n − 1)(T − 2). The final stage of the 

model is to specify priors on the intercept μ and the precisions κν, κα, κγ, κθ, κϕ, κδ. We 

use a normal prior with a large variance on the intercept, and penalized complexity priors on 

the precisions.30

Specifically, PC priors penalize deviations from a null (fixed effects model). The priors are 

applied independently for αt, γt, θi
⋆ + ϕi

⋆ and δit. We adopt the BYM2 prior of Riebler et al,31 

which places a joint PC prior on the structured spatial term, θi
⋆, and the unstructured spatial 

term, ϕi
⋆. The prior on the spatial terms has two parameters, one which represents the 

proportion of the marginal variance, rBYM, which is attributed to the ICAR term instead of 

the IID term and one which represents the marginal precision, κBYM, of the weighted sum of 

θi and ϕi. In the resulting linear predictor,

θi⋆ + ϕi⋆ = κBYM
−1/2 rBYMθi + 1 − rBYMϕi .
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The model is fit via integrated nested Laplace approximation (INLA) using the R–INLA 

package,32,33 which is very fast. After fitting the model, one obtains smoothed direct 

estimates and credible intervals via the posterior distribution for

q0, its60 = expit(μ + αt + γt + θi + ϕi + δit),

where we note that the study specific random effects νs terms are not included. The 

complete distributions are available, but we can summarize using, for example, the 5%, 50% 

and 95% quantiles.

3.2 | Brass method

Censuses and some household surveys such as MICS provide SBH data: the age of the 

mother, the number of children ever born and the number of children ever died. We would 

like to include such data in analyses, but to use the method described in the previous section 

we require a point estimate, along with a standard error. A number of different methods have 

been described to analyze summary birth history data.18,34–38 We describe and use the Brass 

method as it is the most commonly used method to analyze SBH data,39,40 and has the most 

straightforward implementation. None of the other methods have an available 

implementation in the R programming environment. The Brass method is available in the 

SUMMER R package.41 The original method used the proportion of children ever died to 

children ever born in 5-year age groups of mothers to make an estimate of 60q0, the U5MR.
18 Specifically, mothers ages are broken down into 5-year bands, 15 – 19, … ,45 – 49. The 

proportion of children who have died to mothers in age group a, da, is first calculated. This 

proportion is a function of the underlying probabilities of giving birth at different ages and 

the child mortalities by age of the population over the relevant time period. Brass equated 

these proportions of dead children to different mortalities depending on the associated age 

group. For example (see p228 of Preston et al40), the proportion dead born to the 15 to 19 

group corresponds to death within the first year of life, the 20 to 24 group to death in the 

first 2 years of life, and the 30 to 34 age group corresponds to death in the first 5 years (the 

U5MR). For the age groups that do not directly equate to U5MR (ie, all but the 30- to 34-

year age group), a life table can be leveraged to convert to U5MR. Extensions have been 

made to account for parity of women by age groups in the sample and to attach a reference 

date of the estimate, a year in time prior to the census or survey.42,43

More formally, suppose da is the probability of death in mother’s age a. This proportion 

approximates death before age x for some age x that depends on a. This basic relationship 

will change as a function of the reproductive histories of the women who supplied the data. 

Details on these histories are unavailable, and instead information on the parities in the 

relevant population are used in an empirical model that adjusts the mortality estimate. 

Specifically, for each age group, the following adjustment is used,

q0x = da b1a + b2a
P1
P2

+ b3a
P2
P3

,
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where P1, P2, P3 are average parities of mothers in age groups 15 to 19, 20 to 24 and 25 to 

29, respectively, that provide some empirical estimates of birth timing. The coefficients b1a, 

b2a, b3a were estimated via simulation using model life tables for fertility and mortality 

schedules.42,44 Different coefficients are used in different settings, and we use the Coale and 

Demeny45 (C-D) North life table coefficients in our analysis, which is the version that is 

relevant for Kenya and Malawi. These coefficients are available in table 47 of Hill et al.39

The final step is to assign the estimate to a relevant period in the past, and another set of 

simulated coefficients, c1a, c2a, c3a, are used in conjunction with the parity ratios to estimate 

a reference date,43

c1a + c2a
P1
P2

+ c3a
P2
P3

.

As already discussed, the age group 30 to 34 directly produces an estimate of 60q0. 

Additionally, there is bias associated with SBH data from younger mothers, as they have a 

higher proportion of first births and first births have higher mortality rates.46 For these 

reasons we use U5MR estimates from women aged 30–34 only.

Our smoothing model requires a point estimate and a variance estimate, but traditional Brass 

methods and variants do not provide uncertainty estimates. We use a jackknife to estimate 

V its for SBH data.20 For the MICS surveys that provide SBH data, we must acknowledge the 

complex design, and we use a stratified cluster jackknife that removes clusters within strata. 

Let y ℎc = logit( q60 0, its
ℎc ) be the estimate computed via the Brass method when the data from 

cluster c in strata h are removed for h = 1, … , H strata, with c = 1, …, nits
(ℎ) clusters in area i, 

at time t in strata h for study s. The estimate of the logit of U5MR for strata h, for i, t, s, is,

yits
(ℎ) = 1

nits
(ℎ) c = 1

nits
(ℎ)

yits
(ℎc),

where yits
(ℎc) is the Brass estimate obtained when cluster c in strata h is removed. The 

stratified-cluster jackknife variance is,

V its =
ℎ = 1

H nits
(ℎ) − 1

nits
(ℎ) c = 1

nits
(ℎ)

(yits
(ℎc) − yits

(ℎ))
2

.

As each cluster-wise deletion must result in an estimate yits
(ℎc), we cannot calculate a measure 

of uncertainty for area, time, study combinations in which there are less than two clusters in 

each strata. Moreover, if deleting a cluster c within a strata h results in the observed 

proportion of deaths being zero, then yits
(ℎc) is undefined and we cannot compute the jackknife 

estimate of the variance for that area, time, study combination.
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For the census samples we use a jackknife that removes women, as there are no design 

complications. There are, however, a large number of women in any given census and so we 

delete groups of women.20 First, we select the size of groups to delete as d = 30. Then, for 

each census we calculate the number of groups as nd = N/d (in practice we round), where N 

is the number of women in the IPUMS census sample. Let yits
k = logit( q60 0, its

k ) denote the 

estimate computed via the Brass method when data from women in group k are removed. 

Then,

V its =
nd − 1

nd k = 1

nd
(yits

k − yits)
2
,

where yits = 1
nd k = 1

nd
yits

k

3.3 | Latent temporal modeling

Both the FBH and SBH data produce a data pair [logit q60 0, its , V its], that is, a point estimate 

and a variance, upon which a normal likelihood can be based. For the FBH data t refers to a 

five-year period, with t = 1980 to 1984, …, 2010 to 2014. For the SBH data, t refers to a 

single year (the reference year) between 1980 and 2014. To incorporate both 1-year and 5-

year estimates in the direct smoothing model5 we specify all time-related random effects on 

the yearly scale, which means that we have to aggregate over 5-year periods for the FBH 

data. Recall the model defined by (2) and (3) includes a RW2, IID effects for each period 

and a Type-IV interaction term for all area and time period combinations. We reformulate 

the model for each of these effects.

We still include a RW2 term, γt, but the random walk is defined on the yearly scale and 

effects for periods are averages of the yearly effects within that period. Let t = 1, … , nT 

index 1-year time points, t⋆ = 1, … , nT⋆ index 5-year periods. We then collect together the 

smoothing random effects on the 1-yearly and 5-yearly scales as γ = γT
T γT⋆T T

 where γTis a 

vector of length nT and γT⋆ is a vector of length nT⋆. We define

γT⋆ = AγT, (4)

where A is an nT* × nT matrix that averages each consecutive set of nT/nT⋆ points. The 

coarsened parameters γT⋆ are a deterministic function of the yearly versions γT but both are 

needed to define the model, for the FBH and SBH data, respectively. In our case, nT = 35 

and nT⋆ = 7, so that γT⋆ is a 7 × 1 vector of five-year averages. The RW2(κγ) prior on γT 

can be written

π(γT|κγ) ∝ κγ
(nT − 2)/2exp −

κγ
2 γT

TQγγT ,
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where κγ Qγ is the precision matrix of the random walk. We practically implement the 

relationship (4) in INLA via a soft constraint in which we assume γT⋆ γT ∼ N(AγT, τγ−1InT⋆−1 ), 

where InT⋆ is the identity matrix and τγ = 106. Written out in full,

π(γT⋆ |γT) ∝ τγ
nT⋆/2exp − τγ

2 (γT⋆ − AγT)TInT⋆(γT⋆ − AγT) . (5)

Then, the joint prior on γ can be expressed as,

π(γ) = π(γT)π(γT⋆|γt) ∝ exp − 1
2γTQγ†γ ,

where

Qγ† =
κγQγ + τγATA −τγAT

−τγA τγInT⋆
.

We can define the IID model similarly, where α = [αnT
T αnT⋆T ]T is the stacked vector of yearly 

IID effects and period IID effects and

π(αnT) = (2π)−nnT/2κα
nnT/2

exp −
κα
2 αnT

T InTαnT .

Then, π(αT⋆ | αT) is defined analogously to (5), and

π(α) = π(αT)π(αT⋆|αT) ∝ exp − 1
2αTQα†α ,

where

Qα† =
καInT + ταATA −ταAT

−ταA ταInT⋆
.

We again define a space-time interaction model using a Type IV interaction as described by 

Knorr-Held.29 To specify the prior for all space-time interactions, first define δ = [δT
T δT⋆T ]

T

where δT is the (n × nT) × 1 vector of yearly interactions, and δT⋆ is the (n × nT⋆) × 1 vector 

of interactions defined with respect to periods, and n is the number of areas. Then,

π(δT) ∝ exp − κδ
2 δT

TQδδT ,

where the dependency structure is defined as Qδ = Qγ ⊗ Qθ and Qγ and Qθ specify the 

dependency structures of the RW2 and ICAR models, respectively. Then δT⋆ = BδT, where 

Godwin and Wakefield Page 10

Stat Med. Author manuscript; available in PMC 2021 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B is an (n × nT⋆) × (n × nT) matrix that consists of n copies of A on the diagonal and zeroes 

elsewhere. Then,

π(δ) = π(δT)π(δT⋆|δT) ∝ exp − 1
2δTQδ

†δ ,

where

Qδ
† =

κδQδ + τδBTB −τδBT

−τδB τδIn × nT⋆
.

These specifications of the time effects allow us to smooth in time and incorporate data on 

both yearly and period scales. This also allows us to easily make estimates and predictions 

on both yearly and period scales.

3.4 | Zero adjustment

Most household surveys are geographically stratified at an administration level higher than 

Admin-2, thus sample sizes can be small or nonexistent in some Admin-2 areas. If the data 

are sparse, we may not observe any deaths in such an area, leading to a direct estimate of 

q0, its60 = 0. In these cases, and in cases where all the children in a cluster have the same 

response (all deaths or all nondeaths), the variance estimate is 0. These cases are problematic 

for our smoothing model as logit( q0, its60 ) is undefined and we require a (nonzero) design-

based variance. In the case of no data in an area and time period, we treat these as missing 

values, which can be dealt with accordingly within a Bayesian framework. In the 

aforementioned other cases, we cannot go this route, as they are informative, albeit weakly.

We propose a model-based solution for areas where we have computational issues; we 

preprocess such data to replace the problematic estimates with a reasonable value. We stress 

that this should only be carried out for a small proportion of areas and time periods. In a 

problematic area labeled i, we take the set of its first order neighbors j ~ i, to constitute a 

larger area. For the problematic areas and its neighbors we fit a betabinomial model that 

accounts for the complex survey design by including an urban/rural strata fixed effect and a 

scale parameter that allows for clustering. We let i index areas, h strata, and c clusters within 

strata. For a time period t and a survey s,

Zits
(ℎc) | q60 0, its

ℎc ∼ BetaBinomial(nits
(ℎc), q60 0, its

ℎc , d),

logit( q60 0, its
ℎc ) = μ + β1(ℎ = 2) + ei,

ei ∼ N(0, σe2),
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where Zits
(ℎc) is the number of deaths, nits

(ℎc) is the number of children in cluster c for urban and 

rural strata, h = 1, 2, and d is an overdispersion parameter. This model can be fitted in R with 

INLA; we use relatively uninformative priors on β, σe2 and d.

An estimate of the aggregate U5MR in area i, time period t and for source s is,

q0, its60 = pits × expit(μ + ei) + (1 − pits) × expit(μ + β + ei), (6)

where pits and 1 – pits are the proportions of births that are urban and rural, respectively. In 

the DHS sampling manuals, the numbers of clusters in urban and rural strata in the sampling 

frame is reported by area—usually this is by Admin-1, but it is Admin-2 for some surveys, 

including the ones we use in Kenya and Malawi.

Within the INLA implementation in R there is a function inla.posterior.marginal, that allows 

one to draw samples [μ j , βℎ
j , ei

j ] for j = 1, … , J, from the approximate joint posterior 

distribution. These can be converted to samples q60 0its
j  using (6) and we use the posterior 

mean and posterior variance of these samples for yits and V its, respectively that we require 

for the smoothing model. Let yits
j = logit( q60 0, its

j ), then

yits = 1
J j = 1

J
yits
(j),

and

V its = 1
J − 1 j = 1

J
(yits

(j) − yits)
2

.

We show results of the adjustment method for the 2003 Kenya DHS, as it has more areas and 

time periods that need to be adjusted. Malawi, on the other hand, has only a handful of 

areas/time periods that need adjustments, so results are relegated to Appendix. Figure 2 

shows a side-by-side comparison of estimates of logit U5MR in all areas in Kenya before 

(Left) and after (Right) adjustment. Note, the estimates on the right-hand side and the 

corresponding variances used to create the confidence intervals are those later included in 

the smoothing model. Areas to be adjusted are in red in both panels. We see three types of 

estimates to be adjusted on the left. Lamu, Embu, Laikipia, Trans-Nzoia, Kajiado and 

Samburu all have an estimate of q0, i, 80 − 84, 200360 = 0 and V i, 80 − 84, 2003 = 0. Isiolo has no 

estimate, as no clusters in the 2003 DHS were sampled in that area. Lastly, Marsabit and 

West Pokot have q0, i, 80 − 84, 200360 ≠ 0 and V i, 80 − 84, 2003 = 0. In Marsabit there are four 

sampled households, in West Pokot there are five. In every household either all the children 

die or all the children survive, which leads to a variance estimate of 0. Figure A1 shows the 

location and types of adjustments on a map. Our adjusted estimates q0, its60  are pulled away 

from 0 and informed by the data in surrounding areas. The average 95% CI width for 
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adjusted areas is 2.01, which is nearly identical to the average width of unadjusted areas, 

2.03.

Figure 3 shows smoothed results on a map for the two ways of treating the observed zeroes 

for the period 1980 to 1984. Recall the pink areas, Marsabit and West Pokot, in Figure A1. 

These places had small sample sizes, with nonzero estimates of q0, i, 80 − 84, 200360  and zero 

estimates of V i, 80 − 84, 2003. In the left column of Figure 3, we see that when we throw out 

these observations, we get incredibly wide CIs. However, when we use the adjusted method 

we still estimate relatively high mortality, which we would expect since we observed deaths 

in this area, but our uncertainty decreases. In areas where we observe no deaths, we estimate 

smaller U5MRs when we use adjusted estimates instead of simply removing the data from 

the area. We also see shorter CI widths. Lastly, including the adjusted data allows us to make 

more precise estimates in Isiolo (outlined in navy) than when we throw out these Admin-2 

area’s data. In Isiolo, we have no observations whatsoever from the 2003 DHS. However, the 

adjusted data from Isiolo’s neighbors that either had no observed deaths or an estimated 

variance of zero changes both the median estimate and the precision of the estimated U5MR 

in Isiolo after smoothing.

We end this section with a review of the literature that is relevant to the zero-adjustment 

procedure we have described. Some authors47,48 have chosen to take as likelihood the 

sampling distribution of the estimator on the original scale (the U5MR in our setting) while 

smoothing on a different scale, in an approach labeled area-level unmatched sampling and 
linking models (the linking model is the second stage of the hierarchy, (3) in our case). This 

approach removes the numerical problems with the estimated probability being 0 or 1, 

though the asymptotic normal approximation to the sampling distribution is likely to be 

inaccurate in these cases. In Ha et al (section 3.2),47 the design variance is written as the 

product of the variance of the estimator for a binomial response and the design effect. The 

former depends on the unknown proportion, and this is estimated using a synthetic estimator 

that uses data from a larger region, the design effect is also estimated from a larger region. 

Generalized variance function estimation (chapter 7 of Wolter49) provides a general 

approach to alleviating problems of variance instability.

3.5 | Space-time smoothing model

In this section we discuss two difficult practical issues. The first is that each data source has 

its own idiosyncrasies in design and data collection, which leads to a unique set of potential 

biases—estimates resulting from SBH data in particular may be subject to bias,35 and we do 

not want them to have undue influence on our smoothed estimates. The second difficulty is 

that even though the IPUMS data are a 10% sample, the census data can dominate in terms 

of information available. The previous version of the model in Equations (2) and (3) had a 

normal likelihood, and a random effect for source type. We remove the latter term for the 

overall estimates, which is consistent with believing that the study types are exchangeable, 

and no more or less likely to be susceptible to bias. We now change this specification to have 

fixed effects associated with the SBH data, to allow for the possibility of bias. The inclusion 

of these bias correction terms corrects for a data source having consistently low or high 
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estimates and these fixed effects are assumed constant across time and space. The new 

model is,

logit( q0, its60 ) ∼ N(ηits, V its), (7)

ηits = μ + βs1(s is SBH) + αt + γt + θi
⋆ + ϕi

⋆ + δit, (8)

where individual βs are fixed bias correction terms for each data source s that provides SBH 

data. This allows these data sources to contribute to understanding temporal, spatial and 

spatiotemporal variability, but not the absolute level.

4 | APPLICATION OF METHODS TO KENYA AND MALAWI MORTALITY 

DATA

We apply the methods detailed in Section 2 to the data found in Table 1. The Kenya DHS in 

2014 and the Malawi DHS in both 2010 and 2015 were stratified at the Admin-2 level 

crossed with urban/rural, yielding sufficient sample sizes in all areas. However, the other 

DHS were stratified at the Admin-1 level. Figure 1 shows the difference in granularity of 

these administrative levels. Using jittered GPS locations of clusters sampled in the DHS 

stratified at the Admin-1 level, we can assign clusters to the appropriate Admin-2 area. For 

MICS surveys and IPUMS census samples, we do not have GPS locations, but we have 

place names. Usually, these place names are at an even finer granularity than Admin-2 (the 

census) or are no longer in use (older MICS and census). In these cases we query the Google 

Maps API to get a GPS location for the center associated with the name and then assign it to 

the appropriate Admin-2 area. Modeling at the subnational level also allows us to 

incorporate MICS surveys that were carried out with subnational coverage. In Kenya, this 

includes the 2011 MICS carried out in Nyanza (Admin-1) and three 2013 MICS carried out 

in Bungoma, Kakamega, and Turkana (Admin-2).

First, we process all data according to their type, using the survey-weighted discrete hazards 

survival method for the FBH data and the Brass method and jackknife for the SBH data. 

Then, we apply the adjustment for the areas that have no observed deaths or zero variance 

estimates. These areas account for 51 of the 987 DHS area, time, survey points (5.2%) in 

Kenya and just 14 of the 784 points (1.8%) in Malawi. There are no MICS FBH estimates 

that need adjustment. We next apply an adjustment to account for the generalized HIV/AIDS 

epidemic. The method developed by Walker et al50 produces estimates of the proportion 

deaths of children born to women who have died due to HIV prior to a survey, HIVits. The 

method takes as inputs the number of women of reproductive age, the number of HIV-

positive women of reproductive age, the number of births and the HIV incidence in children. 

We take the latter information from Spectrum,51 a simulation software used to simulate the 

course of the HIV/AIDS epidemic in a country and calculates many demographic measures 

of the population. As survey data come from interviews with women aged 15 to 49, there is 

nonignorable missingness for mothers who have died from HIV, since the children of HIV-
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positive women are more likely to have died. To adjust our estimates, we divide by a 

correction factor

q60 0, its
HIV =

q60 0, its
1 − HIVits

,

with adjustments to V its being obtained via the delta method.

Once we have converted all of our data sources into [logit( q60 0, its
HIV ), V its

HIV] pairs, we smooth 

these estimates across space and time using the model in (8) from Section 3.5. The posterior 

estimate of the SBH biases can be seen in Appendix D. To summarize, there is far more bias 

for the Kenya SBH data than for the Malawi data. To get estimates for an area i and time t, 
whether t is a year or a period, we take draws from the joint posterior. to compute 60q0,it. 

Fitting the model in INLA using 8GB for Malawi took 421 seconds with 28 Admin-2 areas. 

For Kenya’s 47 Admin-2 areas it took 1072 seconds, which is much longer but still a 

relatively short amount of time for such a complex Bayesian model.

4.1 Results

In this section we review results from the space-time smoothing model using the normal 

likelihood, (8). Figure 4 shows the data used in estimation and the smoothed estimates with 

95% intervals for years 1980 to 2014 for two areas, Nairobi county in Kenya (Left) and 

Lilongwe district in Malawi (Right). Point sizes of the FBH and SBH estimates are weighted 

relative to the median 95% CI for any estimate in that Admin-2 area. Estimates from surveys 

and censuses with 95% CI widths larger than the median width in that Admin-2 area are 

shrunk at a ratio of the median width to the point’s CI. Points whose 95% CI widths are 

below the median width for that county are enlarged at a ratio of the median width to the 

point’s 95% CI width. Thus, larger points represent more precise estimates with narrower 

CIs and have a larger influence on the smoothing model than smaller points. In Nairobi, the 

increased mortality due to the HIV/AIDS epidemic is evident in the period between 1985 

and 2005. Though U5MR in Nairobi has declined since the peak of the epidemic, its current 

U5MR is roughly the same as it was before the epidemic began. The additional information 

from the SBH estimates gives us a slightly different estimate of the time period of increased 

U5MR due to the HIV/AIDS crisis. Moreover, the rate at which U5MR has been declining 

in Nairobi has slowed in recent years. Addition of SBH data gives us shorter CI widths 

historically, and even slightly shorter PIs for the period 2015 to 2019. For Lilongwe, Figure 

4 shows a large decline in child mortality over the period analyzed. The inclusion of SBH 

data provides us with expected precision gains, but only changes the U5MR trend in 

Lilongwe before 1990. Compared to Kenya, the Malawi SBH estimates are more consistent 

with the FBH estimates over time. Thus, in general, we see smaller differences in trends 

estimated with and without SBH data. Similar results for all Admin-2 areas in Malawi and 

Kenya can be found in Appendices G to J. National results for both Malawi and Kenya can 

be found in Appendix F.

Figure 5 shows posterior median U5MR estimates in Malawi by district with and without 

SBH data for the period 2010 to 2014 on the top row. We see two Admin-2 areas in the 
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Southern region (Neno and Mulanje) and one area in the Central region (Mchinji) with 

consistently high median estimates of U5MR regardless of the inclusion or exclusion of 

SBH data. Figure 6 shows the same set of results for Kenya. Three areas stand out as having 

particularly high U5MR relative to other Admin-2 areas: one in Rift Valley province 

(Turkana) and the other two in Nyanza province (Migori and Homa Bay). While both the 

minimum and maximum of the U5MR scale in Kenya is lower than in Malawi, the interval 

widths in Kenya tend to be larger. For both countries, the addition of SBH data leads to more 

Admin-2 areas with smaller 95% interval widths than estimates using only FBH data. This 

can be seen in the presence of more lightly shaded areas in the bottom right panels than in 

the bottom left panels of Figures 5 and 6.

Figure 7 shows district-level estimates in 5-year periods from 1980-1984 to 2010-2014 and 

projections to 2015 to 2019 using all the data. The huge decline in U5MR over this period is 

easily seen. The relatively higher mortality of the Central region is also apparent relative to 

the Northern and Southern regions. Throughout the period of time analyzed, the Southern 

region appears to have more within region variability across Admin-2 areas than either the 

Northern or Central regions. Though there is still subnational variability in Malawi today, it 

is easier seen via the scale used in Figure 5 as all districts have relatively low U5MR 

compared to earlier periods. Relative subnational variation remains, however.

In Figure 8 we see a similar pattern of broad U5MR decline across all 47 counties in Kenya 

between the 1980-1984 and the 2010-2014 periods. However, the impact of the HIV/AIDS 

epidemic on U5MR in Kenya is apparent in the top row of Figure 8 as many areas 

underwent a clear rise in child mortality during this period, followed by a decline after the 

turn of the century. Consistently, counties in the Kenyan region of Nyanza experience higher 

relative mortality when compared to those in other regions. Though the highest experienced 

U5MRs in both Kenya and Malawi are similar, the lowest experienced and projected U5MRs 

in Kenya are a bit lower than in Malawi. Comparing the two figures, it is also evident that 

the high U5MR in the Nyanza region of Kenya lasted much later than in any region which 

previously experienced these high U5MRs in Malawi.

4.2 | Validation

As an exercise in model validation, cycling through all areas and periods from 1990-1994 to 

2010-2014, we leave out data from an area i and a time period t, fit our model and then make 

estimates of 60q0,it. We assess the performance by computing precision-weighted versions of 

standard model assessment statistics. Let yit be the smoothed median estimate of 

logit(60q0,it) and V it be its variance when data from area i and period t are omitted. We take

yit =
s ∈ Fit

witsyits =
s ∈ Fit

V its
−1

s ∈ Fit
V its

−1yits,

and
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V it = 1

s ∈ Fit
V its

−1,

where s ∈ Fit indicates s is an FBH data source for area i and time t, as measures of truth and 

variance, respectively, for each area and time period. Given that the estimates can have a 

wide range of precisions, we weight the estimate of the “truth” by its relative precision. For 

the MSE, then,

MSEt =
i = 1

n
wit(yit − yit)

2,

where n is the total number of areas and wit =
V it

−1

∑t = 1
I V it

−1 . Similarly, we can define the mean 

absolute error (MAE) as

MAEt =
i = 1

n
wit |yit − yit|,

and the mean absolute percent error (MAPE) as,

MAPEt =
i = 1

n
wit

| q0, it60 − q0, it60 |
q0, it60

Tables 2 and 3 compare the above validation metrics between a model with only FBH data 

sources included and a model with both FBH and SBH data sources included. Reference 

dates for SBH estimates vary across space, but tend to contribute to a single 5-year period. 

For example, in Malawi, all Brass estimates from the 1987 census have reference dates 

between years 1980 and 1981, all estimates from the 1998 census lie between years 1991 

and 1992, and all estimates from the 2008 census lie between years 2001 and 2002. This 

means the effect of incorporating SBH data into the model will have different effects in 

different time periods. As a result, we see that neither model out performs the other in all 

time periods. In all periods with SBH estimates, Table 2 shows the MSE is smaller for the 

model with both data types. For Kenya, we see the addition of SBH data decreases the MAE 

and MAPE for all periods with SBH data (1990-1994, 2000-2004) as well as in most other 

time periods. Comparing Appendices G to J shows much more between data source 

variability within Admin-2 area in Kenya than in Malawi. There is more estimated bias in 

the SBH data sources from Kenya than Malawi (see Figure D1). These factors all contribute 

to give larger estimates of validation metrics across the board in Kenya as compared to 

Malawi.

We perform an additional validation exercise by fitting the model to all data except the most 

recent DHS stratified at the Admin-2 level. Both the Kenya 2014 DHS and the Malawi 2015 
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DHS were stratified at a finer geographic level, and there are decent sample sizes in all areas 

and most time periods going back to 1985 to 1989. In this case, we use the direct estimate 

from these removed DHS surveys as the “truth” in our validation metrics. We calculate the 

same metrics as in the first validation exercise. In the scenario where we leave out the 2015 

DHS in Malawi, the advantage to using both data sources is much clearer. Table 4 shows that 

in each of the six time periods assessed in this exercise, the MSE is much lower when we 

incorporate SBH data. In nearly all time periods the bias is also smaller with the 

incorporation of SBH data. In Kenya, Table 5 shows less evidence of improvements in 

estimates, but we do see decreases in MSE and MAPE in at least every time period with 

SBH data contributions. Moreover, the gains in MSE and MAPE tend to be larger in 

magnitude than in the cross-validation exercise. This is likely due to the fact that we remove 

much more data when moving an entire DHS survey (see Table 1) than when leaving out 

data for a single area and time period.

5 | DISCUSSION

We have extended the previous work of Mercer et al5 in several ways to incorporate data at a 

finer (yearly) time-scale and to make estimates at a finer (Admin-2 level) geographic scale. 

We have proposed a method for making more stable estimates of U5MR in a small area with 

small sample sizes by borrowing information from neighboring areas while accounting for 

the complex survey design. We applied this method to the 47 counties of Kenya and the 28 

districts of Malawi. The estimates account for the selection bias that arises from mothers 

dying prematurely from HIV/AIDS, by estimating a time series of the proportion of missing 

children of women who have died due to the epidemic in years before the survey. However, 

the method does not estimate uncertainty in that proportion, which is a source of uncertainty 

we would like to include in future work.

Alkema et al4 include a linear in time bias term in their model. We explored this idea with 

the Kenya data, but plots (See Appendix C) showed no indication of a systematic bias with 

time at the subnational level. While the incorporation of SBH data in this new method 

provide gains in precision, especially in the time periods the SBH data are specifically 

contributing to, comparing the results and validation exercises between Malawi and Kenya 

show that the magnitude of improvement depends on how the SBH estimates compare to the 

FBH estimates for a particular country. The use of SBH data is appealing, but in any one 

country the appropriateness of inclusion must be carefully determined as there are many 

sources of potential bias.35,36

Existing methods for subnational estimation of child mortality in LMIC fall into two main 

categories: discrete space and continuous space models. They differ in whether the spatial 

structure of the data is modeled on the administrative area scale (eg, counties, districts) or on 

the continuous scale using the GPS locations of sampled clusters. Previous estimates have 

been made for the probability of death before age 5 given survival to age 1, 60q12, on an 

areal scale, using ecological covariate information.52 These estimates only make use of the 

most recent DHS survey in each country, and, therefore, do not estimate time trends. As 

already mentioned, Li et al6 use a discrete spatial model to obtain estimates over time at the 

Admin-1 level for 35 African countries (with each country fitted separately). Continuous 
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spatial models have also been used to estimate subnational child mortality.22,53 Specifically, 

the stochastic partial differential equations approach54 has been combined with an 

autoregressive temporal model to give estimates the 5 × 5 km scale. In these approaches, 

SBH and FBH data are used along with covariate surfaces. No adjustment for the HIV/AIDS 

epidemic is made, and when data on the GPS of the clusters is unavailable but rather the 

areal polygon within which the cluster lies (which is often the case for SBH data), the deaths 

are randomly distributed within the polygon according to population density which is ad 

hoc. The limitations of allocating areal data to unknown locations have been illustrated.55 

Also, the same space-time model is used for many contiguous countries, and the 

reasonableness of this assumption has not been addressed. Finally, the stacking procedure 

that is used for covariate modeling is not statistically legitimate.17

In this paper we have presented estimates for U5MR, but the discrete hazards model we use 

allows for estimating other measures of interest such as neonatal mortality and infant 

mortality. We did not incorporate covariate information yet though in principle we could 

include area-level variables within the models described in the paper. Initial explorations of 

such models (in the context of HIV prevalence mapping) is encouraging.56
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APPENDIX A. ZERO-ADJUSTMENT DETAILS

Figure A1 shows the counties of Kenya that need an adjustment in the period 1980 to 1984 

for the 2003 DHS. Colors distinguish the types of problematic areas. Light blue areas have 

zero observed deaths. Pink areas have observed deaths, but zero variance. The navy area has 

no sampled clusters in the 2003 survey. We do not make adjustments for this area.

In Figure A2 we see the results of fitting our space-time smoothing model in two settings: 

dropping the areas and time periods with zero estimates of U5MR or its variance or 

adjusting those areas and time periods prior to smoothing. The black dots represent survey 

estimates from areas and time periods that did not need to be adjusted. The red dots 

represent survey estimates from areas and time periods we need to predict due to small 

sample sizes. On the left, we remove all observed zeroes from our data, thus there are no red 

dots in the plot. On the right, we see the results from our adjustment method. These plots 

show that the adjusted estimates and their smoothed counterparts do not lie outside the cloud 

of unadjusted estimates and their smoothed counterparts, indicating the adjustment provides 

reasonable values.
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FIGURE A1. 
A map showing the areas whose estimates need adjusting from the KDHS 2003 for the 

period 1980 to 1984
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FIGURE A2. 
Comparison of direct and smooth estimates when we throw out observed zeroes (Left) or 

adjust them (Right)

APPENDIX B. HIV BIASES BY SURVEY AND REGION

This section shows figures of HIV adjustments50 used for each Admin-1 area and each 

region in Kenya. While we make estimates of child mortality on the Admin-2 level, we must 

make the same HIV adjustments for all Admin-2 areas within an Admin-1 area, as that is the 

finest level for which Spectrum57 makes estimates of the necessary inputs. For Malawi, we 

only have national HIV adjustments. The estimate reported in these plots is (1% children 

dead born to mothers missing) due to HIV/AIDS plotted against years before the survey. For 

FBH estimates in 5-year periods the point estimate plotted represents the adjustment for the 

5-year period before the survey starting with that year, that is, the point at 20 years before a 

survey is the adjustment to be used for estimates made for 20 to 24 years before a survey. 

For SBH estimates, we use adjustments for single years before the survey. We use these 

adjustments to inflate the point estimates prior to smoothing,
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FIGURE B1. 
HIV adjustments for Central, Coast, Eastern regions and Nairobi
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FIGURE B2. 
HIV adjustments for Northeastern, Nyanza, Rift Valley, and Western regions
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FIGURE B3. 
HIV adjustments for Malawi
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The delta method is used to adjust the variance estimate. One can see that the severity of the 

epidemic varies widely by Admin-2 area.
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APPENDIX C. BIAS IN TIME

FIGURE C1. 
Bias on the logit scale for Kenya for each estimate plotted against the years prior to data 

collection for which the estimate applies. Left: national estimates. Right: Admin-2 level 

estimates. Black line is a loess smooth applied to the biases in either panel

APPENDIX D. HYPERPARAMETERS AND MODEL PARAMETERS

TABLE D1

Proportion of variation as determined by marginal median variances for different random 

components.

Parameter Median Proportion

Kenya ICAR 0.124 32.57

IID Area 0.005 1.23

RW2 0.093 24.38

IID Time 0.002 0.44

Interaction 0.158 41.38

Malawi ICAR 0.017 6.92

IID Area 0.000 0.20

RW2 0.212 85.84

IID Time 0.003 1.03

Interaction 0.015 6.02
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FIGURE D1. 
Marginal posterior distribution of the bias term (βs) for each summary birth history data 

source in Kenya (Left) and Malawi (Right)

APPENDIX E. PERCENT REDUCTION

Prior to the SDGs, the United Nations’ Millennium Development Goals (MDGs) also called 

for progress in child mortality. In particular, MDG 4 set a goal of a two-thirds reduction in 

child mortality between 1990 and 2015. Nationally, we find a median proportion reduction 

of 62%, with 25th and 75th percentiles of 57% and 65%, respectively. In Figures E1 and E2 

we see the subnational distribution of achievement of the MDG 4 goals. We present a 

conservative (25th percentile), a median, and an optimistic (75th percentile) estimate of the 

percent reduction by county. Admin-2 areas in white and blue have achieved the MDG by 

the respective measure in the plot. We find a median of 14 out of 47 counties in Kenya have 

achieved the MDG; the 25th and 75th percentiles are 7 and 24 counties, respectively. This 

contradicts strongly the findings of Macharia et al,58 who find that no county in Kenya 

achieved the MDG by 2015. This discrepancy is likely due to the fact that their method does 

not account for the HIV epidemic in Kenya, and, thus, underestimates mortality going back 

in time. This leads to a smaller estimated reduction. In Malawi, we find that a median of 21 

out of 28 districts have achieved the MDG by 2015. The conservative 25th percentile 

estimate shows 21 districts achieving the reduction goal, and an optimistic 75th percentile 

estimate has 22 districts reaching the MDG goal.
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FIGURE E1. 
Top left: 25th percentiles of the distribution of reduction in under-five mortality rate from 

1990 to 2015 in each district in Malawi. Top right: 75th percentiles of the distribution of 

reduction in each district. Bottom right: median percentiles of the distribution of reduction in 

each district. Areas in red have not achieved the Millennium Development Goal by 2015, 

with the color darkening as the percent reduction gets smaller. All other areas have achieved 

the goal, with white areas having an estimated percent reduction of 67% to 75% and areas in 

shades of blue having increasingly higher percent reduction as the blue shade darkens
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FIGURE E2. 
Top left: 25th percentiles of the distribution of reduction in under-five mortality rate from 

1990 to 2015 in each county in Kenya. Top right: 75th percentiles of the distribution of 

reduction in each county. Bottom right: median percentiles of the distribution of reduction in 

each county. Areas in red have not achieved the Millennium Development Goal by 2015, 

with the color darkening as the percent reduction gets smaller. All other areas have achieved 

the goal, with white areas having an estimated percent reduction of 67% to 75% and areas in 

shades of blue having increasingly higher percent reduction as the blue shade darkens

Godwin and Wakefield Page 28

Stat Med. Author manuscript; available in PMC 2021 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APPENDIX F. NATIONAL RESULTS

Results of temporal smoothing model below for national direct and Brass estimates. Note: 

the Kenya MICS 2011 and 2013 provide estimates for only a small number of Admin-2 

areas and, thus, are not included in the national analysis for Kenya. Figures F1 and F2 show 

period and yearly results with corresponding 95% intervals. In grey solid lines and dashed 

lines, respectively, are UN and IHME estimates for comparison. The national model below 

does not have any spatial components, but is otherwise analogous to the spatiotemporal 

model.

logit( q0
it

60 ) |ηts ∼ N(ηts, κs−1 × V ts),
ηts = μ +

s
βs1(s is SBH) + αt + γt . (F1)

FIGURE F1. 
National results for Kenya. Left: Five-year period smoothed results in black with larger data 

points for estimates with larger precision in color. Right: Yearly smoothed results in black
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FIGURE F2. 
National results for Malawi.Left: Five-year period smoothed results in black with larger data 

points for estimates with larger precision in color. Right: Yearly smoothed results in black
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APPENDIX G.
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FIGURE G1. 
Period results by area: Kenya
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APPENDIX H.
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FIGURE H1. 
Yearly results by area: Kenya
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APPENDIX I.
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FIGURE I1. 
Period results by area: Malawi
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APPENDIX J.
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FIGURE J1. 
Yearly results by area: Malawi
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FIGURE 1. 
Administrative areas in Kenya (left) and Malawi (right). Colors show the eight Admin-1 

areas of Kenya and the three Admin-1 areas of Malawi. The white borders outline the 47 

Admin-2 areas of Kenya and the 28 Admin-2 areas of Malawi
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FIGURE 2. 
Left: The direct estimates on the logit scale for counties in Kenya from the 2003 DHS for 

1980 to 1984. A red Z indicates an area with no observed deaths, whose logit U5MR is 

undefined. A red V indicates an area where deaths are observed, but estimated variances are 

zero. A red N indicates an area that contains no sampled clusters. Right: The adjustment 

comparisons on the logit scale
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FIGURE 3. 
Top: Smoothed estimates for the period 1980 to 1984 when we throw out observed zeroes 

(Left) or adjust them (Right). Bottom: Width of 95% CI interval estimates for the period 

1980 to 1984 when we throw out observed zeroes (Left) or adjust them (Right). Colored 

boundaries correspond to colors in Figure A1: pink are areas with observed deaths, but a 

zero variance estimate, light blue are areas with no observed deaths, and the navy outline is 

an area with no data
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FIGURE 4. 
Survey and census estimates overlayed with smoothed estimates and intervals. Estimates 

connected by lines are direct estimates from either DHS or MICS; single points are Brass 

estimates from MICS or the census. For the estimates, the size of the point is weighted by 

the width of 95% CI. Larger points imply a shorter width and more precise estimates. Left: 

Results for Nairobi county in Kenya. Right: Results for Lilongwe district in Malawi
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FIGURE 5. 
Results for Malawi by area for the period 2010 to 2014. Top: Smoothed estimates by area, 

with only full birth history (FBH) data (Equation (2)) (Left) and FBH and summary birth 

history (SBH) data (Right) (8). Bottom: 95% interval widths by area with FBH data only 

(Left) and FBH and SBH data (Right)
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FIGURE 6. 
Results for Kenya by area for the period 2010 to 2014. Top: Smoothed estimates by area, 

with only full birth history (FBH) data (Equation (2)) (Left) and FBH and summary birth 

history (SBH) data (Right) (8). Bottom: 95% interval widths by area with FBH data only 

(Left) and FBH and SBH data (Right)
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FIGURE 7. 
Median under-five mortality rate (U5MR) estimates for 5-year periods in districts in Malawi, 

using all data sources, from 1980-1984 to 2010-2014, with projections to 2015-2019
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FIGURE 8. 
Median under-five mortality rate (U5MR) estimates for 5-year periods in counties in Kenya, 

using all data sources, from 1980-1984 to 2010-2014, with projections to 2015-2019
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TABLE 1

List of all data sources and types for Kenya and Malawi. Columns 6-12 show the percentage of births each 

data source contributes to each five-year period

Percentage births by period

Country Source Type Year Coverage 80–84 85-89 90-94 95-99 00-04 05-09 10-14

Kenya DHS FBH 2003 National
a 0.5 36.5 0.7 21.1 0.4 0.0 0.0

2008 National 0.2 21.1 0.5 17.1 0.4 16.3 0.0

2014 National 0.0 26.9 1.0 42.2 1.2 62.0 78.3

MICS SBH 2000 National
a 0.0 0.0 2.1 3.8 0.0 0.0 0.0

FBH 2011 1 Admin-1 0.0 12.2 0.3 11.0 0.3 14.4 12.9

2013 3 Admin-2 0.0 3.3 0.1 4.8 0.1 7.3 8.9

IPUMS SBH 1989 National 99.3 0.0 0.0 0.0 0.0 0.0 0.0

1999 National 0.0 0.0 95.3 0.0 0.0 0.0 0.0

2009 National 0.0 0.0 0.0 0.0 97.7 0.0 0.0

Malawi DHS FBH 2000 National 1.1 25.8 1.9 17.1 1.1 0.0 0.0

2004 National 0.6 15.8 1.3 13.0 1.7 0.0 0.0

2010 National 0.4 17.1 1.6 18.0 2.8 27.5 23.1

2015 National 0.0 5.5 0.8 11.7 2.1 23.1 38.3

MICS FBH 2006 National 0.9 26.9 2.4 25.9 3.8 23.5 0.0

2014 National 0.0 8.8 1.1 14.3 2.4 25.9 38.6

IPUMS SBH 1987 National 96.8 0.0 0.0 0.0 0.0 0.0 0.0

1998 National 0.0 0.0 91.0 0.0 0.0 0.0 0.0

2008 National 0.0 0.0 0.0 0.0 86.1 0.0 0.0

a
This survey was carried out nationally, but does not have observations in all Admin-2 areas.
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TABLE 2

Assessment measures for Malawi by period comparing the full birth history (FBH) + summary birth history 

(SBH) smoothing model (columns 6-9) and the FBH smoothing model (columns 2-5) when leaving out data 

from each area and period. For each period, “best” values in each metric are bolded

FBH FBH + SBH

Year Bias MSE MAE MAPE Bias MSE MAE MAPE

1990-1994 0.001 0.030 0.107 0.096 0.003 0.024 0.089 0.078

1995-1999 0.001 0.041 0.108 0.083 −0.005 0.043 0.113 0.086

2000-2004 0.003 0.015 0.087 0.077 0.004 0.009 0.069 0.060

2005-2009 −0.009 0.022 0.122 0.100 −0.013 0.020 0.117 0.103

2010-2014 0.007 0.058 0.190 0.177 0.006 0.055 0.194 0.181

Mean 0.000 0.033 0.121 0.106 −0.001 0.030 0.116 0.102
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TABLE 3

Assessment measures for Kenya by period comparing the full birth history (FBH) + summary birth history 

(SBH)smoothing model (columns 6-9) and the FBH smoothing model (columns 2-5) when leaving out data 

from each area and period. For each period, “best” values in each metric are bolded

FBH FBH + SBH

Year Bias MSE MAE MAPE Bias MSE MAE MAPE

1990-1994 0.091 0.203 0.318 0.311 0.038 0.189 0.288 0.251

1995-1999 0.074 0.119 0.268 0.255 0.101 0.136 0.287 0.279

2000-2004 0.105 0.179 0.304 0.314 0.061 0.152 0.277 0.291

2005-2009 0.120 0.288 0.398 0.480 0.092 0.260 0.373 0.436

2010-2014 0.028 0.393 0.480 0.477 0.055 0.390 0.474 0.477

Mean 0.084 0.236 0.354 0.368 0.069 0.225 0.340 0.347
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TABLE 4

Assessment measures for Malawi by period comparing the full birth history (FBH) + summary birth history 

(SBH) smoothing model (columns 6-9) and the FBH smoothing model (columns 2-5) when leaving out the 

Malawi 2015 DHS and treating estimates from this survey as the “truth.” For each period, “best” values in 

each metric are bolded. (Note: results here exclude the district of Likoma. Removal of the 2015 DHS removes 

our only FBH data source with usable estimates for Likoma. Methods such as those included in Section 3.4 

cannot be used as Likoma is an island, and is quite distinct from areas on the mainland, making a spatial 

smoothing model inappropriate.)

FBH FBH + SBH

Year Bias MSE MAE MAPE Bias MSE MAE MAPE

1985-1989 0.014 0.382 0.418 0.447 0.015 0.328 0.388 0.387

1990-1994 −0.310 0.202 0.390 0.273 −0.237 0.124 0.305 0.217

1995-1999 −0.353 0.234 0.431 0.308 −0.177 0.105 0.274 0.210

2000-2004 −0.370 0.237 0.427 0.302 −0.103 0.077 0.224 0.181

2005-2009 −0.447 0.274 0.463 0.320 −0.127 0.065 0.191 0.153

2010-2014 −0.493 0.298 0.493 0.347 −0.165 0.081 0.217 0.174

Mean −0.327 0.271 0.437 0.333 −0.132 0.130 0.267 0.220
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TABLE 5

Assessment measures for Kenya by period comparing the full birth history (FBH) + summary birth history 

(SBH) smoothing model (columns 6-9) and the FBH smoothing model (columns 2-5) when leaving out the 

Kenya 2014 DHS and treating estimates from this survey as the “truth”. For each period, “best” values in each 

metric are bolded

FBH FBH + SBH

Year Bias MSE MAE MAPE Bias MSE MAE MAPE

1985-1989 −0.295 0.820 0.668 0.521 −0.334 0.982 0.706 0.488

1990-1994 0.096 0.322 0.437 0.481 −0.005 0.162 0.321 0.275

1995-1999 0.064 0.321 0.412 0.463 −0.017 0.170 0.308 0.255

2000-2004 −0.312 0.379 0.484 0.373 −0.390 0.332 0.462 0.320

2005-2009 −0.541 0.543 0.625 0.425 −0.610 0.581 0.661 0.428

2010-2014 −0.353 0.361 0.453 0.322 −0.343 0.335 0.462 0.341

Mean −0.224 0.458 0.513 0.431 −0.283 0.426 0.487 0.351
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