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Immuno‑profiling and cellular 
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immune oncology multiplex 
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for paraffin tumor tissue
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Multiplex immunofluorescence (mIF) has arisen as an important tool for immuno-profiling tumor 
tissues. We updated our manual protocol into an automated protocol that allows the use of up to 
seven markers in five mIF panels to apply to formalin-fixed paraffin-embedded tumor tissues. Using 
a tyramide signal amplification system, we optimized five mIF panels that included cytokeratin to 
characterize malignant cells (MCs), immune checkpoint markers (i.e., PD-L1, B7-H3, B7-H4, IDO-
1, VISTA, LAG3, ICOS, TIM3, and OX40), tumor-infiltrating lymphocytic markers (i.e., CD3, CD8, 
CD45RO, granzyme B, PD-1, and FOXP3), and markers to characterize myeloid-derived suppressor 
cells (i.e., CD68, CD66b, CD14, CD33, Arg-1, and CD11b). To determine analytical reproducibility and 
the impact of those panels for immuno-profiling tumor tissues, we performed an exploratory analysis 
in a set of non–small cell lung cancer (NSCLC) samples. The slides were scanned, and the different cell 
phenotypes were quantified by simultaneous co-localizations with the markers using image analysis 
software. Comparison between the time points of staining showed high analytical reproducibility. 
The analysis of NSCLC cases showed an immunosuppressive microenvironment with PD-L1/PD-1 
expression as a predominant axis. Interestingly, high density of MCs expressing B7-H4 was correlated 
with recurrence. Unexpectedly, MCs expressing OX40 were also detected, and those cells were a closer 
distance to CD3+T-cells than were MCs expressing other immune checkpoints. Two different cellular 
patterns of spatial distribution were determined according the CD3 distribution, and the predominant 
pattern was related with active immunosuppressive interaction with MCs. Our study shows that these 
five mIF panels can identify multiple targets in a single cell with high reproducibility. The study of 
different cell populations and their spatial relationship can open new ideas for therapeutic approaches.
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ROI	� Region of interest
SCC	� Squamous cell carcinoma

Immunotherapy for cancer is developing constantly, with promising results. However, aggressive tumors are 
able to escape immune surveillance by creating an immunosuppressive microenvironment in which the tumor 
thrives1,2. Since the description of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed 
cell death protein 1 (PD-1) and their roles in tumor immune evasion3,4, understanding the interaction between 
immune cells and cancer cells has become increasingly important as a starting point for the development of 
new immunotherapies5–7. Acquiring this knowledge demands the development of new technologies that allow 
researchers to study newly identified molecules and their interactions8.

Multiplex immunofluorescence (mIF) is a reliable high-throughput method that allows cell-by-cell identi-
fication of multiple markers on tumor cells and tumor-associated immune cells9. Because mIF allows the use 
of up to seven markers in one slide10, we can directly observe various biomarkers expressed by a single cell and 
analyze their spatial relationships in various cell populations, something that cannot be achieved by traditional 
chromogen-based immunohistochemistry (IHC)11–13. Thus, with a combination of carefully selected antibod-
ies, many cell subsets can be identified. In our first study, we described the optimization of two mIF panels, six 
markers each, using tyramide signal amplification (TSA) in a manual protocol as a standard reference to validate 
the multiplex staining14. The updated method for these two panels described here has been developed by using 
a commercially available Opal fluorophores in an automated stainer that drastically decreased our first manual 
protocol staining time from 4 to 5 days to 14 to 17 h and improved the consistency of the staining. The resulting 
improvement in the immunological comprehension of those panels led us to change some markers in the panels. 
In addition, we developed three new mIF panels, seven markers each, to characterize key cell populations as 
immune checkpoint and myeloid suppressor phenotypes in the tumor microenvironment for formalin-fixed, 
paraffin-embedded tumor tissues. We show the optimization and reproducibility of these automated immuno-
oncologic panels and their application to study the tumor microenvironment and spatial distribution of cell 
phenotypes in a small cohort of non-small cell lung cancer (NSCLC) samples.

Materials and methods
Tissue specimens.  As described previously14,15, sequential 4-µm-thick sections from a tissue microarray 
that included formalin-fixed, paraffin-embedded lung cancer control tissues as well as reactive human tonsil 
tissues were prepared for optimization of conventional IHC, optimization of single immunofluorescence (single 
IF), and both optimization and reproducibility of mIF for all antibodies included in this study (Supplementary 
Table 1). Additionally, sequential 4-µm-thick sections from 10 samples of NSCLC, including five adenocarcino-
mas (ADCs) and five squamous cell carcinomas (SCCs), were prepared for mIF staining and analysis. All avail-
able clinicopathologic information from the NSCLC cohort was retrieved from the electronic clinical records of 
those patients (Supplementary Table 2) and included age, sex, smoking history, pathologic TNM stage according 
to the 8th edition of the American Joint Committee on Cancer staging system16, adjuvant treatment, and follow-
up information for recurrence and vital status. These characteristics were later assessed for possible correlations 
with the mIF data.

This study was approved by the MD Anderson Institutional Review Board. Informed consent to participate 
was obtained from all participants included in this study, and all methods were performed in accordance with 
the relevant guidelines and regulations and are available for review at any time.

IHC optimization.  IHC optimization was performed using an automated staining system (BOND-MAX; 
Leica Biosystems, Vista, CA) with previously optimized and validated antibodies15,17,18 against cytokeratin (CK) 
to characterize malignant cells (MCs), immune checkpoint markers (i.e., PD-L1, B7-H3, B7-H4, IDO-1, VISTA, 
LAG3, ICOS, TIM3, and OX40), tumor-infiltrating lymphocyte markers (i.e., CD3, CD8, CD45RO, granzyme 
B, PD-1, and FOXP3), and markers to characterize myeloid-derived suppressor cells (i.e., CD68, CD66b, CD14, 
CD33, Arg-1, and CD11b) (Supplementary Table 1). Expression of all cell markers was detected using a Novo-
castra BOND Polymer Refine Detection Kit (Leica Biosystems, #DS9800), with a diaminobenzidine reaction 
to detect antibody labeling and hematoxylin counterstaining. To obtain uniform staining, several tests were 
performed using different antibody dilutions and antigen retrieval conditions until optimal conditions were 
obtained for the primary and secondary antibody in the positive tonsil controls. Antibody clones, vendors, and 
final IHC dilutions are shown in Supplementary Table 1.

Single IF antibody optimization.  To update and create the mIF panels, we grouped the antibodies 
optimized and tested by IHC into five immuno-oncology panels containing 4′,6-diamidino-2-phenylindole 
(DAPI) plus six or seven antibodies each, including updated panel 1: CK, CD3, CD8, PD-1, PD-L1, CD68, and 
4′,6-diamidino-2-phenylindole (DAPI); updated panel 2: CK, CD3, CD8, CD45RO, granzyme B, FOXP3, and 
DAPI; new panel 3: CK, CD3, PD-L1, B7-H3, B7-H4, IDO-1, CD68, and DAPI; new panel 4: CK, CD3, ICOS, 
LAG3, OX40, TIM3, VISTA, and DAPI; and new panel 5: CK, Arg-1, CD11b, CD14, CD33, CD66b, CD68, and 
DAPI (Supplementary Table 3). For single IF optimization, all the antibodies from each panel were assessed 
using the same positive controls as in the IHC optimization, stained using an autostainer (Leica BOND RX, 
Leica Biosystems), and linked with a fluorophore from the Opal 7 color IHC kit (#NEL797001KT; Akoya Bio-
sciences, Waltham, MA), including DAPI and Opal Polaris 520, 540, 570, 620, 650, and 690. For the new panels 
with seven antibodies, the TSA fluorophore Opal Polaris 480 (#FP1500001KT, Akoya Biosciences) was added 
to the kit. For single IF protocols, after baking and dewaxing (BOND Dewax Solution, Leica Biosystems), the 
slides were heated at 95 °C for 20 min using Bond Antigen Retrieval Tris–ethylenediaminetetraacetic acid buffer 
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or citrate buffer according to the conditions previously determined by IHC (Supplementary Table 3) to open 
antibody epitopes. Next, the slides were incubated between 30 and 60 min at room temperature, depending on 
the antibody, at dilutions similar to those used for IHC staining (Supplementary Table 1). The slides were washed 
three times with 1 × 2-methyl-2H-isothiazol-3-one (#AR9590, BOND Wash Solution, Leica Biosystems) and 
then incubated for 10 min at room temperature with polymer horseradish peroxidase conjugated to anti-mouse/
rabbit secondary antibody (Akoya Biosciences). After five successive washes with BOND Wash Solution, the 
slides were incubated for 10 min with an Opal fluorophore tyramide (Opal Polaris 480, 520, 540, 570, 620, 650, 
or 690) and prepared according to the manufacturer’s instructions at dilutions of 1:50 to 1:150 to detect the dif-
ferent antibodies. After four additional washes with BOND Wash Solution, the slides were counterstained with 
DAPI for 5 min. The slides were removed from the autostainer and manually mounted with ProLong Diamond 
Antifade Mountant (Thermo Fisher Scientific, Waltham, MA). For each run of staining, three types of autofluo-
rescence (negative control) slides were run in parallel: 1) primary and secondary antibodies; 2) Opal fluorophore 
tyramides and secondary antibodies; and 3) only secondary antibodies. Negative controls allowed the extraction 
of endogenous and exogenous autofluorescence from the tissues. Several tests were done combining antibodies 
and Opal fluorophores until a specific signal from each antibody was recognized; Supplementary Table 3 shows 
the final combination of antibodies and Opal fluorophores.

Expected cell phenotype characterization using the five mIF panels.  The two updated panels 
and the three new panels we created showed a high ability to identify individual markers and co-localization 
of various biomarkers in the same cell, thus characterizing specific cell phenotypes in the tumor microenviron-
ment. According to the co-expression of markers shown in Table 1, the panels were designed to label specific cell 
populations as follows: panel 1: for the axis of PD-L1/PD-1 and T-cells, panel 2: for activation and regulation of 
T-cells, panel 3: for immune checkpoint markers expressed by MCs, panel 4: for costimulatory and inhibitory 
immune checkpoint markers mostly expressed by T-cells, and panel 5: for myeloid suppressor cell phenotypes.

Spectral library.  A spectral library was created for multispectral image analysis visualization and fluoro-
phore extraction. Control tissues were stained using a CD20 antibody (B-cell marker, clone L26, dilution 1:100, 
Dako) as an abundant expression marker in the tonsil linked to one of the eight Opal fluorophore tyramides, 
following conditions similar to those used for IHC but without DAPI to obtain abundant signal with each of the 
fluorophores (Supplementary Fig. 1)19.

mIF optimization.  Once each target was optimized using a single IF protocol, the protocols were combined 
to obtain the mIF protocol for the different panels. The five panels were used to stain human tonsil specimens as 
positive controls. Staining for the different markers was performed consecutively using the same steps as those 
used in single IF, and detection for each marker was completed before application of the next antibody. Using 
automated protocols, we set up the sequence of antibodies in each panel and tested each sequence several times 
until we obtained the same staining pattern as was shown in the single IF. Dynamic ranges19 from the differ-
ent antibodies linked with their particular fluorophore were set up to obtain similar ranges of expression, with 
50–150 ns of exposure time, for each antibody, determined by the Vectra-Polaris 3.0.3 scanner system (Akoya 
Biosciences). The dynamic range of each antibody was carefully adjusted to avoid a cross-talking reaction20 
between fluorophores or an umbrella effect in which the expression of one antibody is blocking the expression 
of another that is expressed in the same cell compartment19. For each run of multiplex staining, three types of 
autofluorescence (negative control) slides were run in parallel.

NSCLC tissue scanning, reproducibility and analysis.  To analyze the reproducibility of the different 
mIF panels, the 10 formalin-fixed, paraffin-embedded NSCLC tumor samples were stained with the panels. 
Consecutive tissue sections were stained for each panel at two time points with a 1-week interval (week 1 and 
week 2).

To calibrate the spectral image scanner protocol, the stained slides were scanned using the Vectra-Polaris 
3.0.3, a multispectral imaging system (Akoya Biosciences), at a low magnification of 10 × (1.0 μm/pixel) through 
the full emission spectrum, from 440 to 720 nm, to extract fluorescence intensity information from the images 
using the tonsil positive controls running in parallel with the samples. The NSCLC samples were then scanned 
at a high magnification using Vectra-Polaris 3.0.3 (931 × 698 µm size at resolution 20 × , 0.5 µm/pixel), and two 
pathologists used the Phenochart 1.0.9 image viewer software to select five regions of interest (ROIs) to capture 
various elements of tissue heterogeneity. To assess analytical reproducibility, we captured each ROI from week 
1 and 2 in the same location on the consecutive slide for each panel, thus quantifying the cell phenotypes at the 
same locations in the specimen between the two time points (Supplementary Fig. 2). The same spectral signature 
for each fluorophore was obtained using a “spectral unmixing library” in the image analysis software (InForm 
2.8.2, Akoya Biosciences), and a histologic analysis was performed for the entire ROI. The various markers 
were characterized and quantified using the same algorithm for each panel, through cell segmentation and cell 
phenotyping, from the InForm image analysis software tool. Finally, to obtain the co-expression of markers, cell 
phenotypes, we merged the individual markers analyzed from each panel using the x and y coordinates of each 
cell with the phenoptr script from R Studio (Akoya Biosciences). The final report of cell phenotype density was 
normalized per mm2 for each ROI from the various samples and panels, and this report was used for the analysis 
of the NSCLC samples.

NSCLC functional spatial distribution analysis.  To explore the potential of the data, we analyzed 
the spatial distribution of the different cell phenotypes observed in the five mIF immune-oncology panels pre-



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8511  | https://doi.org/10.1038/s41598-021-88156-0

www.nature.com/scientificreports/

formed on the NSCLC cohort. The distance between MCs and each cell phenotype included in the panels was 
calculated using a matrix created with the X and Y coordinates for each cell, which were provided by the image 
analysis and using the R studio software v.3.6.1. The median distance from MCs to the different cell phenotypes 
was used to divide the different subpopulations according to their geographical distribution as close to the MCs 
(CK+) when they were located less than or equal to the median radius distance and far when they were located 
farther than the median radius distance. To evaluate cell interaction and spatial pattern distribution between 
MCs and the different cell phenotypes, we compared the empirically derived nearest neighbor distance G func-
tion for marker point patterns to the theoretical Poisson function (median distances of the specific cells between 
samples) obtained by assuming the same intensity of the observed pattern in each case.

Table 1.   The frequently observed phenotypes in the five multiplex immunofluorescence panels in the non-
small cell lung cancer cohort (N = 10).

Panel Marker co-expression Phenotype Median density, cells/mm2

1

CK+ All malignant cells 3192.23

CK+PD-L1+ All malignant cells expressing PD-L1 123.15

CD3+ All T lymphocytes 520.78

CD3+CD8+ Cytotoxic T-cells 376.98

CD3+PD-1+ Antigen experienced T-cells 26.01

CD3+CD8+PD-1+ Cytotoxic T-cells antigen experienced 17.94

CD68+ All tumor associated macrophages (TAMs) 120.48

CD68+PD-L1+ TAM expressing PD-L1 82.88

2

CK+ All malignant cells 2777.47

CD3+ All T lymphocytes 591.10

CD3+CD8+ Cytotoxic T-cells 324.76

CD3+CD8+GBZ+ Activated cytotoxic T-cells 21.20

CD3+CD45RO+ Memory T-cells 958.21

CD3+CD8+CD45RO+ Effector/memory T-cells 114.81

CD3+FOXP3+CD8- Regulatory T-cells 134.53

3

CK+ All malignant cells 2607.35

CK+PD-L1+ Malignant cells expressing PD-L1 166.33

CK+B7-H3+ Malignant cells expressing B7-H3 0.23

CK+B7-H4+ Malignant cells expressing B7-H4 4.71

CK+IDO-1+ Malignant cells expressing IDO-1 77.42

CD3+ All T lymphocytes 477.22

CD3+PD-L1+ T-cells expressing PD-L1 58.58

CD3+B7-H3+ T-cells expressing B7-H3 426.26

CD3+B7-H4+ T-cells expressing B7-H4 0.00

CD3+IDO-1+ T-cells expressing IDO-1 9.42

CD68+ All TAMs 115.99

CD68+PD-L1+ TAM expressing PD-L1 66.71

CD68+B7-H3+ TAM expressing B7-H3 0.01

CD68+B7-H4+ TAM expressing B7-H4 0.00

CD68+IDO-1+ TAM expressing IDO-1 16.49

4

CK+ All malignant cells 2985.61

CD3+ All T lymphocytes 432.36

CD3+VISTA+ T-cells expressing VISTA 10.60

CD3+ICOS+ T-cells expressing ICOS 35.33

CD3+LAG3+ T-cells expressing LAG3 6.77

CD3+OX-40+ T-cells expressing OX-40 11.48

CD3+TIM3+ T-cells expressing TIM3 1.18

5

CK+ All malignant cells 2949.70

CD68+ All TAMs 92.14

CD68+Arg-1+ TAM type II 0.12

CD68+CD11b+ Dendritic macrophages 82.72

CD11b+CD66+ Polymorphonuclear leukocyte (PMN) 8.83

CD11b+Arg-1+CD14+CD33+ Monocytic myeloid-derived suppressor cells (MDSC-M) 0.02

CD11b+CD66b+CD33+ Granulocytic myeloid-derived suppressor cells (MDSC-PMN) 1.23
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Statistical analysis.  To assess the reproducibility of results over time and to determine the potential impact 
of tumor heterogeneity, percentages representing cell phenotypes were calculated by dividing the density of each 
phenotype by the density of total nucleated cells (DAPI+) on each consecutive ROI from each panel and for 
each time point. Specific cell phenotypes observed in each panel from the cohort of 10 NSCLC samples were 
analyzed, and we assessed the correlation within each sample and across all samples between the two time points 
using Spearman rank correlation coefficients. The P-values obtained for each marker on each panel between two 
time points were adjusted by Bonferroni correction, and adjusted P-values < 0.05 were considered significant. To 
characterize the analytical reproducibility of the studied cell phenotypes, we calculated the coefficient of varia-
tion (CV, number of ROIs × number of samples per panel) between the two time points within each ROI of each 
sample. For each phenotype on each panel, 50 CVs were analyzed. For the analysis of the NSCLC cohort, the 
chi-square test or Fisher exact test were used to examine differences in categorical variables, and the Wilcoxon 
rank-sum test and Kruskal–Wallis test were used to explore differences in continuous variables when compar-
ing the predominant cell phenotype densities in each panel. Furthermore, to determinate the spatial interaction 
between cell phenotypes and to characterize the patterns of cell distribution, we applied the nearest neighbor 
distance G function and the theoretical Poisson curve. Statistical analyses were carried out using the R software 
program (versions 3.6.0 and 3.6.1, released April 2019; https://​www.r-​proje​ct.​org/).

Ethics approval and informed consent to participate.  This study was approved by the MD Anderson 
Institutional Review Board. Informed consent to participate was obtained from all participants included in the 
study, and all methods were performed in accordance with the relevant guidelines and regulations and are avail-
able for review at any time.

Results
Marker expression on IHC and mIF in positive controls.  As shown in microphotographs of chro-
mogenic IHC and mIF (Supplementary Fig. 3), we successfully optimized the various markers to obtain similar 
staining patterns with both techniques. As expected, PD-L1+ expression was observed predominantly on the cell 
membranes of epithelial cells from the tonsil crypts. Likewise, the other immune checkpoint markers—includ-
ing B7-H3, B7-H4 (tested and observed in MCs from the lung cancer tissue microarray positive control), VISTA, 
LAG3, ICOS, and TIM3—and the immune checkpoint stimulatory markers such as IDO-1 and OX40—were 
observed in different immune cells with similar distribution patterns between IHC and mIF in tonsil and other 
control tissues. In control tonsil tissues, CK was expressed by epithelial cells, and among cells surrounding the 
germinal centers, the T-cell marker CD3 was the most abundant, followed by CD8, granzyme B, CD45RO, 
and FOXP3 (nuclear expression). PD-1 was observed predominantly distributed in the germinal center of the 
tonsil tissues and with a similar pattern on IHC and mIF. Markers included in the myeloid panel, such as the 
macrophage marker CD68, were localized in the germinal centers of the tonsil, as were CD14 and CD11b. The 
markers CD33 and CD66b were expressed by cells diffusely distributed around and between germinal centers. 
Arg-1 was seen in cells in the germinal center and next to epithelium, showing a linear distribution in tonsil 
control tissues on IHC and mIF.

Biologic and analytical reproducibility of cell phenotypes.  After testing each mIF panel in con-
trol tissues and comparing the results with those of IHC for each individual marker, we applied the panels 
to the 10 NSCLC tissue specimens as shown in the representative images in Fig. 1. We stained two batches, 
in consecutive weeks, and then compared the most observed biologically relevant cell phenotypes in each 
panel to assess the reproducibility and variability of the results. The selected phenotypes were: Panel 1: CD3+, 
CD3+CD8+, CD3+CD8+PD-1+, CD3+PD-1+, CD68+, CD68+PD-L1+, CK+, and CK+PD-L1+; Panel 2: CD3+, 
CD3+CD45R0+, CD3+CD8+, CD3+CD8+GranzymeB+, CD3+FOXP3+, and CK+; Panel 3: CD3+, CD3+B7-
H3+, CD3+IDO-1+, CD3+PD-L1+, CD68+, CD68+IDO-1+, CD68+PD-L1+, CK+, and CK+IDO-1+; Panel 
4: CD3+, CD3+ICOS+, CD3+OX40+, CD3+TIM3+, CD3+VISTA+, CK+; Panel 5: CD14+CD11b+, CD33+, 
CD68+, CD68+CD11b+, CD68+CD14+, CD68+CD14+CD11b+, and CK+.

In the NSCLC cohort, the phenotypes CD3+CD8+CD45RO+, CK+B7-H3+, CK+B7-H4+, CD3+B7-
H4+, CD68+B7-H3+, CD68+B7-H4+, CK+OX40+, CD3+LAG3+, CD68+Arg-1+, CD66b+CD11b+, 
CD11b+Arg1+CD14+CD33+and CD11b+CD66b+CD33+ were observed in small quantities, and in some sam-
ples they were not found; this scarcity hindered the analysis and interpretation of those cell phenotypes, which 
is why those phenotypes were not included in the reproducibility analysis.

Although the geographic distribution cell phenotypes included in the analysis differed between mIF batches, 
they still exhibited positive and significant correlations overall between week 1 and week 2 for the different 
samples and panels (Supplementary Figs. 4 to 8). Indeed, the individual samples demonstrated high reproduc-
ibility and consistency of the cell phenotypes included in the panels, among ROIs and between weeks (Fig. 2 and 
Supplementary Figs. 9 to 13). We found that all studied cell phenotypes had a median CV < 0.5. The CVs were 
calculated between time points, therefore showing high experimental reproducibility between weeks (Fig. 3). 
Combining the results from the CVs and the correlation study, we found that in all five panels the analyzed cell 
phenotypes had a relatively high correlation within samples (median Spearman correlation coefficients > 0.5), 
except for the phenotypes CD68+ in panel 1, CD3+IDO-1+ in panel 3, and CD3+VISTA+ in panel 4; and 
between samples (median Spearman correlation coefficients > 0.7), except for CK+ and CK+PD-L1+ in panel 1. 
Furthermore, when comparing the distribution of the percentages of CK+ (Supplementary Fig. 14) and CD3+T-
cells (Supplementary Fig. 15) between the weeks and panels, we observed high correlations between consecutive 
weeks but not between panels, suggesting that the level of the cut and the selection of ROIs between panels have 
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Figure 1.   Microphotographs of representative examples of multiplex immunofluorescence (mIF) and cord 
plots of cells co-expression of makers in the different immuno-oncology panels in the NSCLC cohort. For each 
panel, the composite mIF images (left) and the diversity of cell phenotypes by the markers co-expressed (right) 
are shown. mIF 20 × magnification. The images were generated using Vectra-Polaris 3.0.3 scanner system and 
InForm 2.4.8 image analysis software (Akoya Biosciences) and R studio software version 3.6.1.
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important impacts in the geographic distribution of the cell phenotypes that characterize tumor heterogeneity 
in the samples.

Patients’ clinicopathologic characteristics.  Clinicopathologic characteristics are shown in Supple-
mentary Table 2. No patients received neoadjuvant therapy in this cohort, and nine patients are alive at the 
moment this manuscript is written.

Characterization of tumor microenvironment in NSCLC.  Using the five mIF panels, it was possi-
ble to study the tumor microenvironment in our cohort of NSCLC and to identify different tumor-associated 
immune cell populations, as shown in Table 1 and Fig. 4, using the co-expression of cell-type specific markers. 
In this cohort, most cases were classified as PD-L1+, nine of 10 were positive (5 ADC and 4 SCC) with a cutoff of 
greater than 1% of the MCs expressing PD-L1. Additionally, using the same cutoff as PD-L1, we observed seven 
of 10 cases were positive for IDO-1 (2 ADC and 4 SCC), only 1 SCC was positive for B7-H4, and no cases were 
positive for B7-H3. However, B7-H4 and B7-H3 expression were observed in low densities in MCs. Although, 
we saw several MCs that simultaneously expressed immune checkpoint markers, none of those phenotypes were 
greater than 1%. The predominant CD3+T-cells were memory T-cells (CD3+CD45RO+, median 952.20 cells/
mm2) and cytotoxic T cells (CD3+CD8, median 350.87 cells/mm2). We also observed considerable densities of 
regulatory T-cells (CD3+FOXP3+, median 134.53 cells/mm2) and antigen-experienced T-cells expressing PD-L1 
(CD3+PD-L1+ median, 58.58 cells/mm2) and B7-H3 (CD3+B7-H3+ median, 426.26 cells/mm2), suggesting a 
potential T-cell–suppressive axis in this group of NSCLC. Looking at macrophages, we observed important 
numbers of macrophages expressing PD-L1 (CD68+PD-L1+ median, 74.79, cells/mm2). Interestingly, patients 
who had disease recurrence showed higher densities of MCs expressing B7-H4 (median, 4.71 cells/mm2) than 
did patients who did not experience recurrence (median, 2.35 cells/mm2, P = 0.017). No other significant clinical 
correlation was observed in this study.

Identification of other cell populations in NSCLC.  Using the five mIF panels, we had the opportunity 
to observe the co-expression of different cell markers, as shown in Fig. 4, and characterize and explore differ-
ent cellular subpopulations. Although we observed different combinations of marker co-expression identifying 
suppressor phenotypes such as CD3+PD-L1+PD-1+, CD3+CD45RO+FOXP3+, and others, as well as a variety 
of simultaneous combinations of different immune checkpoint markers co-expressed in MCs, such as CK+PD-

Figure 2.   Trellis plots of percentage data from a representative case (ADC-1) by region and week. The blue dots 
represent week 1 and the red dots represent week 2, visualizing the consistency between the 2 weeks for each 
cell phenotype obtained by dividing the cell phenotype studded by the total number of cells. The Supplementary 
Figs. 9 to 13 show the rest of the samples analyzed. The images were generated using R studio software version 
3.6.0.
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L1+IDO-1+, CK+B7-H3+B7-H4+, and CK+B7-H4+PD-L1+, those subpopulations were observed in low pro-
portions. Unexpectedly, we identified with panel 4 the expression of OX40 not only in CD3+T-cells but also in 
MCs (CK+OX40+). Although this phenotype was observed in low densities (CK+OX40+ median, 3.53 cells/
mm2), most of the tumors, eight of 10 samples (3 ADC and 5 SCC), showed this co-expression, suggesting that 
CK+OX40+ may be an important marker for future studies.

Exploratory spatial distribution analysis in NSCLC.  The data from the image analysis of the mIF 
panels gave us the opportunity to explore the spatial distribution of the observed cell phenotypes according to 
their relationship with MCs (CK+). To map the spatial organization of the cells, we graphed their distribution 
using the X and Y coordinates of each cell phenotype in the NSCLC samples. The matrix of cell interaction was 
generated, and with that we were able to identify the median distance from MCs to the different cell phenotypes 
(Fig. 5). Using this matrix, we observed that the median distance between MCs and the others cell phenotypes 
across the panels was 241.96 microns. With that, we were able to consider all cells inside this distance radius as 
close to MCs, and the cells outside this radius as far from MCs. In that way, most of the CD3+T-cell phenotypes 
that play a role in the activation or regulation of the tumor microenvironment were observed as close to the 
MCs, while most of the CD3+T-cell immune checkpoints expressed were observed as far from the MCs in this 
cohort, (Fig. 6 and Supplementary Table 4). Interestingly, we observed that MCs that expressed PD-L1 were 
closer to cytotoxic T-cells (median distance, 78.86 microns) than were MCs that did not express PD-L1 (median 
distance, 125.82 microns). When we looked at the MCs expressing the other immune checkpoint markers, we 
found that CD3+T-cells were closer to CK+OX40+MCs (median distant, 38.29 microns) than to MCs expressing 
PD-L1 (median distant, 46.07 microns), B7-H3 (median distant, 39.02 microns), B7-H4 (median distant, 54.39 
microns) or IDO-1 (median distant, 49.30 microns).

Figure 3.   Coefficients of variation (CVs) for each panel. Boxplots show that the median value of the CV, within 
each region of each sample (at 2 weeks), is less than 0.5 for all the phenotypes studied in all panels. The images 
were generated using R studio software version 3.6.0.
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Patterns of distribution.  Combining the empirically derived nearest neighbor distance G function curve 
from CD3+T-cells as a key marker to the theoretical Poisson function curve, we identified in our NSCLC cohort 
two patterns of distribution: mixed (closer to Poisson curve, from − 10 to + 10; Fig. 7a) and unmixed (farther 
from the Poisson curve, more than +10; Fig. 7b) independent of histology type. The mixed pattern was char-
acterized by close interactions between CK+MCs and CD3+T-cells with a homogenous distribution between 
those cells, and it was observed in most of the samples. Interestingly, this pattern of interaction was related 
mostly with antigen-experienced cytotoxic T-cells expressing PD-1 and PD-L1, CD3+T-cells expressing LAG3 
and TIM3, macrophages expressing B7-H3 and B7-H4, and polymorphonuclear myeloid-derived suppressor 
cells. In contrast, the unmixed pattern had low levels of interaction between CK+MCs and CD3+T-cells, show-
ing MCs in cohesive nets with very little T-cell interaction, which was related predominantly to cytotoxic T-cells 
(CD3+CD8+) and cytotoxic memory T-cells (CD3+CD8+CD45RO+). These two patterns characterized the 
close interaction between MCs and predominant suppressor cells phenotypes in our samples (Fig. 7c). When we 
correlated these patterns with tumor recurrence in our samples, we observed that all cases with clinical informa-
tion confirming recurrence showed the mixed pattern with predominant immunosuppressive cells populations; 
however, this finding did not reach statistical significance.

Discussion
In this study, we optimized five automated mIF panels using TSA and a set of immune markers to identify 
immune checkpoints, myeloid-derived suppressor cells, and different tumor-associated immune cells that play 
an important role in the tumor microenvironment and can be relevant to translational pathology studies and 
new targeted therapies. We also applied these panels in a set of 10 NSCLC tissue samples to statistically assess 
the reproducibility of this technique, by quantifying and comparing different cell phenotypes between two time 
points, and to analyze the tumor microenvironment and the cellular spatial distribution of those different cell 
populations and their possible correlations with clinicopathologic characteristics. We observed a high analytic 
reproducibility of the cell phenotypes analyzed in each panel. The cell phenotypes showed high correlation 
both within samples (CV > 0.5) and across samples (CV > 0.7). The tumor microenvironment analysis showed a 
predominant T-cell suppressive activation via immune checkpoints expression predominantly via PD-L1/PD-1, 
and cases with tumor recurrence showed higher amounts of MCs expressing B7-H4 than did cases without recur-
rence. Another interesting finding was the different patterns of functional spatial distribution observed, with a 
predominant interaction between immunosuppressive cell populations and MCs shown by the mixed pattern.

In recent years, mIF has been shown to be an invaluable tool for tumor tissue immune profiling, enabling the 
identification of several targets in the same tissue section and the development of novel predictive biomarkers for 
cancer immunotherapy9,21–23. Characterization of the tumor microenvironment in cancer has become essential 

Figure 4.   Graphic representation showing the clustering of different cells phenotypes obtained using the five 
multiplex immunofluorescence panels from a representative case of non-small cell lung cancer. On the right is 
displaying the list of expected cell phenotypes observed with those panels. Co-expression of different other cell 
phenotypes are also observed in clustering labeled by the co-expression of markers. The graphic was generated 
using R studio software version 3.6.1.



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8511  | https://doi.org/10.1038/s41598-021-88156-0

www.nature.com/scientificreports/

Figure 5.   Spatial analysis showing (panels 1 and 2) representative examples of distance measurements from 
CK+ malignant cells (cyan dots) to different CD3+T-cell phenotypes (identified by different colored dots 
according the marker’s expression) and CD68+ macrophages (yellow dots); (panel 3) representative examples of 
distance measurements from CK+ malignant cells expressing different immune checkpoint markers (PD-L1, 
B7-H3, B7-H4, and IDO-1, identified by different colored dots) to CD3+T-cells (red dots); (panel 4) representative 
examples of distance measurements from CK+ malignant cells to CD3+T-cells expressing different immune 
checkpoint markers (LAG-3, TIM3, VISTA, OX40, and ICOS); and (panel 5) representative examples of distance 
measurements from CK+ malignant cells to different CD68+ macrophage phenotypes and other myeloid 
suppressor cell phenotypes using the X and Y coordinates with a radius of 200 microns (circles). The images 
were generated using R studio software version 3.6.1.

Figure 6.   Heatmaps characterizing the median proximity from CK+ malignant cells and malignant cells 
expressing different immune checkpoint markers according the multiplex immunofluorescence panels. The 
images were generated using R studio software version 3.6.1.
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to following changes in immunologic phenotype inside the tumor, and this ability could enable the discovery of 
predictive biomarkers to be targeted with immunotherapies to guide the identification of new immunotherapeutic 
interventions24–26. These optimized mIF staining panels can be used to study the inflammatory tumor repertoire, 
immune checkpoints, and myeloid suppressor markers that have several implications for translational studies 
and thus have generated a new way to visualize and better understand the tumor microenvironment24.

Using a combination of single IF protocols, we can generate panels of six antibodies raised in the same spe-
cies with simultaneous staining on a single paraffin tissue section11,14. The TSA system amplifies the signal of 
the primary antibody, which is especially useful in low-expression targets27,28; however, for the same reason it 
is not ideal for differentiating different levels of marker expression. The automated staining methodology can 
be performed in 1 day (14–17 h) for up to seven Opal fluorophore tyramides linked with their antibody plus 
DAPI in an autostainer, diminishing the time of staining (4–5 days) used in the published manual protocol14 
and thus saving time and sources. Overall, we observed that these automated protocols can be handled easily, 
avoiding fluctuations in the level of specific signals from the marker used or from the background at the end of 
the optimization process, as is sometimes observed from human errors when the slides are stained manually. We 
also increased the area of the analyzed ROIs from the previously reported 0.334 mm2 (669 × 500 µm) with the 
Vectra scanner to 0.650 µm2 (931 × 698 µm) with 20 × resolution using the Vectra-Polaris 3.0.3 system. As was 
previously observed in the manual protocol14, the use of control tissues as well as diligent antibody optimization 
by IHC, single IF, and then mIF are essential steps for obtaining high-quality stains in manual and automated 
staining19. Additionally, we showed that proper balance of the different fluorophore tyramides linked with a 
specific antibody and maintenance of a specific range of exposure times, 50–150 ms, is fundamental to prevent 
cross-talking reactions or umbrella effects during the optimization process of any mIF panel19,29, especially dur-
ing the construction of the spectral library.

Furthermore, using the automated staining, we were able to improve the previously published panels 1 and 
214 to make them immunologically more comprehensive by changing some antibodies, such as the not very 
stable CD4 for the PD-1 marker, thus completing the PD-L1/PD-1 axis in panel 1. In panel 2, we included CD3 
and CD8 to obtain specific T-cell phenotypes such as activated cytotoxic T-cells (CD3+CD8+GranzymeB+), 
memory T-cells (CD3+CD45RO+), and regulatory T-cells (CD3+FOXP3+CD8-), all important cell phenotypes 
for activation and regulation of T-cells.

Figure 7.   Individual nearest neighbor distance G function and theoretical Poisson curves graphics for the 
identification of different cellular patterns of distance distribution from CK+ malignant cells to CD3+T-cells 
and graphic representation of the predominate cell phenotypes that characterize those patterns. (a and b) The 
scoring scale across the cases and the threshold to be considered mixed or unmixed pattern (left), graphic 
distribution representation of the CD3+T-cells and CK+cells (middle), and the nearest neighbor distance G 
function and theoretical Poisson curves area (right). (a) Mixed pattern distribution of CD3+T-cells related to 
CK+cells, (b) unmixed pattern distribution of CD3+T-cells related to CK+cells, (c) graphical model showing 
the characterization of two different groups of interaction between specific phenotypes with malignant cells 
according their spatial distribution. Suppressor cell phenotypes have scores less than 10 and are characterized by 
a mixed pattern and more interaction with malignant cells, while cytotoxic T-cells (CD3+CD8+) and cytotoxic 
memory T-cells (CD3+CD8+CD45RO) have scores greater than 10 and are characterized by an unmixed 
pattern with less interaction to malignant cells. The images were generated using R studio software version 3.6.1.
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The analysis of tissue control sections by IHC and mIF revealed similar histologic patterns of marker expres-
sion and showed the importance of controls to compare individual antibodies by IHC and IF, as well as to identify 
the exact location and pattern of distribution of the different cell markers. As previously published14,15, PD-L1+ 
cells from control tonsil tissues show membranous expression of PD-L1 in epithelial crypts. Likewise, the other 
immune checkpoint markers—including B7-H3, B7-H4 (tested in the lung cancer tissue microarray positive 
control), VISTA, LAG3, ICOS, and TIM3—and immune checkpoint stimulatory markers, such as IDO-1 and 
OX40, showed similar patterns of cellular expression and distribution between IHC and mIF in tonsil and in 
lung cancer control tissues18. Similarly, the CK marker; T-cell markers such as CD3, CD8, granzyme B, PD-1, 
CD45RO, and FOXP3; and macrophage markers included in the myeloid panel, such as CD68, Arg-1, CD14, 
CD11b, CD33, and CD66b showed similar staining patterns and expression between IHC and mIF in tonsil 
positive control tissues. Improvement of the previously published panels 1 and 2, and the introduction of panels 
3, 4, and 5, gave us the ability to study numerous specific cell phenotypes and to show the advantages of this 
technique as well as its potential for translational cancer research and longitudinal studies.

In our cohort of NSCLC samples, we were able to identify various cell phenotypes at consistent levels across 
the panels, with a high analytic reproducibility within panels between different time points using sequential 
tissue sections. Overall, the studied cell phenotypes showed high correlation, both within samples and across 
samples (week 1 vs. week 2), demonstrating that the multiplexing of these biomarkers in five panels following our 
protocol was successful. We believe that this finding also demonstrates the practical scalability of this method. 
As expected, cell phenotypes with low frequency or heterogeneous distribution, such as CK+PD-L1+, CD68+, 
CD3+IDO-1+, and CD3+VISTA+, showed lower correlation either within samples or across samples when nor-
malized by the total number of cells from the corresponding ROIs, suggesting that the biological heterogeneous 
expression of these markers and the geographic distribution and number of selected ROIs contribute to differ-
ences in the densities of these cell phenotypes between panels. Therefore, the ROIs must be selected carefully 
and appropriately to represent all the different areas in the entire tumor section. This need can be addressed by 
the development of guidelines to standardize the selection of ROIs in this type of assay. The highest number 
of cell phenotypes observed across the panel—some of which were not included in the analysis—showed the 
biological cell heterogeneity in the microenvironment of those tumors and the possibility to discover new cells 
co-expressing those markers.

The analysis of the NSCLC cohort showed an immunosuppressive tumor microenvironment characterized 
principally by the axis of PD-L1/PD-1 and their interaction with different cellular subpopulations; this axis con-
tinues to be an important therapeutic target in many types of cancer5. Although memory T-cells and cytotoxic 
T-cells were observed in high densities compared with other cell populations, various cell phenotypes, such as 
regulatory T-cells, antigen-experienced T-cells expressing PD-L1, and T-cells expressing B7-H3, may have played 
a suppressive role, as suggested by their correlation with patient prognosis30–32. Importantly, we also showed the 
diversity of MCs simultaneously expressing different immune inhibitory checkpoints and stimulators as PD-L1, 
B7-H3, B7-H4, and IDO-1. this observation confirms our previous finding using single IHC18 and suggests that 
cancer can avoid immune surveillance using different pathways. The characterization of those markers and their 
recent association with prognosis opens the possibility of their becoming new therapeutic targets33–37. Most 
interestingly, the expression of B7-H4 by MCs was correlated with recurrence status in our cohort. As described 
previously, B7-H4 has been reported to be highly expressed in NSCLC38 and to promote malignant transforma-
tion, tumor growth, and metastasis39. Furthermore, we found that not only T-cells but also MCs can express 
OX40, although this expression occurs in a smaller proportion of MCs. This finding opens the possibility of 
discovering new cell phenotypes using those panels and this methodology. Finally, specific myeloid cell popula-
tions that are related with a poor clinical outcome40,41 and an immunosuppressive tumor microenvironment42,43 
were observed, although in our cohort we found no correlation with clinicopathologic characteristics.

By applying spatial analysis in an exploratory manner, we showed the capability of this type of data to map the 
spatial relationships between different cell phenotypes. With that we were able to distinguish different cell popu-
lations that play specific roles in activation and regulation close to the MCs, suggesting that those cells can play 
specific roles according to their distribution44. Interestingly, MCs with PD-L1 expression showed closer proximity 
to cytotoxic T-cells than did MCs that did not express PD-L1. Additionally, we found that polymorphonuclear 
myeloid-derived suppressor cells had a median distance far from MCs but had close interaction with the MCs. 
This is interesting because the presence of tumor-infiltrating myeloid-derived suppressor cells has been related 
to a worse overall prognosis45. Interestingly, we found that T-cells were closer to MCs expressing OX40 than to 
MCs expressing other checkpoint markers. Although there are no data regarding OX40 expression in MCs, we 
believe that this phenotype may play an important role in the cellular composition of the tumor microenviron-
ment. Using the distance from MCs to T-cells with the G function and the theoretical curve we identified two 
different patterns of distribution and interactions in our samples. The mixed pattern was characterized by the 
close proximity and interaction between MCs and T-cells, predominantly antigen-experienced cytotoxic T-cells 
expressing PD-L1 and PD-1 and other inhibitory regulators such as LAG3 and TIM3; macrophages expressing 
B7-H3 and B7-H4; and polymorphonuclear myeloid-derived suppressor cells, suggesting that suppressive cells 
actively interface with the MCs and may increase the risk of tumor recurrence in those patients. In contrast, the 
unmixed pattern was related mostly to cytotoxic T-cells, and cytotoxic memory T-cells. The characterization of 
these two patterns suggests that combined inhibition of different pathways in addition to PD-L1/PD-1 might be 
an effective therapeutic strategy in NSCLC.

In summary, we demonstrated that this method of mIF staining, targeting different antibodies in the same 
tissue section, is reproducible when all the steps are carefully followed and can be a powerful tool with high-
quality data. As several authors, including us, have described previously19,46,47, many parameters have significant 
effects during the optimization process of mIF staining: choosing reliable antibodies, determining the appro-
priate sequence of the targets, reagent concentrations, incubation times, blocking steps, fluorescence intensity 
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harmonization, the use of fresh tissue sections for staining, and regular, thin cuts between 3 and 4 µm. Although 
we showed intrasite reproducibility, intersite reproducibility using large cohorts will also be required as this 
methodology is employed in multi-institutional studies46,47 and prior to clinical use. The immune suppressive 
microenvironment observed in our cohort of NSCLC included not only the PD-L1/PD-1 axis but also other 
inhibitory pathways, such as the LAG3, VISTA, and TIM3 pathways, and myeloid-derived suppressor cells. This 
heterogeneity may partially explain why only some patients respond to mono inhibitory therapies48. Compre-
hensive immuno-profiling using mIF panels will hopefully improve our understanding of how different factors 
can determine disease progression or resistance or response to immunotherapies and can help to determine 
new treatment approaches.

Data availability
The raw datasets used and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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