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Blood tryptase and thymic stromal 
lymphopoietin levels predict 
the risk of exacerbation in severe 
asthma
Hsin‑Kuo Ko1,2, Shih‑Lung Cheng3,4, Ching‑Hsiung Lin5,6, Sheng‑Hao Lin5, Yi‑Han Hsiao1,2, 
Kang‑Cheng Su1,2, Chong‑Jen Yu7, Hao‑Chien Wang7, Chau‑Chyun Sheu8,9, 
Kuo‑Chin Chiu10,11* & Diahn‑Warng Perng1,2,11*

Some patients with severe asthma experience exacerbations despite receiving multiple therapy. 
The risk of exacerbation and heterogeneous response to treatment may be associated with specific 
inflammatory molecules that are responsive or resistant to corticosteroids. We aimed to identify the 
independent factors predictive for the future risk of exacerbation in patients with severe asthma. In 
this multi-center prospective observational study, 132 patients with severe asthma were enrolled and 
divided into exacerbation (n = 52) and non-exacerbation (n = 80) groups on the basis of exacerbation 
rate after a 1-year follow-up period. We found that previous history of severe-to-serious exacerbation, 
baseline blood eosinophil counts (≥ 291cells/μL), and serum tryptase (≤ 1448 pg/mL) and thrymic 
stromal lymphopoietin (TSLP) levels (≥ 25 pg/mL) independently predicted the future development 
of exacerbation with adjusted odds ratios (AOR) of 3.27, 6.04, 2.53 and 8.67, respectively. Notably, 
the patients with high blood eosinophil counts and low tryptase levels were likely to have more 
exacerbations than those with low blood eosinophil counts and high tryptase levels (AOR 16.9). TSLP 
potentially played the pathogenic role across different asthma phenotypes. TSLP and tryptase levels 
may be implicated in steroid resistance and responsiveness in the asthma inflammatory process. High 
blood eosinophil counts and low serum tryptase levels predict a high probability of future asthma 
exacerbation.

Asthma exacerbation is associated with an increase in respiratory symptoms and progressive decrease in lung 
function1. In patients with severe asthma, 30% of subjects are frequent exacerbators, and these exacerba-
tions impose a huge economic and health burden on health care systems2–4. Identifying disease characteris-
tics and selecting effective treatment for patients with severe asthma are important to reduce the future risk 
of exacerbations5. Clinical phenotypes have been described but do not necessarily reflect underlying disease 
mechanisms6. The classification of endotypes have been developed to characterize distinct biological mechanisms, 
and thus therapy targeting specific molecules could improve disease outcomes in severe asthma7–10. Theoretically, 
endotype-related molecular/cellular biomarkers may be associated with the responsiveness to corticosteroids 
and could be applied to predict the future risk of exacerbation in patients with severe asthma9, 10.
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The inflammatory mechanism of asthma is currently divided into type 2 high and type 2 low (non-type 
2) inflammatory processes. Type 2 high inflammation includes both allergic and non-allergic eosinophilic 
processes8, 10, 11. In allergic asthma, exposure to an allergen results in the production of interleukin (IL)-4, IL-5, 
and IL-13 by T helper 2 lymphocyte (TH2). The cytokines of IL-4 and IL-13 stimulate B lymphocytes to produce 
antigen-specific immunoglobulin (Ig) E that drives the allergic cascade. IL-5 can increase the production, differ-
entiation, maturation and activation of eosinophils. In non-allergic eosinophilic asthma, type 2 innate lymphoid 
cells (ILC2) appear to be responsible for the production of type 2 cytokines IL-5 and IL-13. Accumulating evi-
dence shows that TH2 cells and TH2-driven eosinophilia are usually responsive to glucocorticoids12–14. Clinically, 
a substantial proportion of patients with asthma does not respond to glucocorticoids very well15.

Thymic stromal lymphopoietin (TSLP), which is mainly derived from epithelium, can promote the activa-
tion of dendritic cells and B lymphocytes as well as TH2-associated cytokine production16. TSLP can also induce 
chemotaxis and delay apoptosis in eosinophils, suggesting its potential role in allergic inflammation17. In addition 
to eosinophilic inflammation, TSLP also plays a role in neutrophilic airway inflammation18, 19 and promotes air-
way remodeling20–23. Moreover, TSLP exerts a corticosteroid-resistant effect in natural helper cells by controlling 
STAT5 phosphorylation and BCL-xL expression24. As the major protein component in the mast cells, tryptase 
has been recognized as a specific marker of mast cell activation and involved in allergic asthma25. Serum tryptase 
can be used to predict disease severity in childhood asthma26. In induced sputum, tryptase concentration can 
be reduced by high doses of inhaled corticosteroid (ICS) within 6 h in symptomatic asthmatics27. Targeting 
the TH2 pathway can inhibit late asthmatic response by attenuating allergen-induced sputum eosinophilia and 
lowering tryptase levels28.

Eosinophils are involved in the pathogenesis of asthma exacerbation. Blood eosinophils are reportedly associ-
ated with the frequency of asthma exacerbation29. A UK cohort study found that asthmatics with blood eosinophil 
counts higher than 400 cells/μL experience more severe exacerbations and poorer asthma control30. A treatment 
strategy specifically aimed to reduce sputum eosinophilia can decrease asthma exacerbation and hospitalization 
rate31. Collectively, the extent of eosinophilic inflammation appears to be associated with uncontrolled asthma. 
On the basis of these pieces of evidence, we hypothesized that clinical characteristics and inflammatory bio-
markers may simultaneously affect patient outcomes and are independently associated with the future risk of 
exacerbation in patients with severe asthma.

We conducted a 1-year multicenter prospective observational study aimed to identify the clinical characteris-
tics and useful biomarkers that can independently predict the risk of exacerbation in patients with severe asthma 
under maintenance treatment. We demonstrated that previous history of exacerbation, blood eosinophil count, 
and tryptase and TSLP levels can be used as independent factors for predicting future asthma exacerbations.

Methods
Study design.  This prospective, observational, multi-center study was conducted at six hospitals across 
Taiwan from March 2016 to February 2018. The study was approved by the Institutional Ethical Review Board of 
Taipei Veterans General Hospital, Far Eastern Memorial Hospital, National Taiwan University Hospital, Chang-
hua Christian Hospital, Kaohsiung Medical University Hospital and Lotung Poh-Ai Hospital (approval number: 
VGHTPE-IRB No. 2016–03-010AC) and conducted in accordance with the Declaration of Helsinki. All patients 
provided written informed consent for participation, and the study was registered at https://​www.​clini​caltr​ials.​
gov (NCT02871947). The patients enrolled were followed-up for 1 year after enrollment.

Participants.  Patients were outpatients aged 20–75 years with at least a 1-year history of asthma and a cur-
rent diagnosis of severe asthma under GINA steps 4–5 therapy1 with a high-dose ICS (≥ 800 μg of budesonide 
or equivalent) and a long-acting β2 agonist, sustained-release theophylline or leukotriene receptor antagonist 
for the previous 6 months before enrollment or oral glucocorticosteroids (OCS) were prescribed in stable doses 
for the previous 3 months32. Patients were never smokers or had a smoking history of less than 10 pack-years. 
The main exclusion criteria were an event of asthma exacerbation treated with systemic glucocorticoids within 
4 weeks before enrollment, chronic obstructive pulmonary disease, active malignancy, infectious diseases, active 
pulmonary tuberculosis, and a current treatment of home oxygen therapy ≥ 15 h per day and noninvasive posi-
tive pressure ventilation ≥ 6 h per day.

Measurements.  The demographic information and clinical data including history of exacerbation, current 
treatment, atopy and comorbidities were collected. At the time of enrollment, the participants were assessed for 
Asthma Control Test (ACT); bronchodilator test according to the American Thoracic Society criteria33; blood 
cell counts; fractional exhaled nitric oxide (FeNO); blood serum IgE; and associated mediators including inter-
leukin IL-5, IL-13, periostin, tryptase, IL-8, IL-17, tumor growth factor-β, vascular endothelial growth factor, 
placental growth factor, tumor necrosis factor-α, TSLP, and IL-33. The serum levels of cytokines and mediators 
were analyzed by ELISA kits with a validation control and Bio-Plex Suspension Array System with a validation 
kit control (#64080422). Serum tryptase β-2 levels were measured by Human Tryptase/TPSAB1, B2 PicoKine™ 
ELISA Kit. (Catalog #EK0898, Boster Biological Technology, Pleasanton CA, USA).

Definitions.  Reversibility in the bronchodilator test was defined as an increase of 12% and 200 mL in FEV1
1. 

Uncontrolled asthma was defined as at least one of the following: (a) poor symptom control: ACT < 20; (b) 
frequent severe exacerbations: two or more bursts of systemic OCS (> 3 days each) in the previous year; (c) 
serious exacerbations: at least one hospitalization, intensive care unit stay or mechanical ventilation in the previ-
ous year; (d) airflow limitation: after appropriate bronchodilator with forced expiratory volume in one second 
(FEV1) < 80% predicted and FEV1/forced vital capacity < 0.732. Severe exacerbation was defined as a worsening 
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of asthma requiring the use of systemic corticosteroids for more than 3 days, whereas serious exacerbation was 
defined as requiring asthma-specific emergency department visits or hospitalization32. Atopic status was defined 
as the positive result of blood allergen-specific IgE. Previous history of asthma exacerbation was defined as the 
occurrence of severe or serious asthma within 1 year prior to the study entry. Electronic medical record and 
clinical information of asthma exacerbations throughout the follow-up period were assessed and recorded every 
3 months.

Statistical analysis.  Categorical variables were expressed as number (percentage) and evaluated by Chi-
square test. Continuous variables with normal distribution were expressed as mean ± standard deviation (SD) 
and evaluated by independent t-test. Continuous variables with non-normal distribution were expressed as 
median (interquartile range) and evaluated by Mann–Whitney U test. Variables significantly associated with 
asthma exacerbation (P < 0.05) on univariate analysis were included in multivariate logistic regression analy-
sis. Correlation between two variables was tested by Spearman’s correlation analysis. The enter method was 
employed to identify the significant predictors. ROC analyses were performed to obtain area under curves 
(AUC) and the optimal cut-off values were determined by the largest values of Youden’s index with reliable 
sensitivity, specificity, positive predicted value, and negative predicted value for predicting asthma exacerbation. 
Finally, Kaplan–Meier survival curves were compared using the log-rank test to analyze the difference in time 
to severe-to-serious exacerbation between the study patients with and without an independent predictive factor. 
The power (1 − β) of the sample size was evaluated by G-power program. Results were considered significant at 
P < 0.05 and all p values were two-sided. Statistical analysis was performed using SPSS version 19.0 (SPSS Inc., 
Chicago, IL, USA).

Results
Demographic characteristics of study subjects.  A total of 132 study subjects who fulfilled the criteria 
of severe asthma, including 82 females and 50 males with a median age of 62.5 (55.0–72.0) years, were recruited 
(Table 1). The median duration of asthma diagnosis was 5.0 (2.0–12.0) years. Among these participants, 29% 
had smoking history and 36% had a family history of asthma. Moreover, 55% of the study patients were atopic, 
and the median serum IgE level and blood eosinophil count were 101.0 IU/mL (30.1–320.0) and 187.6 cells/μL 
(84.0–365.7), respectively. The most common comorbidities were allergic rhinitis, hypertension, and diabetes 
mellitus. The median baseline prebronchodilator FEV1 and FEV1% pred were 1.45L (0.96–2.05) and 65.3% 
(50.3–80.7), respectively, and 52% of the participants had fixed airflow limitation. Only 15% of the study subjects 
had positive bronchodilator reversibility and 7% of the patients received maintenance oral corticosteroids. The 
median score of ACT was 21 (19–23), 70% of which were defined as uncontrolled asthma at the commencement 
of the study.

The study subjects were divided into two groups on the basis of the occurrence of severe-to-serious exacerba-
tion after a 1-year follow-up period (Table 1). The exacerbation group (n = 52) had severe (1.13/year) and serious 
(0.71/year) exacerbation during the entire follow-up period compared with the non-exacerbation group (n = 80). 
Apparently, the history of severe exacerbation in the previous year were higher in the exacerbation group than 
that in the non-exacerbation group (0.77 ± 0.75 vs. 0.44 ± 0.70, respectively; p = 0.003).

Blood biomarkers in both groups.  The blood cellular and molecular biomarkers of the study subjects 
are summarized in Table 2. In terms of counts of blood eosinophils (absolute number ≥ 300 cells/µl and more 
than 4%) were significantly higher in the exacerbation group than those in the non-exacerbation group. Serum 
IgE, periostin, IL-5, and IL-13 levels, as well as FeNO, were not statistically different between the two groups. In 
particular, significantly lower tryptase levels and higher TSLP levels were observed in the exacerbation group 
(p = 0.010 and 0.016, respectively) comparing with those in the non-exacerbation group.

Significant factors associated with asthma exacerbation.  The significant factors associated with 
asthma exacerbation are listed in Table 3. The ROC curve was analyzed for blood eosinophil counts, and serum 
tryptase and TSLP levels to differentiate the exacerbation group from the non-exacerbation group (Supplemen-
tary Fig. 1A–C). The adjusted multivariate logistic regression model revealed that previous history of severe-to-
serious asthma exacerbation, serum tryptase level of ≤ 1448 pg/mL, serum TSLP level of ≥ 25 pg/mL and blood 
eosinophil count of ≥ 291cells/µl, were the independent factors predictive for asthma exacerbation with an AOR 
of 3.27, 2.53, 8.67 and 6.04, respectively. We analyzed the correlation between blood eosinophil counts, serum 
tryptase and TSLP levels by Spearman’s correlation analysis, and the results showed that there was no significant 
correlation between blood eosinophil counts and levels of serum tryptase (r = − 0.059, p = 0.516), blood eosino-
phil counts and levels of serum TSLP (r = 0.109, p = 0.222), and levels of serum TSLP and tryptase (r = − 0.166, 
p = 0.065). This finding further confirmed that blood eosinophil counts, and levels of serum tryptase and TSLP 
as the independent variables for predicting asthma exacerbation. The Kaplan–Meier curves of the cumulative 
probability of severe-to-serious exacerbation during the 1-year follow-up period stratified by the independent 
factors are shown in Fig. 1A–D (all log rank test, p < 0.05).

Adjusted odds ratio for future development of asthma exacerbation.  For the analysis of com-
bined biomarkers predictive for the risk of asthma exacerbation, we first categorized the study subjects into 4 
groups according to the serum TSLP levels and blood eosinophil counts. Because only 6 cases were grouped 
in the group of TSLP high/EOS high, we did not choose serum TSLP levels and blood eosinophil counts as 
combined biomarkers. Alternatively, we chose serum tryptase level and blood eosinophil counts as combined 
biomarkers. The AOR for future development of asthma exacerbation associated with blood tryptase level and 
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eosinophil count is shown in Fig. 2. Tryptase level of 1448 pg/mL and blood eosinophil count of 291cells/µl were 
considered as the cutoff. The patients with high eosinophil counts and low tryptase levels were more likely to 
develop asthma exacerbation than those with low eosinophil counts and high tryptase levels (AOR: 16.92, 95% 
CI = 3.88–73.74, p < 0.001).

Discussion
Asthma is a heterogeneous disease. Using modeling approaches and cluster analysis, distinct clinical phenotypes 
of asthma are identified and the clinical characteristics suggest difference in pathophysiologic mechanisms in 
patients with severe asthma34. Biomarker analysis may help in tailoring treatment and predicting the future risk of 
exacerbation in patients with severe asthma5, 35, 36. In this prospective observational study, we demonstrated that 

Table 1.   Baseline characteristics of the study subjects (n = 132). Data were reported as mean ± standard 
deviation, median (interquartile range) or number (%). ACT​ asthma control test, BDR bronchodilator 
reversibility, FEV1 forced expiratory volume in one second, FVC forced vital capacity, GERD gastroesophageal 
reflux disease, ICS inhaled corticosteroid, LABA long-acting beta 2 agonist, LAMA long-acting muscarinic 
antagonist.

Total (n = 132) Exacerbation (n = 52) Non-exacerbation (n = 80) P

Female (%) 82 (62) 33 (63) 49 (61) 0.855

Age (year) 62.5 (55.0–72.0) 60.5 (56.4–63.4) 63.5 (59.5–65.5) 0.166

Duration of asthma diagnosis (year) 5.0 (2.0–12.0) 7.0 (3.0–16.0) 5.0 (2.0–12.3) 0.293

Smoking hx (%) 39 (29) 16 (31) 23 (29) 0.847

Current smoker (%) 5 (4) 1 (2) 4 (5) 0.648

Body mass index (kg/m2) 24.6 (22.0–27.7) 24.6 (22.2–26.9) 24.4 (21.3–26.7) 0.310

Family history of asthma (%) 48 (36) 21 (40) 27 (34) 0.464

Atopy (%) 72 (55) 24 (46) 48 (60) 0.153

Comorbidity

Allergic rhinitis (%) 95 (72) 35 (67) 60 (75) 0.428

Hypertension (%) 60 (45) 24 (46) 36 (45) 1.000

Diabetes mellitus (%) 27 (20) 9 (17) 18 (23) 0.515

GERD (%) 23 (17) 9 (17) 14 (18) 1.000

Heart failure (%) 12 (9) 5 (10) 7 (9) 1.000

Bronchiectasis (%) 6 (5) 3 (6) 3 (4) 0.680

Nasal polyp (%) 4 (3) 2 (4) 2 (3) 0.646

Pulmonary function test

FEV1/FVC (%) 66.9 (56.8–76.8) 66.4 (59.2–74.8) 66.6 (54.8–76.9) 0.845

FEV1 (liter) 1.45 (0.96–2.05) 1.54 (0.96–2.06) 1.40 (0.99–2.09) 0.970

FEV1%pred (%) 65.3 (50.3–80.7) 68.0 (46.3–80.6) 63.0 (50.4–80.3) 0.543

FVC (liter) 2.14 (1.59–2.91) 2.20 (1.59–2.94) 2.17 (1.61–2.96) 0.944

FVC %pred (%) 79.6 (66.4–94.8) 78.0 (61.0–95.0) 80.1 (69.4–106.9) 0.495

Positive BDR (%) 20 (15) 7 (13) 13 (16) 0.805

%Reversibility of FEV1 5.0 (1.0–9.9) 4.5 (0.2–8.4) 5.0 (1.0–11.2) 0.228

Fixed airflow limitation (%) 68 (52) 27 (52) 41 (51) 1.000

Use of ICS and

LABA (%) 91 (69) 33 (63) 58 (73) 0.336

LABA and LAMA (%) 31 (23) 11 (21) 20 (25) 0.678

Leukotriene modifier (%) 56 (42) 19 (37) 37 (46) 0.286

Theophylline (%) 80 (61) 29 (56) 51 (64) 0.369

Anti-histamine (%) 8 (6) 2 (4) 6 (8) 0.479

Maintenance oral prednisolone (%) 9 (7) 2 (4) 7 (9) 0.482

Omalizumab (%) 10 (8) 4 (8) 6 (8) 1.000

ACT​ 21 (19–23) 20.0 (18.7–23.0) 21.0 (18.7–23.0) 0.157

Uncontrolled asthma (%) 92 (70) 39 (74) 53 (66) 0.335

Asthma exacerbation in the year prior to the study (%) 73 (55) 40 (77) 33 (41)  < 0.001

Severe exacerbation (/year) 0.57 ± 0.74 0.77 ± 0.75 0.44 ± 0.70 0.003

Serious exacerbation (/year) 0.18 ± 0.57 0.27 ± 0.66 0.13 ± 0.51 0.079

Asthma exacerbation during 1-year follow-up

Severe exacerbation (/year) 0.45 ± 0.98 1.13 ± 1.29 0

Serious exacerbation (/year) 0.29 ± 1.01 0.71 ± 1.52 0
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previous history of severe-to-serious exacerbation, baseline serum tryptase and TSLP levels, and blood eosinophil 
counts could independently predict the future development of exacerbation in patients with severe asthma. Most 
importantly, patients with severe asthma with high blood eosinophil counts and low serum tryptase levels were 
more likely to have greater risk of exacerbation than those with low blood eosinophil counts and high serum 
tryptase levels despite treatment with ICS-contained multiple therapy. Our study proposed that the combined 
biomarkers of serum TSLP and tryptase levels, and blood eosinophil count may be linked to distinct inflam-
matory mechanisms in asthma and be useful to predict the future risk of asthma exacerbation. The relationship 
between IL-6 and type2 biomarkers has been investigated by Li et al.37, and the authors report that a combination 
of IL-6 level (representing non-type 2 asthma) and FeNO value or blood eosinophil count (representing type 2 
asthma) might identify different asthma endotypes. The findings in the current study strengthened the concept 
of combined biomarkers being applicable for identifying underling inflammatory endotypes and predicting the 
future outcomes in patients with severe asthma.

High blood eosinophil count is associated with disease severity and eosinophilic airway inflammation in 
asthma38. In the Copenhagen General Population Study, Vedel-Krogh el al.39 reported that increased incidence of 
moderate-to-severe exacerbation is more strongly associated with high blood eosinophil counts (> 290 cells/μL) 
than with low blood eosinophil counts (< 180 cells/µl). In the UK, Price et al.30reported that patients with asthma 
with blood eosinophil counts > 400 cells/μL experience more severe exacerbations and have poorer asthma 
control. Our findings were consistent with these results. Absolute blood eosinophil counts of ≥ 291 cells/μL had 
a higher probability of asthma exacerbation (AOR = 6.04). In addition, the patients with high blood eosinophil 

Table 2.   Blood cellular and molecular biomarkers in the study subjects (n = 132). Data were reported 
as median (interquartile range) or number (%). EOS eosinophil, FeNO fraction of exhaled nitric oxide, 
PIGF placental growth factor, TGF tumor growth factor, TNF tumor necrosis factor, TSLP thymic stromal 
lymphopoietin, VEGF vascular endothelial growth factor, WBC white blood cell.

Total (n = 132) Exacerbation (n = 52) Non-exacerbation (n = 80) P

Cellular markers

WBC (cells/µl) 7680 (6190–9400) 8110 (6400–9800) 6900 (5945–8550) 0.052

Eosinophil (cells/µl) 187.6 (84.0–365.7) 241.5 (248.5–458.0) 166.7 (148.8–225.9) 0.016

Eos ≥ 150 cells/µl (%) 81 (61) 36 (69) 45 (56) 0.212

Eos ≥ 300 cells/µl (%) 42 (32) 25 (48) 17 (21) 0.004

Eos ≥ 4% (%) 43 (33) 23 (44) 20 (25) 0.036

Neutrophil (%) 58.9 (51.8–66.2) 57.9 (49.1–65.0) 59.7 (52.6–67.1) 0.232

Molecular markers

IgE, IU/ml 101.0 (30.1–320.0) 109.3 (25.5–296.0) 83.2 (41.7–311.0) 0.769

Tryptase beta-2 (pg/ml) 1053.5 (373.9–2403.3) 768.2 (169.2–1732.8) 1725.5 (517.1–3036.5) 0.010

TSLP (pg/ml) 8.0 (3.5–21.1) 16.3 (3.4–32.3) 7.1 (3.3–18.2) 0.016

FeNo (ppb) 26.0 (19.3–43.8) 31.0 (21.0–43.3) 25.8 (18.0–44.7) 0.205

Periostin (pg/ml) 14.3 (9.4–19.8) 16.7 (11.4–22.1) 13.0 (9.1–18.2) 0.206

IL-5 (pg/ml) 2.2 (1.3–3.0) 2.1 (1.1–3.7) 2.3 (1.3–3.0) 0.882

IL-13 (pg/ml) 62.5 (35.3–76.0) 63.8 (33.3–76.1) 63.2 (34.7–77.6) 0.545

IL-33 (pg/ml) 2.9 (1.0–5.0) 3.1 (1.2–5.9) 2.9 (1.3–4.5) 0.615

TNF-α (pg/ml) 2.5 (1.6–3.6) 2.6 (1.3–3.6) 2.4 (1.6–3.4) 0.906

IL-8 (pg/ml) 6.6 (4.4–11.7) 6.8 (4.5–11.6) 6.7 (4.4–13.1) 0.954

IL-17 (pg/ml) 12.6 (9.9–15.6) 12.7 (10.4–15.1) 12.7 (10.1–15.7) 0.909

TGF-β (pg/ml) 24.9 (19.9–33.3) 26.8 (21.9–34.2) 22.7 (19.3–33.3) 0.063

VEGF (pg/ml) 267.0 (157.9–398.2) 281.9 (167.7–400.8) 266.2 (140.3–416.9) 0.698

PIGF (pg/ml) 4.7 (3.2–7.7) 4.4 (3.2-–.7) 5.3 (4.0–9.5) 0.471

Table 3.   Significant factors associated with asthma exacerbation (n = 132). EOS eosinophil, TSLP thymic 
stromal lymphopoietin.

Variable

Univariate Multivariate

OR (95%CI) P AOR (95% CI) P

Previous history of severe-to-serious exacerbation 4.75 (2.17–10.40)  < 0.001 3.27 (1.34–8.00) 0.009

Serum tryptase ≤ 1448 pg/mL 2.47 (1.17–5.19) 0.009 2.53 (1.01–6.36) 0.048

Serum TSLP ≥ 25 pg/mL 6.30 (2.41–16.52)  < 0.001 8.67 (2.63–28.62)  < 0.001

Blood Eos count ≥ 291cells/µl 2.92 (1.38–6.19) 0.005 6.04 (2.30–15.88)  < 0.001
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counts and low serum tryptase levels (≤ 1448 pg/mL) simultaneously suffered from more frequent exacerbations 
than those with low blood eosinophils and high tryptase levels (AOR up to 16.92).

Mast cells are tissue-based inflammatory cells of hematopoietic origin that respond to signals of innate and 
adaptive immunity. Mast cells play an important role in allergic diseases, including anaphylaxis, allergic rhinitis, 
and allergic asthma40. Human mast cells secrete α- and β-tryptases. Mature β-tryptase, which was measured in 
this study, is the predominant form stored in the secretory granules of mast cells. Tryptase is a specific marker 
of mast-cell activation, and thus tryptase levels can be reasonably measured to reflect the burden of mast cell 
activation in the allergic TH2 pathway in asthma25, 40. Gao et al.26 reported that serum baseline tryptase levels 
in childhood asthma, as well as asthma control, serum IgE and IL-13 levels, blood eosinophil counts, and lung 
function parameters, are strongly correlated with disease severity of asthma. The Severe Asthma Research Pro-
gram also reported that severe asthma is associated with the predominance of tryptase + chymase + mast cells 
in the airway submucosa and epithelium41. In addition, the gene expression of mast cell tryptase is increased in 
asthmatic epithelium, especially in the TH2-high subgroup, and predicts the responsiveness to ICS42. The numbers 
of airway tissue mast cells and the concentration of bronchoalveolar lavage tryptase can determine the efficacy of 
ICS treatment in persistent asthma43. The findings of our study indicating low levels of tryptase associated with 
a higher risk of exacerbation implied that lower levels of serum tryptase may be linked to non-allergic type 2 
inflammation or non-type 2 inflammation (ILC2-related or neutrophilic inflammation). Therefore, the pheno-
endotype related to lower levels of serum tryptase is potentially corticosteroid-resistant and refractory to ICS/
LABA treatment and associated with high risk of asthma exacerbation8.

Figure 1.   Kaplan–Meier curves of the cumulative probability of exacerbation during the 1-year follow-up 
period stratified by previous history of asthma exacerbation (A), serum tryptase (B) and TSLP (C) levels, 
and blood eosinophil count (D). The cut-off values of 1448 pg/mL, 25 pg/mL, and 291 cells/µL for serum 
tryptase level, serum TSLP level, and blood eosinophil count, respectively, were chosen by receiver operating 
characteristic curve analysis.
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TSLP, which is produced mainly by the lung and gut epithelia, skin keratinocytes, and dendritic cells, is 
involved in various allergic diseases, including bronchial asthma, atopic dermatitis, and eosinophilic esophagitis. 
TSLP release can be triggered by several cytokines, respiratory viruses, bacterial and fungal products, allergens, 
cigarette smoke extracts, diesel particles and tryptase44, and lead to activation of inflammatory responses in 
asthma45–48. Although TSLP is central to type 2 immunity, many cell types that are activated by or respond to 
TSLP, such as mast cells, basophils, natural killer T cells, ILCs and neutrophils, may play a role in inflammation 
in asthma beyond type 2 inflammation47, 49–51. In asthma, increased TSLP concentrations are observed in bron-
choalveolar lavage, induced sputum, exhaled breath condensate, and plasma52–55. TSLP expression is increased 
in the airway mucosa in a subset of severe asthmatics despite high-dose inhaled or oral steroid treatment56. TSLP 
can induce steroid resistance and abrogate the inhibitory effects of dexamethasone on type 2 cytokine production 
in ILC2 cells57. In the present study, we found that TSLP per se is an independent factor for predicting future 
risk of asthma exacerbation, and serum TSLP levels ≥ 25 pg/mL are associated with a high probability of asthma 
exacerbation (AOR = 8.19). Unsurprisingly, Corren et al.58 reported that anti-TSLP monoclonal antibody reduces 
annual exacerbation rates by 62%–71% at different doses in uncontrolled asthma despite treatment with long-
acting β2 agonists and medium-to-high doses of ICS. Their findings have suggested some biological plausibility 
for TSLP being a contributor and an indicator of asthma exacerbation, and highlight the potential pathogenic 
role of TSLP across different asthma phenotypes. Collectively, serum TSLP may contribute to steroid resistance, 
whereas tryptase may suggest steroid responsiveness in asthma inflammatory process, as observed in the present 
study. Moreover, our study suggested the novel idea that the possible combination of elevated TSLP levels and 
reduced tryptase levels might result in ongoing eosinophilia and non-responsiveness to high-dose ICS treatment. 
This combination of biomarkers (high TSLP levels and low tryptase levels) might indicate that these patients 
with severe asthma are suitable for anti-TSLP therapy.

The previous history of severe-to-serious exacerbation is an independent factor predicting future exacerba-
tion (AOR = 3.27). This result was consistent with that of a previous study that recent severe asthma exacerba-
tions are an important independent predictor of future severe exacerbation in children with severe/difficult-to-
treat asthma59. Similarly, a prospective analysis of patients aged ≥ 12 years with severe/difficult-to-treat asthma 

Figure 2.   Adjusted odds ratio (AOR) for developing asthma exacerbation during the 1-year follow-up period 
based on blood tryptase and eosinophil levels. High (H) and low (L) levels of serum tryptase and blood 
eosinophil count were defined on the basis of the cut-off values of 1448 pg/mL and 291 cells/µL, respectively. * 
denotes p value < 0.05. When G1 group is defined as reference, the AOR with 95% confidence intervals (95% CI) 
and p value for asthma exacerbation during the 1-year follow-up period for G4, G3, and G2 are 16.92 (3.88–
73.74, p < 0.001), 9.67 (2.26–41.34, p = 0.002), and 7.25 (1.97–26.63, p = 0.003), respectively.
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indicated that recent severe asthma exacerbations appear to be a strong independent factor predicting future 
exacerbations (AOR = 3.77)60. These findings should prompt physicians to understand the contributing fac-
tors and pathological process driving these exacerbations and refine asthma management to prevent future 
exacerbation.

Our study has several limitations. First, serial examination of serum biomarkers was not performed to deline-
ate the relationship between changes in biomarkers and asthma control status. Second, all study subjects were 
under maintenance treatment. Multi-treatment might have influenced the levels of the biomarkers at the initia-
tion of the study. Third, this study was observational in nature, and replicating the results in another cohort 
is needed. Furthermore, whether the strategy to reduce serum TSLP levels, serum tryptase levels, or blood 
eosinophil counts in these patients with severe asthma can reduce future development of asthma exacerbation 
remains to be tested. Therefore, further validation must be performed. Nevertheless, the estimated power (1-β) 
was 0.99 for our sample size.

Conclusion
We determined that previous history of severe-to-serious exacerbation, blood eosinophil counts, and serum 
tryptase and TSLP levels were independently associated with the risk of future exacerbation in severe asthma 
despite receiving multiple therapy. TSLP potentially played the pathogenic role across different asthma pheno-
types. TSLP and tryptase levels may be implicated in steroid resistance/responsiveness in the asthma inflamma-
tory process. Low serum tryptase levels and high blood eosinophil counts predict the high risk of future asthma 
exacerbation. These findings should prompt physicians to understand the contributing factors and pathological 
process driving these exacerbations and refine asthma management to prevent future exacerbation.

Data availability
The data that support the findings of this study can be obtained from the corresponding author upon reason-
able request.
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