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Abstract

Informative and accurate survival prediction with individualized dynamic risk profiles over time is 

critical for personalized disease prevention and clinical management. The massive genetic data, 

such as SNPs from genome-wide association studies (GWAS), together with well-characterized 

time-to-event phenotypes provide unprecedented opportunities for developing effective survival 

prediction models. Recent advances in deep learning have made extraordinary achievements in 

establishing powerful prediction models in the biomedical field. However, the applications of deep 

learning approaches in survival prediction are limited, especially with utilizing the wealthy GWAS 

data. Motivated by developing powerful prediction models for the progression of an eye disease, 

age-related macular degeneration (AMD), we develop and implement a multilayer deep neural 

network (DNN) survival model to effectively extract features and make accurate and interpretable 

predictions. Various simulation studies are performed to compare the prediction performance of 

the DNN survival model with several other machine learning-based survival models. Finally, using 

the GWAS data from two large-scale randomized clinical trials in AMD with over 7800 

observations, we show that the DNN survival model not only outperforms several existing survival 

prediction models in terms of prediction accuracy (eg, c-index =0.76), but also successfully detects 

clinically meaningful risk subgroups by effectively learning the complex structures among genetic 

variants. Moreover, we obtain a subject-specific importance measure for each predictor from the 

DNN survival model, which provides valuable insights into the personalized early prevention and 

clinical management for this disease.
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1 | INTRODUCTION

Accurate “time-to-event” data based survival prediction is fundamental to effective clinical 

management and precision medicine of human diseases.1,2 It relies on a survival model to 

predict the dynamic risk profile of a future event over time (eg, disease onset, recurrence, 

progression, or death) based on the individual’s current status, such as clinical 

characteristics, genetic information, and medical images. Most importantly, such a 

prediction addresses the patient’s key concern regarding the disease progression pattern in 

the future and shapes the physician’s decision making for the treatment or clinical 

management strategy. Note that the survival prediction is fundamentally different from 

typical prediction models that predict a future event (whether occurs or not) by fixing the 

time of interest through a binary classification.3,4 Despite its essential role in precision 

medicine, the survival prediction remains a challenging task,5–7 largely due to the complex 

nature of diseases and the heterogeneity between patients. Therefore, there is an urgent need 

for developing accurate and personalized survival prediction models with improved capacity 

in learning the complex structures and interplays among predictors. Recent advances in 

high-throughput technologies have generated large volumes of molecular profiling data for 

each patient, which provides unprecedented opportunities in identifying potential biomarkers 

and further establishing accurate survival prediction models.8–10 In particular, several 

national-wide large-scale longitudinal studies, such as the trans-omics for precision 

medicine and All of Us, are underway using whole-genome sequencing and other omics 

technologies, with the ultimate goal of accelerating precision medicine. However, how to 

effectively utilize the wealthy amount of data is challenging. The first challenge comes from 

how to connect high-dimensional predictors with the outcome of interest. This problem is 

particularly difficult in survival prediction because the events of interest are sometimes 

censored due to either a short study period or loss of follow-up during the study. The second 

challenge is how to model the complex structure among numerous biomarkers, where the 

specific structure is largely unknown. The third challenge is that given the heterogeneity of 

patients, how to interpret the importance of each predictor for each patient and further how 

to identify patient subgroups to provide personalized prevention or treatment strategy.

The recent advances in multilayer deep neural network (DNN) models have made 

extraordinary achievements in providing new effective risk prediction models from complex 

and high-dimensional biomedical data, such as omics and biomedical imaging.11–14 

However, the application of deep learning in survival prediction is still limited. Faraggi and 

Simon15 proposed a single-layer neural network based on the Cox proportional hazards (PH) 

model. However, its performance did not exceed the regular Cox model in a prostate cancer 

survival dataset with 475 patents and only four clinical predictors. More recently, multiple 

efforts have been devoted to evaluating Cox-based neural network survival models using 

larger datasets with omic biomarkers. For example, Katzman et al16 demonstrated that a 

single hidden layer neural network survival model performed marginally better than the Cox 

model and random survival forest (RSF) model in a breast cancer survival dataset with 1980 

patients and nine predictors. In another study, Ching et al17 applied a single hidden layer 

neural network survival model to 10 TCGA cancer survival datasets (sample sizes range 

from 302 to 1077) with high-throughput gene expression biomarkers, from which the neural 
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network survival models resulted in comparable or better performance than the Cox model, 

the penalized Cox models such as Cox-LASSO and the RSF model. In another study18 that 

also used TCGA cancer survival datasets (sample sizes range from 194 to 1092 with up to 

17 000 gene expression biomarkers), the neural network survival models yielded comparable 

performance to the penalized Cox model and better performance than the RSF model. Hao et 

al19 developed a pathway-based neural network survival model and applied it to a TCGA 

cancer dataset (sample size 522 with 860 pathways and 5567 genes). However, all these 

studies have limited sample sizes, particular in the presence of tens of thousands of 

predictors, and thus may lead to severe model over-fitting problem. Moreover, the patient-

specific predictor importance was not considered in those studies. The scenario of tied 

events, which is commonly seen in practice, especially when the sample size is large, was 

not carefully considered in these studies.

In this article, we propose and evaluate a multi-hidden-layer Cox-based DNN survival model 

to predict the progression of a progressive eye disease, namely, age-related macular 

degeneration (AMD). The genome-wide association study (GWAS) of AMD is the first and 

most successful GWAS research, where the massive GWAS data provide unprecedented 

opportunities to study disease risk and progression. Although some attempts have been tried 

to predict AMD progression risks using genetic information such as SNPs, most statistical 

models focus on the structured regression framework, which typically only accounts for 

(generalized) linear effects of the SNPs and thus have considerable limitations. To the best 

of our knowledge, there has no existing work on survival prediction using deep learning to 

effectively extract features from the GWAS data. Therefore, we develop and apply the DNN 

survival model to build an accurate and interpretable prediction model for the AMD 

progression.

The rest of the article is organized as follows. Section 2 describes the deep learning survival 

methods and prediction evaluation procedures. We assess the performance of three machine/

deep learning survival prediction models (DNN, LASSO, RSF) through extensive simulation 

studies in Section 3 and apply them to the GWAS data from two large-scale clinical studies 

of AMD in Section 4. Discussion and conclusion are presented in Section 5.

2 | METHODS

First, we define notation for survival observations. For each subject i ∈ {1, …, n}, the 

observations are {Yi, δi ,Zi}, where Yi = min (Ti, Ci) is the minimum of survival time Ti and 

censoring time Ci; δi = I(Ti ≤ Ci) is the (right-)censoring indicator; Zi is the vector of 

covariates.

2.1 | Cox-based DNN survival model

The Cox PH model is the most popular regression model for censored survival data. It 

assumes that the hazard function of survival time T takes the form ℎ t ∣ Zi = ℎ0(t)exp Zi
Tθ , 

where h0(t) is the unspecified baseline hazard function at time t and θ is a vector of covariate 

effects. The term Zi
Tθ is called the linear predictor or prognostic index. On the other hand, 

the DNN model is well known for its capacity in learning complex covariate structures (ie, 
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nonlinearity, interactions).20 By the universal approximation theorem,21,22 for any 

continuous function g(Z; θ), it is guaranteed to exist a neural network that approximates this 

function. Moreover, this theorem holds even if we restrict the neural networks to have just 

one single hidden layer. Therefore, even very simple neural network architecture can be 

extremely powerful. The synergy of the powerful DNN and the popular Cox model leads us 

to build the Cox-based DNN survival model and apply it to AMD progression prediction.

2.1.1 | Assumption and loss function of DNN survival model—The DNN 

survival model we consider here can be written as ℎ t ∣ Zi = ℎ0(t)eg Zi; θ . The major 

difference between this DNN model and the regular Cox model is that DNN takes the 

prognostic index g(Zi; θ) as an unknown function with parameters θ, instead of assuming a 

simple linear relationship. In this way, the DNN model can approximate various nonlinear 

covariate structures by estimating g(Zi; θ). We will employ a feedforward DNN with 

multiple hidden layers to estimate the unspecified g(Z; θ), as shown in Sections 2.1.2 and 

2.1.3. In fact, one can regard the regular Cox model as a special case of DNN when 

g Zi; θ = Zi
Tθ.

In large-scale clinical and observational studies, it is quite common that more than one 

observations develop events at the same time. Such events are called tied events. To handle 

this scenario, we approximate the partial likelihood via Efron’s approach.23 Moreover, to 

deal with high-dimensional covariates, we introduce the L1 penalty to the DNN loss function 

−l(θ; Z) + λ‖θ‖1, where l(θ; Z) is the Efron approximation of log partial likelihood:

l(θ; Z) = 1
ND

∑
j ∈ D

∑
i ∈ Hj

g Zi; θ − ∑
l = 0

mj − 1
log ∑

i ∈ Rj
eg Zi; θ − l

mj
∑

i ∈ Hj
eg Ziθ , (1)

where D is the set of all events with size ND and {tj} is the set of unique event times; Hj is 

the set of subjects {i} such that Yi = tj and δi = 1 and mj is the size of Hj; and Rj is the risk 

set satisfying Yi ≥ tj.

2.1.2 | DNN architecture—First, we introduce the general form of an L-hidden-layer 

feedforward DNN, which is composed of one input layer, L hidden layers and one output 

layer (with one node in our case). For each subject, DNN inputs the vector of covariates Z 
into its input layer and output a scalar prognostic index g(Z; θ). For each hidden layer l ∈ 
{1, …, L} with nl number of nodes, it takes the input nl−1-dimensional a(l−1) from the (l − 

1)th layer and outputs nl-dimensional a(l) through a nl-dimensional activation function fl. 

Mathematically, the lth hidden layer model can be written as a(l) = f(l)(W0
(l) + W(l)a(l−1)), 

where W0
(l) is the bias vector with length nl; W(l) is an nl × nl−1 weight matrix. f(l)(⋅) is a 

vector of activation functions f(l)(⋅). Often a common f(l)(⋅) function is assumed for all the 

nodes in the lth hidden layer and it is usually a nonlinear function, such as the sigmoid22 

f(x) = 1
1 + e−x , the tangent f(x) = ex − e−x

ex + e−x , the rectified linear unit (ReLU)24 f(x) = max(0, 

x), and the scaled exponential linear units (SeLU)25 f(x) = λ × ReLU(x) + λI(x < 0)α(ex − 

1), where λ and α are constants. The final or output layer also has weights and an output 

function f out, which is an identity function.
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Take a simple one-hidden layer neural network, for example. We have p-dimensional input 

covariates zi from the ith subject, n1 number of hidden nodes with k = 1, …, n1 and one 

single output node. For the kth hidden node, we have ak
(1) = fk

(1) wk0
(1) + ∑j = 1

p wkj
(1)zij . 

Similarly, the output node is oi = fout w0
(2) + ∑k = 1

n1 wk
(2)ak

(1) = w0
(2) + ∑k = 1

n1 wk
(2)ak

(1) by 

assuming fout is an identity function. Typically we have oi = g(zi; θ). The full parameter set 

θ is composed of wk0
(1), k = 1, …, n1 , wkj

(1), k = 1, …, n1, j = 1, …, p , w0
(2), and 

wk
(2), k = 1, …, n1 .

2.1.3 | DNN optimization and survival prediction—Tosolve for θ , we use the mini-

batch stochastic gradient descent algorithm26 to minimize the loss function in Equation (1). 

Comparing with the standard stochastic gradient descent that uses all samples for each 

iteration, the mini-batch algorithm is much faster. Specifically, we randomly divide all 

observations into mini-batches with size NB and update θ  by adding the gradient contributed 

by each mini-batch. In particular, the loss function for the rth batch is

−lr(θ; Z) + λ θ

1

= − 1
ND

r ∑
j ∈ Dr

∑
i ∈ Hjr

g Zi; θ − ∑
l = 0

mjr − 1
log ∑

i ∈ Rjr
eg Zi; θ − l

mjr
∑

i ∈ Hjr
eg Zi; θ + λ

θ

1

,

where ND
r , Dr, Hj

r, mjr, and Rj
r are the corresponding terms for the rth batch similar to those 

defined in Equation (1). Then we update θ by adding the gradient contributed by the rth 

batch through:

Δr = − ∇θlr(θ; Z) + λ∇θ θ 1

θ θ − γΔr,

where γ is the learning rate (also called step size). This process will be repeated for NE 

times (also called epochs) before convergence. We employ the Glorot uniform initializer27 to 

randomly select initial values. Once we get g Zi; θ , we can obtain the predicted survival 

probability for subject i at time t through S t ∣ Zi = exp −H0(t)eg Zi, θ .

2.1.4 | DNN hyperparameters—To perform the survival prediction based on the DNN 

survival model, we need to select the DNN hyperparameters. The main hyperparameters 

include the number of hidden layers, number of nodes per hidden layer, choice of activation 

function, the L1 penalty parameter, batch size, epoch size, and learning rate. Based on our 

limited experience, we found that selecting hyperparameters in a sequential manner helps to 
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understand how each parameter influences the model prediction performance. We select 

hyperparameters in the following ordering: number of hidden layers, number of nodes per 

layer, activation function, learning rate, L1 penalty, epoch size, and batch size. In this work, 

we perform cross-validations in the training data and select the combination of 

hyperparameters that lead to the most optimal prediction performance on the validation data. 

Specific hyperparameter choices are presented in Section 3 for simulation studies and in 

Section 4 for real data analysis.

2.1.5 | DNN interpretation—It is important to understand and interpret the fitted neural 

network prediction model. One way is to export feature (ie, predictor) importance measures 

that decide the top important features in a prediction model. The local interpretable model-

agnostic explanation (LIME) method28 provides prediction importance of each predictor for 

each subject in the model by perturbing the feature values and evaluating how the prediction 

results change. To perform LIME, we first perturb the value of one feature of one individual 

sample by adding some random noise (to get a new data point), and then obtain a new 

prognostic index g from the DNN model. We repeat this perturbation (eg, for 1000 times). 

Next, we fit a simpler model (ie, a linear regression) between the 1000 pairs of perturbed 

feature values and their corresponding estimated prognostic index g Z; θ  values, and obtain 

the regression coefficient. We do this for all features across all samples. Finally, the most 

important features will be identified by the rank of absolute coefficient values. Therefore, 

the magnitude of the individualized feature importance reflects the estimated effect size on 

the prognostic index by increasing one unit value in this feature for each individual sample. 

LIME has been widely applied to neural network models with continuous or categorical 

outcomes, but not with censored survival outcomes yet. In this article, we apply the LIME 

method to the neural network survival model and produce subject-specific predictor 

importance measures with meaningful interpretations.

2.2 | Evaluation metrics for survival prediction performance

We calculate the Harrell’s concordance index (c-index)29 to measure the proportion of 

concordance pairs (ie, the predicted and observed outcomes are concordant) among all 

comparable pairs (ie, the true progression statuses can be ordered for two observations 

within one pair). Pairs are not comparable if both are censored, or one is censored at time c1 

and the other event occurs at time t2 with t2 > c1. The c-index is between 0 and 1 with a 

larger value indicating a better prediction model, which can be estimated by 

C =
∑i = 1

n ∑j = 1
n δiI Y i < Y j I g Zi; θ > g Zj; θ + 0.5 * I g Zi, θ = g Zj, θ

∑i = 1
n ∑j = 1

n δiI Y i < Y j + I g Zi; θ = g Zj; θ
.

We also obtain the time-dependent Brier score.30,31 At a specific time point t, the Brier score 

measures the mean squared error between the observed progression status at time t (ie, Yi(t) 
= I(Yi ≥ t)) and the predicted survival probability (ie, S t ∣ Zi ). A lower Brier score indicates 

a better prediction model. A Brier score of 33% corresponds to predicting the risk by a 

random number drawn from Uniform [0, 1] and 25% corresponds to predicting 50 % risk for 

every observation. The estimated Brier score is expressed as 

BS(t, S) = 1
M ∑i ∈ DM W i(t) Y i(t) − S t ∣ Zi

2, where DM is the test dataset with size M, 
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S t ∣ Zi  is estimated using the training data, and W i(t) =
1 − Yi(t) δi
G Yi −

+
Yi(t)
G(t)

 is the inverse 

probability of censoring weights with G(t) = P (C > t).31

We also obtain the time-dependent ROC curve and its associated area under the curve 

(AUC).32 The AUC measures the discrimination capability of g(Z; θ ). It ranges between 0 

and 1, with higher AUC indicating better discrimination ability. Specifically, we first derive 

the time-dependent sensitivity and specificity

sensitivity(c, t) = P g(Z; θ ) > c ∣ T ≤ t ,

specificity(c, t) = P g(Z; θ ) ≤ c ∣ T > t ,

where c is some arbitrary cut-off. For a given t, sensitivity(c, t), and specificity(c, t) 
determine the ROC curve profile and its associated AUC at time t.

2.3 | K-fold cross-validations

Overfitting is a common issue for all machine learning models. One way to alleviate the 

issue is to perform K-fold cross-validation. Specifically, the original data DN are split into K 
subsets Dk, k = 1, …, K, accounting for the censoring proportions. For the kth cross-

validation, models are trained in the samples DN \ Dk (original data without the kth subset) 

and then validated in the test samples Dk. Finally, the K-fold cross-validation estimates (ie, 

c-index and Brier score) are calculated by averaging over the test data results, as shown 

below

CvBS(t, S) = 1
K ∑

k = 1

K 1
Mk ∑

i ∈ Dk
W i(t) Yi(t) − Sk t ∣ Zi

2,

CvC

= 1
K ∑

k = 1

K 1
MK

∑i ∈ Dk ∑j ∈ DkδiI Y i < Y j I gk Zi; θk > gk Zj; θk + 0.5I gk Zi; θk = gk Zj; θk
∑i ∈ Dk ∑j ∈ DkδiI Y i < Y j + I gk Zi; θk = gk Zj; θk

,

where Mk is the sample size of the kth subset.

2.4 | Implementation

Our DNN survival model is built with Keras33 and Tensorflow34 to ensure computational 

stability and efficiency. Keras is a deep learning framework that provides a convenient way 

to define and train deep learning models. It provides high-level building blocks for deep 

learning models.35 For example, one can define a neural network model with a few lines of 

codes in Keras. We use Tensorflow for low-level operations such as differentiation, which 

serves as the backend engine of Keras. Via Keras and Tensorflow, our DNN survival model 

is compatible with both GPUs and CPUs.
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3 | SIMULATION STUDIES

We use simulations to evaluate the prediction performance of DNN and compare it with 

Cox-LASSO (abbreviated as LASSO)36 and RSF.37,38 Two main simulation settings are 

considered. In the first setting, data are generated with sparse signals (ie, only a few 

predictors with nonzero effects on the survival outcome). In the second setting, all predictors 

have nonzero but weak signals, which is common in settings with genetics or genomics 

predictors. Within each simulation setting, we generate multiple scenarios with different 

structures in predictors’ effects. For each scenario, we train the models in a training dataset, 

and then test them in an independent test dataset and summarize the results across 200 

replications. The sample sizes for both training and test datasets are 1000.

All three models involve the selection of tuning parameters. For LASSO, we use fivefold 

cross-validation to select the tuning parameter in the L1 penalty using the training data. After 

the tuning parameter is determined, we then train the LASSO model using the entire training 

data and finally validate the model in the test data. For RSF, we train the model by utilizing 

the default setting of 1000 trees and p number of randomly selected predictors at each split. 

In the case of DNN, it is widely known for its exhaustive process in selecting optimal tuning 

parameters since there are many tuning parameters to consider. The tuning process is even 

more time consuming given that we have multiple simulation scenarios. Therefore, for all 

simulation scenarios, we use the sequential tuning strategy as described in Section 2.1.4 and 

choose one common set of hyperparameters as follows: two hidden layers, 30 nodes per 

hidden layer, activation function SeLU, L1 penalty =0.1, batch size NB =50, epoch size NE 

=1000, and learning rate γ = 0.01 (for sparse signals) or γ = 0.0001 (for weak signals).

3.1 | Simulation I: Survival data with sparse signals

We consider five scenarios of predictor effects following Mi et al,39 which includes linear 

effects only (scenario 1) and linear effects together with nonlinear effects (scenario 2) or 

with interactions (scenario 3) or with both nonlinear and interaction effects (scenario 4) or 

with nonlinear, interaction and threshold effects (scenario 5). The total number of predictors 

is set at p = 10, 50, 100, 500, respectively. The true models for these five scenarios are 

illustrated as follows:

Scenario 1 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

5
Zij ,

Scenario 2 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

5
Zij + Zi6

2 + Zi7
2 ,

Scenario 3 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

5
Zij + Zi6 + Zi7 + 5Zi6Zi7 ,
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Scenario 4 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

5
Zij + Zi6 + Zi7 + 5Zi6Zi7 + Zi8

2 + Zi9
2 ,

Scenario 5 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

5
Zij + Zi6 + Zi7 + 5Zi6Zi7 + I Zi8 < − 0.5 ∪ Zi9 < − 0.5

− I Zi8 ≥ − 0.5 ∩ Zi9 ≥ − 0.5 ,

where h0(t) = kλktk−1 is the baseline Weibull hazard function with λ = 0.1, k = 2. For Zi = 

(Zi1, …, Zip), we first generate Zi from MVN(0, Σ) with Σ = {σjj′ = e−|j−j′|,1 ≤ j,j′ ≤ p} and 

then transform Zi4 into a binary predictor through I(Zi4 >0) and Zi5 into a multinomial 

predictor through I(Zi5 > −0.5)+I(Zi5 >0.5). The right censoring rates are set at 50%.

In Table 1, we compare the prediction accuracy of the DNN, RSF, LASSO under the five 

simulation scenarios in terms of c-index. We also present the c-index from fitting the true 

model as the bench mark. LASSO performs the best in scenario 1 where all predictor effects 

are linear, but its performance declines in all the other four scenarios. RSF generally has 

higher c-index than LASSO in nonlinear scenarios. For our proposed method, its 

performance is worse than LASSO as expected in scenario 1 but is better than RSF, while it 

outperforms both LASSO and RSF in all nonlinear scenarios. Moreover, it can be seen that 

when p is small, DNN produces c-index values that are very close to the truth for all five 

scenarios. In this sparse simulation setting, all three methods’ performance (in terms of c-

index) declines as p increases. LASSO is most robust to the increase of p among all three 

methods. The performance of DNN seems to be mostly affected when p increases. However, 

it still achieves the highest c-index for the complex nonlinear scenarios (3, 4, and 5) 

compared with the other two methods across all p’s.

3.2 | Simulation II: Survival data with weak signals

In genetics and genomics data, we often observe that many predictors have (nonzero) weak 

effects due to correlations among SNPs or genes. Moreover, there are various types of omics 

predictors, such as gene expressions (ie, continuous), mutations (ie, binary), and SNPs (ie, 

multinomial). Therefore, we generate data that include various types of predictors with weak 

effects. The total number of predictors is set as p = 20, 50, 100, 500 and we consider the 

following five scenarios:

Scenario 1 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

p
βjZij ,

Scenario 2 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

p
βjZij + Zi1

2 + Zi2
2 ,
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Scenario 3 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

p
βjZij + Zi3Zi4 ,

Scenario 4 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

p
βjZij + Zi1

2 + Zi2
2 + Zi3Zi4 ,

Scenario 5 : ℎ t ∣ Zi = ℎ0(t) exp  ∑
j = 1

p
βjZij + I Zi1 < − 0.5 ∪ Zi2 < − 0.5 − I Zi1 ≥ − 0.5 ∩ Zi2 ≥ − 0.5

+ Zi3Zi4 ,

where h0(t) is the baseline Weibull hazard function with λ = 0.01,k = 10. Similarly to the 

first simulation setting, we first generate Zi from a multivariate normal distribution MVN(0, 

Σ) with Σ = {σjj′ = e−|j−j′|,1 ≤ j,j′ ≤ p}. Then the first 20% Zij remain continuous, the second 

20% Zij are transformed into binary predictors through I(Zij >0) and the rest 60% Zij are 

transformed into multinomial predictors through I(Zij >−0.5)+I(Zij >0.5). For predictor 

effects, we set βj = 0.2 for continuous and binary predictors. For multinomial predictors, we 

mimic the linkage disequilibrium effect in SNP data by generating βj from MVN(0.2, 0.01 × 

Σ) with the same Σ. The right censoring rates are 50%.

Table 2 summarizes the prediction performance results (in terms of c-index) under the five 

simulation scenarios. As the size of p increases, our proposal method improves in all 

scenarios. In particular, when p is large (eg, p = 500), our proposed method outperforms the 

other two models significantly in all simulation settings. The c-index of LASSO also 

increases as p gets larger, but remains unchanged or even slightly decreases when p 
increases from 100 to 500. RSF also improves with larger p but its performance is generally 

lower than the other two methods.

3.3 | Simulation III: Sample size effect on prediction performance

We also evaluate the effect of sample sizes on the prediction performance of the DNN 

survival model in the presence of large-dimensional predictors, given that is usually when 

DNN models show advantages. We choose the scenarios 4 and 5 with p = 100 or 500 under 

the sparse signal setting from Section 3.1. Table 3 presents the c-index values for each 

scenario. Overall, for both scenarios, the c-index increases as the sample size increases, and 

the increment is more dramatic between smaller sample sizes such as from n = 200 to 500 or 

n = 500 to 1000. This demonstrates that the DNN survival model requires a moderately large 

sample size (ie, n = 1000 at least) to achieve reasonable prediction performance when the 

number of predictors is relatively large (p = 100 or more).
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4 | APPLICATION TO AREDS DATA

4.1 | Study population

We apply the three machine learning models for predicting AMD progression using genetic 

and clinical variables. Data are from the age-related eye disease studies (AREDS), which is 

composed of the first study AREDS40 and the subsequent study AREDS241 (with 

independent participants), designed to assess risk factors and effects of various supplements 

on AMD development and progression. Both studies collected DNA samples of consenting 

participants.42 The two studies are combined for the following model development and 

analysis.

4.2 | Survival outcome and baseline predictors

To measure the disease progression, a severity score, scaled from 1 to 12 (with larger value 

indicating more severe AMD), is determined for each eye at every examination during study 

follow-up. In this article, our outcome of interest is time-to-late-AMD, where “late-AMD” is 

defined as the stage with severity score ≥9. There are 30% of subjects progressed to late-

AMD before the study ends. We develop prediction models on the individual eye level. 

There are a total of 7803 eyes free of late-AMD at baseline. We include a list of potential 

predictors, including age at baseline, smoking status (never, former, or current smoker), 

education status (≤ or > high school), and top common SNPs (MAF >5%) that have been 

reported to be associated with AMD progression (identified from the GWAS study of AMD 

progression in Yan et al43 with various p-value cut-offs). Table 4 summarizes the baseline 

characteristics of the study samples. We also preprocess the continuous predictors, for 

example, dividing age by 100 to scale it within (0, 1) and dividing SNP data (originally 

coded between [0, 2]) by 2 to make them within [0, 1], as we find such a scaling procedure 

enhances the prediction performance in survival machine learning models.

4.3 | Model development and evaluation

We perform 10-fold cross-validation in the combined AREDS and AREDS2 data. The 

splitting is stratified based on the censoring status and study cohort. For LASSO and RSF, 

we use the same tuning procedure as in the simulations. For DNN, we first perform a grid 

search for tuning parameters and select the set of hyperparameters that gives the best average 

prediction performance (ie, c-index) across the 10 test validations. The final choice of DNN 

hyperparameters is given as follows: two hidden layers, 300 nodes per hidden layer, 

activation function SeLU, L1 penalty =0.01, batch size NB = 50, epoch size NE = 1000, and 

learning rate γ = 0.00001. We also include Ridge (a Cox PH model with L2 penalty) and a 

benchmark genetic risk score (GRS) model, which is a regular Cox PH model using age, 

smoking status, education status, and an AMD GRS from Ding et al44 for comparisons.

We first examine the prediction performance, measured by c-index (×100), employing 

various numbers of top genetic variants across different models. Specifically, we choose four 

different p-value cut-offs from the first AMD progression GWAS article43 (ie, p < 10−7, 

10−6, 10−5, 10−4) to obtain different numbers of top variants, as shown in Table 5. The 

prediction performance becomes relatively stable for all methods when the p-value cut-off 

reaches 10−5, which corresponds to 663 SNPs (and three nongenetic predictors). We also 
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include in the last column of Table 5 the DNN model computing time for fitting the entire 

data once. It can be seen that the computing time increases only moderately (slower than the 

linear trend) as the number of predictors increases. On average, it takes about 1 hour in the 

presence of 8000 observations and 1000 predictors.

Then, we choose the result from p = 666 as our main result and report in Table 6 the c-index, 

10-year AUC, and 10-year Brier score (a predictive error measurement) from all four 

models. DNN achieves higher c-index (76.1) and AUC (81.8) as well as lower Brier score 

(0.136) than all the other models including LASSO, Ridge, RSF, and the benchmark GRS 

model. The LASSO and Ridge produce very similar performance results in terms of all 

metrics.

Figure 1 presents the time-dependent Brier scores for the test data (all 10 CV test datasets 

combined) under each prediction model. The Brier score profile from our DNN survival 

model is consistently lower than all the other models across most time points, demonstrating 

its better performance than the other models. Similarly, Figure 2 presents the time-dependent 

AUC values for the test data (all 10 CV test datasets combined) under each model, as an 

additional matric to evaluate the model prediction performance. Similar to the time-

dependent Brier scores, the AUC profile from our DNN survival model is consistently 

higher than all the other models across all time points.

4.4 | DNN interpretation and subgroup identification

To interpret the DNN-based prediction, we obtain the prediction importance measure for the 

test data samples using the LIME method under our DNN survival model. We use ninefolds 

data to train a DNN model and then interpret the model in the rest onefold test data. One big 

advantage of the LIME method is that it provides a subject-specific interpretation of the 

predictor importance. Figure 3 illustrates the top clinical and genetic predictors (named by 

their corresponding gene names). Among the top predictors, (older) age and smoking are 

harmful (colored in red) to AMD progression, whereas genetic variants (carrying minor 

alleles) can be either harmful (red) or protective (green). For example, the minor allele of 

locus rs10922098 in the CFH gene region shows a protective effect for AMD progression; 

while the minor allele of locus rs12987936 in the CROCC2 gene region shows a harmful 

effect for AMD progression. Moreover, we notice that one predictor could be important for 

some subjects but may not be crucial for others (visualized by different vertical color bands 

within each predictor), which suggests there are possible heterogeneous subgroups in this 

population.

Motivated by the heterogeneity across subjects shown in Figure 3, we further identify two 

distinct subgroups of AMD patients by performing the Gaussian mixture model on the 

predicted prognostic risk factors g (output from the DNN model), as illustrated in the 

histogram of Figure 4. The corresponding Kaplan-Meier plot on progression-free probability 

indicates significantly different progression profiles between the two subgroups (namely, the 

low-risk and high-risk subgroups), with a very significant log-rank test result (p = 

4.1×10−166). Furthermore, we find significant differences between the two subgroups in 

terms of age, smoking status, education level, and most top genetic variants in Figure 3. The 

comparison results are summarized in Table 7. On average, the high-risk individuals are 
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older, with more smokers and lower education level compared with the low-risk individuals. 

The high-risk individuals also carry more AMD risk alleles compared with the low-risk 

individuals (eg, GRS is 1.07 vs 0.94). Moreover, as shown in Figure 5, the separate LIME 

plots for the two subgroups also demonstrate that the individual predictors’ importance 

measures are different between the two subgroups. In particular, the harmful predictors 

generally have stronger impacts (darker in red) on the high-risk subgroup than in the low-

risk subgroup; whereas the protective predictors show stronger impacts (darker in green) on 

the low-risk subgroup than the high-risk subgroup. These results provide potentially useful 

insights for the early prevention and tailored clinical management for the AMD patients.

5 | DISCUSSION AND CONCLUSION

In this work, we develop a multilayer DNN survival model and successfully apply it on a 

real study with both large n and large p to examine and evaluate its effectiveness in making 

accurate dynamic survival predictions and detecting clinically meaningful subgroups. To 

open up the “black-box” of DNN, a novel LIME method is implemented to calculate the 

individualized importance measure of each predictor. Moreover, our work demonstrates the 

power of DNN in the presence of various types of complex nonlinear structures in the 

predictors through extensive simulation studies. As we did not perform hyperparameter 

tuning separately for each scenario, further enhanced performance of DNN would be 

expected if separate tuning was performed. Some existing tools that are compatible with 

Keras and Tensorflow to facilitate such a hyperparameter searching process may be 

considered, for example, the Auto-Keras.45 Our work presents the first deep-learning-based 

survival prediction model for AMD progression and the model framework can be readily 

applied to other progressive disorders where large GWAS or omics data are collected.

We evaluate survival models based on the pooled dataset of AREDS and AREDS2, whereas 

Ding et al44 used AREDS as the training data and AREDS2 as the test data. However, as 

noted by Ding et al,44 AREDS and AREDS2 populations are different in multiple aspects 

such as disease severity and age (at enrollment). As a result, the top significant SNPs 

identified by GWAS are largely nonoverlapping between the two studies.43 As expected, in 

Ding et al,44 the GRS-based Cox model trained in AREDS achieves a c-index of 0.75 in 

AREDS but drops to 0.63 in AREDS2. To establish a prediction model that is generalizable 

to a broader AMD population, we pooled them together. Unsurprisingly, the benchmark 

GRS model performance in the pooled data improves to 0.73 in terms of a 10-fold CV-based 

c-index, as shown in Table 6.

One potential limitation of our DNN survival model is that it involves tuning of multiple 

hyperparameters, which is usually computationally expensive. According to our real data 

analysis and simulations, we could heuristically start from a two-hidden-layer DNN and 

perform a grid search for the other tuning parameters such as the optimal node size. In 

general, the DNN model size should be moderate to avoid overfitting. Moreover, the 

utilization of GPUs could significantly boost the computing speed of our DNN survival 

model. To further improve the DNN survival model, there are multiple future directions. For 

example, one may first obtain low-dimensional signals by performing unsupervised feature 

extraction such as autoencoder46 and then use the extracted signals as predictors. In this way, 
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the noises in the original data can be reduced. Another possible extension is to build a DNN 

survival model based on the Bayesian approach,47 which could perform variable selection to 

identify relevant predictors under the high-dimensional nonlinear setting. Finally, we predict 

disease progression on the eye level by assuming that the two eyes are independent of each 

other in one individual. Ideally one should take the correlation into account when 

constructing the prediction model. One possible extension includes using a copula model to 

account for the dependence between the two eyes from the same subject48,49 and predicting 

the joint progression profiles of the two eyes through a DNN. We are investigating some of 

these extensions.
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FIGURE 1. 
The time-dependent Brier score (predictive error) in the test data from five survival 

prediction models (GRS, LASSO, Ridge, RSF, DNN). DNN, deep neural network; GRS, 

genetic risk score; RSF, random survival forest
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FIGURE 2. 
The time-dependent AUC value in the test data from five survival models (GRS, LASSO, 

Ridge, RSF, DNN). AUC, area under the curve; DNN, deep neural network; GRS, genetic 

risk score; RSF, random survival forest
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FIGURE 3. 
The representation of individualized importance measures for the top predictors in one split 

of the test dataset from the LIME method. Each row represents one predictor and each 

vertical column represents one sample. The unit of age is 10-year. LIME, local interpretable 

model-agnostic explanation
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FIGURE 4. 
The Kaplan-Meier estimated progression-free profiles for the two identified risk subgroups 

in the AREDS and AREDS2 test data. The gray curve represents the low-risk subgroup and 

the black curve represents the high-risk subgroup. The histogram shows the predicted 

diagnostic index values of all cross-validation results, with two subgroups identified by the 

Gaussian mixture model. AREDS, age-related eye disease studies
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FIGURE 5. 
The representation of individualized importance measures for the top predictors in the low-

risk, A and high-risk, B, subgroups, respectively. Each row represents one predictor and each 

vertical column represents one sample. The unit of age is 10-year
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TABLE 1

The c-index values, mean and standard deviation (SD) (range from 0 to 100) from 200 replications for the 

DNN, RSF, LASSO, and True models with sparse signals under five scenarios: linear effects (scenario 1) and 

linear effects together with nonlinear effects (scenario 2) or with interactions (scenario 3) or with nonlinear 

and interaction effects (scenario 4) or with interaction and indicator effects (scenario 5)

p DNN RSF LASSO True

Scenario 1 10 88.0 (0.7) 82.9 (1.0) 88.2 (0.6) 87.4 (0.6)

50 85.7 (1.0) 82.8 (1.0) 88.2 (0.6)

100 83.2 (1.0) 82.4 (1.2) 88.2 (0.6)

500 82.2 (1.0) 81.1 (1.1) 88.0 (0.7)

Scenario 2 10 88.7 (0.9) 80.9 (1.2) 80.0 (1.0) 89.8 (0.5)

50 84.2 (1.6) 80.2 (1.1) 80.0 (1.0)

100 80.6 (2.0) 79.5 (1.1) 79.9 (0.9)

500 74.3 (3.1) 77.9 (1.0) 79.9 (1.0)

Scenario 3 10 93.1 (0.6) 79.7 (1.8) 74.0 (1.4) 94.0 (0.4)

50 91.4 (0.7) 75.6 (1.5) 73.9 (1.5)

100 89.8 (0.8) 74.4 (1.6) 73.9 (1.4)

500 81.6 (1.8) 72.0 (1.5) 73.7 (1.4)

Scenario 4 10 92.1 (0.8) 80.1 (1.8) 71.4 (1.3) 94.4 (0.4)

50 88.9 (1.5) 75.6 (1.5) 71.3 (1.4)

100 84.5 (2.0) 74.2 (1.6) 71.4 (1.3)

500 76.3 (1.8) 71.4 (1.4) 71.1 (1.4)

Scenario 5 10 92.4 (0.6) 79.4 (1.7) 73.3 (1.3) 94.0 (0.4)

50 90.4 (0.8) 75.2 (1.6) 73.1 (1.4)

100 88.6 (0.8) 74.0 (1.4) 73.0 (1.4)

500 80.4 (2.0) 71.4 (1.5) 72.7 (1.3)

Note: The number of predictors is set at p = 10, 50, 100, 500.

Abbreviations: DNN, deep neural network; RSF, random survival forest.
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TABLE 2

The c-index values, mean and SD (range from 0 to 100) from 200 replications for the DNN, RSF, and LASSO 

models with weak signals under five scenarios: linear effects (scenario 1) and linear effects together with 

nonlinear effects (scenario 2) or with interactions (scenario 3) or with nonlinear and interaction effects 

(scenario 4) or with interaction and indicator effects (scenario 5)

p DNN RSF LASSO

Scenario 1 20 66.8 (1.3) 55.5 (5.8) 67.0 (1.4)

50 73.7 (1.3) 58.2 (7.6) 74.0 (1.2)

100 78.2 (1.2) 60.8 (7.6) 78.6 (1.1)

500 82.1 (1.4) 62.9 (4.8) 75.9 (1.5)

Scenario 2 20 64.6 (1.6) 53.7 (4.9) 63.2 (1.4)

50 71.3 (1.3) 57.1 (7.3) 71.8 (1.2)

100 76.6 (1.2) 60.1 (7.3) 76.9 (1.1)

500 81.5 (1.3) 62.5 (5.0) 75.9 (1.5)

Scenario 3 20 67.4 (1.3) 55.2 (5.9) 67.5 (1.3)

50 73.2 (1.2) 56.6 (7.7) 73.6 (1.2)

100 77.7 (1.2) 60.0 (7.8) 78.2 (1.1)

500 81.8 (1.4) 62.7 (5.0) 75.6 (1.5)

Scenario 4 20 65.5 (1.5) 53.5 (5.1) 63.9 (1.4)

50 71.0 (1.3) 56.3 (7.5) 71.4 (1.2)

100 76.0 (1.2) 59.3 (8.0) 76.5 (1.2)

500 81.3 (1.4) 62.4 (5.1) 75.6 (1.5)

Scenario 5 20 64.8 (1.3) 54.3 (4.8) 64.8 (1.4)

50 72.0 (1.2) 56.5 (7.6) 72.4 (1.2)

100 77.1 (1.2) 59.6 (7.9) 77.6 (1.2)

500 81.8 (1.4) 62.7 (5.1) 75.1 (1.5)

Note: The number of predictors is set at p = 20, 50, 100, 500.

Abbreviations: DNN, deep neural network; RSF, random survival forest.
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TABLE 3

Effect of sample sizes n on DNN’s performance in terms of c-index (mean and SD from 200 replications) in 

the presence of high-dimensional predictors

n

p 200 500 1000 1500 2000

Scenario 4 100 65.4 (4.3) 78.9 (2.0) 84.5 (2.0) 87.8 (1.7) 89.0 (1.6)

500 57.2 (3.2) 62.3 (3.0) 76.3 (1.8) 79.9 (1.7) 82.4 (1.1)

Scenario 5 100 66.7 (4.7) 82.8 (1.8) 88.6 (0.8) 89.6 (0.6) 90.5 (0.5)

500 58.2 (3.3) 63.2 (3.4) 80.4 (2.0) 86.0 (2.4) 87.8 (1.0)

Note: Both scenarios (4 and 5) are from the sparse signal setting. The number of predictors is set at p = 100 or 500.

Abbreviation: DNN, deep neural network.
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TABLE 4

Baseline characteristics of study samples in the AREDS and AREDS2 data

N = 7803 n Mean (SD) or %

Age 69.5 (6.2)

Gender

Female 4466 57%

Male 3337 43%

Education

≤ high 2369 30%

> high 5434 70%

Smoke

Never 3623 46%

Former 3752 48%

Current 428 6%

Baseline severity score 4.2 (2.5)

Stat Med. Author manuscript; available in PMC 2021 April 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 26

TABLE 5

The 10-fold cross-validation c-index (×100) from five survival models (GRS, LASSO, Ridge, RSF, DNN) 

using different p-value cut-offs in the AREDS and AREDS2 data

Number of predictors GRS
a

LASSO Ridge RSF DNN Time (minutes)

p <10−7 92 73.2 (1.6) 72.4 (1.7) 72.3 (1.7) 68.5 (1.4) 72.2 (1.8) 49

p <10−6 165 73.2 (1.6) 72.6 (1.5) 72.6 (1.5) 68.2 (1.3) 72.6 (1.6) 47

p <10−5 666 73.2 (1.6) 74.4 (1.3) 74.3 (1.3) 70.1 (1.8) 76.1 (1.2) 62

p <10−4 1500 73.2 (1.6) 75.2 (1.1) 74.8 (1.0) 71.1 (1.7) 76.5 (1.4) 77

Note: The last column shows the DNN’s computing time for running on the entire dataset once.

Abbreviations: AREDS, age-related eye disease studies; DNN, deep neural network; GRS, genetic risk score; RSF, random survival forest.

a
GRS is invariant to the choice of p-value cut-offs as it does not use individual SNPs but rather a composite score.
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TABLE 6

The 10-fold cross-validation c-index (×100), 10-year AUC (×100), and 10-year Brier score from five survival 

models (GRS, LASSO, Ridge, RSF, DNN) in the AREDS and AREDS2 data

GRS LASSO Ridge RSF DNN

c-index (SD) 73.2 (1.6) 74.4 (1.3) 74.3 (1.9) 70.1 (1.8) 76.1 (1.2)

10-year-AUC (SD) 78.2 (2.1) 79.5 (1.6) 78.7 (1.5) 74.3 (2.1) 81.8 (2.1)

10-year-BrS (SD) 0.151 (0.005) 0.146 (0.006) 0.147 (0.005) 0.170 (0.008) 0.136 (0.011)

Abbreviations: AREDS, age-related eye disease studies; AUC, area under the curve; DNN, deep neural network; GRS, genetic risk score; RSF, 
random survival forest.
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TABLE 7

Comparison between the low-risk (n = 2516) and high-risk (n = 5287) subgroups in AREDS and AREDS2 

data

Low-risk subgroup Mean (SD) or n (%) or 
risk allele frequency

High-risk subgroup Mean (SD) or n (%) or 
risk allele frequency p-values

Top predictors

Age 66.1 (5.4) 71.1 (5.9) <2.2 × 10−16

Smoke <2.2 × 10−16

Never 1343 (53%) 2280 (43%)

Former 1088 (43%) 2664 (50%)

Current 85 (3%) 343 (6%)

Education

≤ high school 625 (25%) 1744 (33%) 3.2 × 10−13

> high school 1891 (75%) 3543 (67%)

rs10922098 (CFH) 0.34 0.61 <2.2 × 10−16

rs11200638 (HTRA1) 0.17 0.39 <2.2 × 10−16

rs12987936 (CROCC2) 0.18 0.18 0.35

rs147518956 (ADAMTS12) 0.27 0.32 1.8 × 10−13

rs200880300 (SV2C) 0.04 0.06 1.0 × 10−3

rs2186849 (LOC105371956) 0.47 0.50 1.0 × 10−3

rs3750847 (ARMS2) 0.17 0.40 <2.2 × 10−16

rs4044578 (CFHR4) 0.33 0.62 <2.2 × 10−16

Other characteristics

GRS 0.94 (0.13) 1.07 (0.13) <2.2 × 10−16

Gender

Female 1439 (57) 3027 (57) 0.98

Male 1077 (43) 2260 (43)

Baseline severity 3.0 (2.3) 4.7 (2.4) <2.2 × 10−16

Abbreviations: AREDS, age-related eye disease studies; GRS, genetic risk score.
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