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Abstract

Tick-borne diseases are increasing in North America. Knowledge of which tick species and 

associated human pathogens are present locally can inform the public and medical community 

about the acarological risk for tick bites and tick-borne infections. Citizen science (also called 

community-based monitoring, volunteer monitoring, or participatory science) is emerging as a 

potential approach to complement traditional tick record data gathering where all aspects of the 

work is done by researchers or public health professionals. One key question is how citizen 

science can best be used to generate high-quality data to fill knowledge gaps that are difficult to 

address using traditional data gathering approaches. Citizen science is particularly useful to 

generate information on human–tick encounters and may also contribute to geographical tick 

records to help define species distributions across large areas. Previous citizen science projects 

have utilized three distinct tick record data gathering methods including submission of: 1) physical 

tick specimens for identification by professional entomologists, 2) digital images of ticks for 

identification by professional entomologists, and 3) data where the tick species and life stage were 

identified by the citizen scientist. We explore the benefits and drawbacks of citizen science, 

relative to the traditional scientific approach, to generate data on tick records, with special 

emphasis on data quality for species identification and tick encounter locations. We recognize the 

value of citizen science to tick research but caution that the generated information must be 

interpreted cautiously with data quality limitations firmly in mind to avoid misleading conclusions.
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Background

Tick-borne diseases are increasing in North America (Rosenberg et al. 2018). Major human-

biting ixodid tick species—Ixodes scapularis Say, Ixodes pacificus Cooley and Kohls, 
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Amblyomma americanum (L.), Amblyomma maculatum Koch, Dermacentor variabilis 
(Say), Dermacentor andersoni Stiles, Dermacentor occidentalis Marx, and Rhipicephalus 
sanguineus sensu lato (Acari: Ixodidae)—collectively serve as vectors for more than 15 

human pathogens, ranging from viral to bacterial and parasitic agents (Eisen and Paddock 

2020). The most basic risk factors for human exposure to a tick-borne disease agent are 

whether or not 1) a human-biting tick species capable of transmitting the pathogen in 

question is present in the local environment and 2) the pathogen occurs in the local 

populations of one or several human-biting vector tick species. Most areas of the United 

States where human populations are concentrated harbor at least one commonly human-

biting vector tick species (Eisen et al. 2017, Eisen and Paddock 2020) and many states are 

home to several different human-biting vector species (Merten and Durden 2000, Jordan and 

Egizi 2019). Notably, distributions of medically important ticks and their pathogens change 

over time, necessitating ongoing data collection. Up-to-date knowledge of which tick species 

and associated pathogens are present in the local environment and when each tick life stage 

is actively host-seeking is helpful for outreach campaigns to inform the public and medical 

community about when and where people are at risk for exposure to ticks and tick-borne 

pathogens. Additionally, human behavior strongly influences the risk for tick bites (Hook et 

al. 2015, Eisen and Eisen 2016, Aenishaenslin et al. 2017, Stafford et al. 2017, Mead et al. 

2018, Fischhoff et al. 2019, Jordan and Egizi 2019). These fundamental facts, together with 

the understanding that geographic distributions and population dynamics of vector ticks are 

dynamic (Randolph 2004, Ogden et al. 2018, Sonenshine 2018, Gaff et al. 2020), must be 

considered when deciding how to most effectively improve our knowledge of where, when, 

and why humans are bitten by ticks potentially carrying disease agents.

In this Forum article, we explore how citizen science may be used to complement traditional 

tick data collection, where all aspects of the work are conducted by researchers or public 

health professionals, to improve the understanding of risk for human bites by potentially 

pathogen-infected ticks. Two basic themes are of crucial importance when exploring this 

topic: 1) data quality, including for tick species identification, pathogen detection 

methodology, and spatial precision of the tick encounter location, and 2) judicious 

interpretation of information to account for the limitations of the methodology used to 

generate the data. We first outline basic characteristics of different methods to gather tick-

associated data and then discuss how this relates to citizen science.

Characteristics of Different Approaches to Gathering Tick-Associated Data

Epidemiological public health surveillance refers to the ongoing, systematic collection, 

analysis, and interpretation of health-related data (Thacker and Birkhead 2008). The term 

surveillance is used more loosely in relation to ticks and pathogens found in ticks. 

Systematic tick sampling and pathogen detection efforts are often of short duration, for 

example as part of research projects, rather than ongoing activities spanning many years or 

decades. However, compilation of these short-term studies can reveal significant trends 

(Dennis et al. 1998, Springer et al. 2014, Eisen et al. 2016, Lehane et al. 2020). Examples 

from the United States of long-term surveillance efforts, spanning 4 to >20 years, include 

collection of host-seeking ticks in fixed sampling sites in Maine (Elias et al. 2020), 

Minnesota (Bjork et al. 2018), and New York (Prusinski et al. 2014; New York State 
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Department of Health [NYSDOH] 2020a,b), and submission of ticks recovered from 

humans or domestic animals to tick identification or tick identification and pathogen testing 

service programs in Connecticut (Little et al. 2019, Little and Molaei 2020), Maine (Rand et 

al. 2007, Elias et al. 2020), Massachusetts (Xu et al. 2016), Michigan (Walker et al. 1998), 

New Jersey (Jordan and Egizi 2019), Rhode Island (Johnson et al. 2004), the Pacific Coast 

states (Xu et al. 2019), or U.S. Army bases across the eastern United States (Rossi et al. 

2015). Similar long-term surveillance programs for host-seeking ticks or ticks recovered 

from humans or domestic animals have been implemented in Canada (Ogden et al. 2006, 

2010; Ripoche et al. 2018; Gasmi et al. 2019; Chilton et al. 2020) and Europe (Garcia-Marti 

et al. 2017a, b, 2018; Cull et al. 2020; Springer et al. 2020). Moreover, efforts are underway 

in the United States to strengthen the national capacity for systematic and sustained 

surveillance of human-biting ticks and their associated disease agents (Centers for Disease 

Control and Prevention [CDC] 2018, 2020; Eisen and Paddock 2020).

Tick surveillance is often classified as active versus passive but as some tick collection 

methods do not easily fit into this classification scheme, we prefer to use more descriptive 

terms when describing different collection approaches. Table 1 summarizes key 

characteristics of different approaches for collection of ticks and detection of pathogens in 

the ticks, focusing on factors that describe how tick and pathogen data are generated and 

influence how they can be interpreted. The initial dichotomy is whether the tick collection 

method is ‘fully quantitative’, yielding both a numerator and a denominator, or 

‘opportunistic and semi-quantitative’, producing quantitative data for only the numerator or 

denominator. Examples of outcome measures from commonly used tick collection methods 

producing fully quantitative results include the number of host-seeking ticks collected per 

trap-day or unit area/time covered by walking, dragging, or flagging samples; the number of 

ticks collected per live or recently killed wild or domestic animal; or the number of recorded 

tick bites or tick encounters per person and unit of time for participants in a research study 

where such information is specifically recorded. There is a plethora of publications 

describing the results of such tick collection methods from North America and Europe.

Tick collection methods best defined as opportunistic and semi-quantitative based on 

quantitative data being collected for the numerator (number of ticks recovered) while the 

denominator remains unknown include 1) submission from the public of ticks collected from 

humans to public service tick identification or tick identification and pathogen detection 

programs, where the number of individuals that were aware of the program and would have 

submitted ticks had they been encountered are unknown (Walker et al. 1998; Johnson et al. 

2004; Rand et al. 2007; Xu et al. 2016, 2019; Nieto et al. 2018; Jordan and Egizi 2019; Little 

et al. 2019; Elias et al. 2020); and 2) opportunistic recovery of ticks from livestock or pets 

by members of the public or veterinarians during daily activities or routine health checks, 

without knowledge of the total number of animals that were examined for presence of ticks 

(Jaenson et al. 1994; Tälleklint and Jaenson 1998; Walker et al. 1998; Guerra et al. 2001; 

Johnson et al. 2004; Ogden et al. 2006, 2010; Raghavan et al. 2007; Rand et al. 2007; Hamer 

et al. 2009; Rhea et al. 2011; Abdullah et al. 2016; Hendricks et al. 2017; Laaksonen et al. 

2017; Cull et al. 2018; Lee et al. 2019; Saleh et al. 2019; Chilton et al. 2020). Another tick 

collection method best defined as opportunistic and semi-quantitative is the recovery of ticks 

from road-kill animals (Lorusso et al. 2011, Szekeres et al. 2018), where the denominator 
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can be quantified as the number of examined animals but where an unknown proportion of 

ticks may have already dislodged from the carcasses before they were recovered and 

examined for ectoparasites.

Another important factor to consider is whether the ticks were collected while seeking a host 

versus recovered from a host, including wild animals, domestic animals, or humans (Table 

1). This distinction has implications both for the spatial interpretation of the tick collection 

record and the detection of pathogens in the ticks. Collection of host-seeking ticks from the 

environment provides records with very high spatial precision for the location where the tick 

was contacted, regardless of whether it was collected by drag or flag sampling (the drag/flag 

is checked at regular, short intervals based on distance traveled or time elapsed), during 

walking sampling (coveralls are checked at regular, short intervals based on distance traveled 

or time elapsed), or via trapping (ixodid ticks have limited capacity for horizontal movement 

toward a stimulus). The geographical location where contact was first made between a tick 

and the host it was recovered from is more challenging to determine as it depends on the 

spatial activity range of the host species and the time elapsed since the tick encountered the 

host. The spatial precision for the initial tick encounter location is high for host species with 

limited activity ranges (for example, livestock confined to a pasture or rodents) but less 

spatially distinct for mammals with larger home ranges (for example, deer and medium-

sized carnivores) and resident or, especially, migrating birds. For people and pets, there is 

the added challenge of needing to account for travel history when attempting to pinpoint the 

likely geographical location where a tick found crawling or attached was first encountered. 

For attached ticks, the degree of engorgement can be useful to estimate the duration of time 

(number of days) elapsed since the tick found its host and attached (Piesman and Spielman 

1980, Yeh et al. 1995, Falco et al. 1996, Gray et al. 2005, Meiners et al. 2006).

As outlined in Table 1, the source of the collected ticks also influences the interpretation of 

detected pathogens. For a pathogen detected in a fed tick (of any life stage) recovered from 

an animal host, it often is not clear whether the tick was infected before starting to feed or if 

it acquired the pathogen while feeding. Not all wild animal species, livestock species, or pet 

species serve as reservoirs for a given tick-borne pathogen; the pathogen detection result 

therefore should be interpreted bearing in mind the reservoir competency of the host animal 

for the pathogen in question as well as whether the pathogen is passed transovarially in the 

tick species in question. Moreover, as noted previously for Lyme disease spirochetes (Eisen 

2020), pathogens acquired during a blood meal may be passed transstadially through the 

molt for some, but not all, tick species that infest reservoir animals. Pathogen detection in 

host-seeking nymphs or adults has the clear advantage of indicating that the pathogen 

survived the molt and was present in the tick as it sought a new blood meal host. The final 

consideration then becomes whether the tick species in question is capable of transmitting 

the transstadially passed pathogen while taking a blood meal: this is often, but not always, 

the case across combinations of tick and pathogen species.

Citizen Science and Tick Collection Records

As outlined in the Crowdsourcing and Citizen Science Act of 2016 (15 USC 3724), citizen 

science is increasingly recognized by federal agencies in the United States as an approach 
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with potential to accelerate the generation of research data. An official government website 

(https://www.citizenscience.gov/#) was developed to catalog federally supported citizen 

science projects and provide resources to connect researchers with citizen science 

coordinators and practitioners. There are different definitions for the term citizen science 

(also known as community-based monitoring, volunteer monitoring, or participatory 

science), but common themes include the participation of non-scientists in data collection, 

compilation, and/or analysis, most often in collaboration with formally trained academic or 

federal scientists (Cohn 2008, Kullenberg and Kasperowski 2016, Bartumeus et al. 2018, 

Hamer et al. 2018). The longest standing citizen science project in the United States is the 

Cooperative Observer Program operated by the National Weather Service (NWS) of the 

National Oceanic and Atmospheric Administration. Non-scientist volunteers have 

documented local weather-related data for this federal program for more than a century since 

its launch in 1890 (NWS 2020). Two important aspects of this highly successful citizen 

science program to aid in local weather data collection are that: 1) it allowed for logistically 

feasible and minimal cost measurement of weather data across a large number of localities 

long before weather stations were capable of automated measurements and 2) the core data 

collected—including daily maximum and minimum temperatures and 24-h rainfall or 

snowfall—are straightforward and can be measured and recorded using simple, standardized 

equipment. The question then becomes to what extent such general beneficial aspects of a 

successful citizen science program can be translated to efforts involving collection of data on 

human-biting ticks.

At the time of this writing, the online catalog of federally funded citizen science programs 

(https://www.citizenscience.gov/catalog/#) includes two projects specifically focused on 

mosquitoes and mosquito-borne disease (‘The Invasive Mosquito Project: A Public 

Education Tool’, sponsored by the U.S. Department of Agriculture, and ‘U.S.-Mexico 

Border Early Warning Disease Surveillance for Dengue and Chikungunya’, sponsored by the 

Centers for Disease Control and Prevention). Citizen science is playing an increasing role in 

research on the distribution of mosquito species of medical importance and their control, 

with recent studies from North America (Maki and Cohnstaedt 2015, Jordan et al. 2017, 

Johnson et al. 2018, Tarter et al. 2019) as well as Europe (Kampen et al. 2015, Heym et al. 

2017, Palmer et al. 2017, Walther and Kampen 2017, Eritja et al. 2019), Africa 

(Murindahabi et al. 2018), and Australia (Braz Sousa et al. 2020).

The online catalog of federally funded citizen science programs does not currently include 

any projects involving ticks or tick-borne diseases but there are examples of projects run by 

academic institutions, non-profit organizations, and county, state, or federal entities where 

tick data or tick specimens provided by members of the public/citizen scientists were used to 

further the knowledge of human-biting ticks. Three different approaches were used in these 

projects to identify ticks that members of the public found crawling on or biting people or 

pets: 1) physical submission of ticks to professional scientists for tick identification and, in 

some cases, pathogen detection, 2) submission of digital tick images to professional 

scientists for tick identification, and 3) submission of tick information where species and life 

stage identification was done by the citizen scientist submitter with various aids, such as 

online guides showing images of different tick species and life stages.
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One example from the first category of projects involving members of the public is a study 

from Sweden in the early 1990s where the public was engaged to submit collected ticks—

including the primary human-biting tick in Sweden, Ixodes ricinus (L.)—to a research 

project where the professionally identified ticks then formed part of the overall database to 

define the geographical distributions of ixodid and argasid tick species across the country 

(Jaenson et al. 1994). Requests for physical tick submissions from the public for the specific 

purposes of the collection records to inform which tick species and life stages bite humans 

or pets or to form part of a database to define the broad geographical distributions of tick 

species (and in some cases also the associated pathogens found in the ticks) were also 

employed by other researchers in the United States, Canada, and Europe (Smith et al. 1992, 

Walker et al. 1998, Goddard 2002, Ogden et al. 2006, Gleim et al. 2016, Laaksonen et al. 

2017, Cull et al. 2018, Lewis et al. 2018, Nieto et al. 2018, Jongejan et al. 2019, Lernout et 

al. 2019, Porter et al. 2019, Saleh et al. 2019, Salkeld et al. 2019, Chilton et al. 2020).

Another primary reason for requesting physical tick submissions from the public has been 

the establishment of service programs that, freely or at-cost, provide professional tick 

identification services, and sometimes also pathogen detection services, and communicate 

the findings back to the individual submitters. Examples of non-commercial entities in the 

United States that have provided such public service programs over time periods spanning 

many years include the Connecticut Agricultural Experiment Station (Little et al. 2019; 

Little and Molaei 2020; Connecticut Agricultural Experiment Station [CAES] 2020a,b), the 

Maine Medical Center Research Institute (Rand et al. 2007, Elias et al. 2020), the 

Monmouth County Mosquito Control Division (Jordan and Egizi 2019), the New Hampshire 

Department of Agriculture, Markets & Food (https://www.agriculture.nh.gov/divisions/

plant-industry/tick-identification.htm), the Texas Department of State Health Services 

(https://www.dshs.texas.gov/idcu/health/zoonosis/tickBites/), the University of Rhode Island 

Tick Research Laboratory (Johnson et al. 2004), the University of Massachusetts, Amherst 

(Xu et al. 2016, 2019), and the U.S. Army Public Health Command (Rossi et al. 2015). Data 

obtained from ticks submitted by citizens to such public service tick identification/pathogen 

detection programs have secondarily been used to 1) clarify which tick species and life 

stages bite humans, when during the year peak human-biting occurs, and where on the 

human body tick bites most often occur; 2) describe changes over time for annual numbers 

of human bites by different tick species; and 3) assess whether data on human bites by 

vector ticks can predict spatial and inter-annual patterns of tick-borne disease case 

incidence.

The best example of the second category of programs involving members of the public, 

where the tick itself is not submitted but rather identified by a professional entomologist 

from a digital image provided by a member of the public together with tick encounter 

information, is the TickSpotters service provided through the University of Rhode Island 

TickEncounter Resource Center (https://tickencounter.org/; Kopsco et al. 2020). The final 

category, where members of the public identify the encountered ticks themselves and 

provide data on species and life stage together with additional information relating to the 

tick encounter, is represented by online data collection tools such as the Vermont Tick 

Tracker (https://apps.health.vermont.gov/vttracking/ticktracker/2019/d/index.html) and 

recently launched apps such as the The Tick App (https://thetickapp.org/; Fernandez et al. 
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2019) and the TickTracker App (https://livlymefoundation.org/ticktracker-app/). In the 

sections below, we place these existing approaches to engage the public in gathering of tick-

related data into the broader context of how citizen science best can help improve our 

knowledge of tick distributions and how to prevent tick bites and tick-borne disease.

Incorporation of Citizen Science-Derived Information Into Tick Record 

Databases and Tick Distribution and Abundance Maps

Maps are a means for sharing graphical information on where a given tick species can be 

encountered or for depicting acarological risk of encountering ticks; the accuracy of the 

presented map directly reflects the quality of the data used to generate the map. This is 

equally true for maps based on data for actual tick records and maps showing model-derived 

projections for tick presence or abundance. Because tick records are generated in a variety of 

contexts, there is a need to decide which data to include versus exclude in a database being 

compiled for the specific purpose of generating maps depicting spatial tick distributions or 

tick abundance patterns. Primary considerations include 1) the perceived quality of the 

species and life stage identification for the tick record and 2) the source from which the tick 

was recovered to inform whether or not the tick record is relevant at the level of spatial 

granularity a map depiction aims to achieve. The expected likelihood of a correct tick 

species and life stage identification is very high when the tick specimen is physically 

accessible for examination by a professional scientist trained in tick identification or if the 

specimen is identified using molecular assays that compare sequence data to reference 

sequences. Using other methods, the expected likelihood of a correct identification falls to 

moderate–high when the professional scientist identifies the tick from a submitted digital 

image (the identification is influenced by both the quality of the image and the level of 

experience of the person viewing it) and to low when the identification is made by a citizen 

scientist without formal training. In a real-world scenario, ticks often have been attached for 

some period of time before being detected and removed, and also may have been damaged 

in the removal process. Compared with unfed ticks, partially or fully engorged ticks may be 

more difficult to identify without access to a high-quality stereo microscope. In scenarios 

that also include detection of pathogens in submitted ticks, typically done via detection of 

pathogen genetic material, additional concerns include the quality of the pathogen detection 

algorithm and the level of experience of the laboratory staff. Testing of ticks for presence of 

human pathogens is done across a wide range of federal, state, academic, and private 

laboratories but, as noted in a recent national survey on tick surveillance and control 

practices (Mader et al. 2020), there is currently no certification or accreditation process to 

ensure a quality standard for the pathogen detection results.

Another important consideration when compiling a geographical database with the intent of 

generating a tick distribution or abundance map is the distinction between absence of the 

tick and lack of data records. In compilations of national scale data to generate county-level 

distribution maps for key human-biting ticks in the United States, we therefore use the 

categories of established, reported, and no records (Dennis et al. 1998, Springer et al. 2014, 

Eisen et al. 2016, Lehane et al. 2020). Due to lack of standardized national surveillance for 

ticks in the United States until very recently (CDC 2018, 2020; Eisen and Paddock 2020; 
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Mader et al. 2020), some counties located within model-projected distributions for a given 

tick species but lacking tick presence records likely fall in the category of no tick records 

due to inadequate tick collection efforts rather than the tick species truly being absent. From 

a public health standpoint, incorrect depiction in a map of tick absence for an area where the 

tick species actually is present is problematic because it may lead to decreased vigilance for 

use of personal protective measures to prevent tick bites.

As long as a high-quality tick identification method is used, tick records resulting from 

efforts involving citizen scientists have clear potential to help fill in gaps in existing tick 

distribution maps, especially in areas where a tick species is present but rare and therefore 

may not be easily recovered during routine drag/flag sampling-based tick surveillance 

efforts. Such involvement by citizen scientists are similar to the previously mentioned 

Cooperative Observer Program operated by the National Weather Service, as the citizen 

scientist tick collections facilitate data gathering across a greater number of specific 

locations than otherwise possible. However, it is important to follow up citizen science-

derived tick species records of special interest with drag/flag sampling to confirm that the 

given tick species indeed is present in the local environment. This specific strategy was used 

to complement backyard adult mosquito collections by citizen scientists in the Netherlands, 

where mosquito records of special interest, for example the invasive Aedes japonicus 
japonicus (Theobald), were followed up by additional collection efforts targeting larval or 

adult mosquitoes in the local environment (Walther and Kampen 2017).

Ticks recovered from people or pets (especially dogs) come with the added challenge of 

travel potentially masking the actual location where the tick encounter occurred. Unless 

detailed travel histories are available for the period of time when the tick encounter may 

have occurred, and bearing in mind that people often underestimate the amount of time a 

tick has been attached before it is discovered (Sood et al. 1997, Logar et al. 2002, 

Wilhelmsson et al. 2013), the tick encounter location may not always be reliably determined 

even at the coarse county scale. A similar problem with determining finer-scale tick 

encounter locations occurs for ticks recovered from wild mammals with large home ranges 

and birds, especially during their migration seasons.

The quality of information included in a database for geographical tick records is strongly 

influenced by the characteristics of the tick identification process, together with the spatial 

precision for the initial tick encounter location. Overall, the highest quality data are 

represented by ticks that were physically accessible to a professional scientist for species 

identification (molecular or morphological) and where the collection method allows for fine-

scale determination of the host-seeking location of the tick specimen (for example, drag 

sampling with locations of the drag samples recorded). Further classifications that 

downgrade the overall quality of a tick record (for example, tick species identification by a 

citizen scientist or the tick source being a human without a known travel history) are not 

intended to reflect poorly on any currently used method to collect data on tick records but 

rather to caution against interpretations that go beyond what is reasonable based on the 

reliability of the underlying data. Perhaps the most difficult data quality classification 

problem is for digital tick images examined by a professional scientist trained in tick 

identification. This method can have very high (>95%) species identification accuracy for 
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commonly encountered tick species, such as A. americanum, D. variabilis, and I. scapularis, 

when high-quality images of correctly positioned ticks are viewed by professional 

entomologists experienced in identifying ticks from digital images (Koffi et al. 2017, Kopsco 

et al. 2020). However, in more general terms, identification of ticks from digital images is 

highly sensitive to both image quality (resolution, contrast, and tick positioning) and the 

level of experience of the individuals responsible for the tick identification. The method also 

may be prone to misclassify less commonly encountered locally established or invasive tick 

species that can be confused with more common species based solely on a digital image.

Citizen Science-Derived Information About Human–Tick Encounters

Recovery of ticks found crawling on or biting humans is perhaps the most intriguing aspect 

of citizen science because it provides unique data that are rarely generated without the aid of 

citizen scientists. Collection of ticks from humans has the distinct benefit, relative to 

collection of host-seeking ticks, of providing information on actual encounters with ticks (or 

infected ticks if they also are tested for pathogens) resulting from daily life. Collected ticks 

must be identified to species because most areas of the United States harbor multiple human-

biting tick species (Merten and Durden 2000). Using set ratios for different tick species 

based on historical data for human–tick encounters as a proxy for species identification (for 

example, 80% I. scapularis and 20% D. variabilis) is not reliable because population 

dynamics are not synchronized across years between human-biting tick species with 

different host preferences and life-cycle durations (Walker et al. 1998, Rand et al. 2007, 

Jordan and Egizi 2019, Pak et al. 2019, Elias et al. 2020) and additional tick species may be 

increasing in importance as human-biters over time, as seen for A. americanum in New 

Jersey and D. variabilis in Maine (Jordan and Egizi 2019, Elias et al. 2020). Moreover, data 

for ticks recovered from humans are likely to be skewed toward collection of adult ticks 

(larger and easier to spot compared to immatures) and tick species with more noticeable 

bites (for example, ticks with longer mouthparts). Conversely, as indicated by Lyme disease 

patients often being unaware of a tick bite preceding the onset of symptoms (re-viewed by 

Eisen and Eisen 2016), the immature stages of some tick species—including I. scapularis for 

which the nymphs are recognized as the primary vectors of Lyme disease spirochetes to 

humans—are very likely underrepresented in collections from human hosts. This limitation, 

together with potential uncertainty in the spatial location where the tick was initially 

encountered, must always be considered when interpreting data on ticks recovered from 

humans. Long-term data sets on ticks recovered from humans are especially valuable as they 

can provide crucial insights into human–tick encounters, not only for the general seasonal 

patterns for encounters with different tick species and life stages, and where on the human 

body most bites occur, but also for changes over time to the tick species most commonly 

encountered by humans and the prevalence of pathogens harbored by different tick species 

recovered from humans (Rand et al. 2007; Xu et al. 2016, 2019; Jordan and Egizi 2019; 

Little et al. 2019, Elias et al. 2020).

Data Quality Considerations

In this age of increasing possibilities for rapid data collection via emerging technologies (for 

example, smartphone apps) and ongoing proliferation of scientific journals with variable 
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standards for peer review, it is easier than ever before to collect large amounts of data and 

publish the findings of a study. Moreover, there now also is the possibility of publishing 

manuscripts in a citable format on pre-print servers (for example, https://www.biorxiv.org/) 

prior to peer review in a scientific journal. Data quality, therefore, must be a primary concern 

going forward and this should include all aspects of data collection. In the specific case of 

citizen science and ticks, main potential problems include tick species identification by 

citizen scientists without corroboration by professional scientists and lack of travel histories 

for humans or pets during the period of time when a tick discovered biting may have initially 

been encountered. This is not intended as a criticism of either citizen scientists or data 

collection via smartphone apps but rather as a reminder to both professional scientists and 

citizen scientists to be judicious in the interpretation of data collected via emerging 

technologies and involving distinctions that are difficult to make unless you have specific 

training. When used to best effect, citizen science could be a powerful force in the 

continuing struggle to reduce the negative societal impacts of ticks and tick-borne diseases. 

This is balanced against the risk for citizen science projects to generate poor quality data (for 

example, through tick species identification by citizen scientists) and potentially misleading 

information (for example, incorrect tick encounter locations) if used without adequate data 

quality safeguards and cautious interpretation of project results.
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