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Abstract

Brain-predicted age difference (brainPAD) has been used in schizophrenia to assess individual-

level deviation in the biological age of the patients’ brain (i.e., brain-age) from normative 

reference brain structural datasets. There is marked inter-study variation in brainPAD in 

schizophrenia which is commonly attributed to sample heterogeneity. However, the potential 

contribution of the different machine learning algorithms used for brain-age estimation has not 

been systematically evaluated. Here, we aimed to assess variation in brain-age estimated by six 

commonly used algorithms [ordinary least squares regression, ridge regression, least absolute 

shrinkage and selection operator regression, elastic-net regression, linear support vector 

regression, and relevance vector regression] when applied to the same brain structural features 

from the same sample. To assess reproducibility we used data from two publically available 

samples of healthy individuals (n=1092 and n=492) and two further samples, from the Icahn 

School of Medicine at Mount Sinai (ISMMS) and the Center of Biomedical Research Excellence 

(COBRE), comprising both patients with schizophrenia (n=90 and n=76) and healthy individuals 

(n=200 and n=87). Performance similarity across algorithms was compared within each sample 

using correlation analyses and hierarchical clustering. Across all samples ordinary least squares 

regression, the only algorithm without a penalty term, performed markedly worse. All other 

algorithms showed comparable performance but they still yielded variable brain-age estimates 

despite being applied to the same data. Although brainPAD was consistently higher in patients 

with schizophrenia, it varied by algorithm from 3.8 to 5.2 years in the ISMMS sample and from to 

4.5 to 11.7 years in the COBRE sample. Algorithm choice introduces variations in brain-age and 

may confound inter-study comparisons when assessing brainPAD in schizophrenia.
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1. Introduction

Schizophrenia is a severe mental illness that presents with positive and negative symptoms 

[APA, 2013] and brain structural alterations [Haijma et al. 2013; Radua et al. 2012; Steen et 

al. 2006; van Erp et al. 2016, 2018; Vita et al. 2006]. Lower intracranial volume is a 

consistent finding that reflects early developmental vulnerability [Bois et al. 2015; Fusar-

Poli et al. 2014]. Moreover, cortical thickness and subcortical volumes [Haijma et al. 2013; 

Radua et al. 2012; Steen et al. 2006; van Erp et al. 2016, 2018; Vita et al. 2006] generally 

show a steeper age-related decline in patients than that observed in healthy individuals 

[Haijma et al. 2013; van Haren et al. 2008, 2011, 2016; Olabi et al. 2011]. Collectively, these 

findings suggest that schizophrenia is associated with lifelong deviation from normative 

neuroanatomical trajectories.

Application of machine learning algorithms to neuroimaging data offers a new lens for the 

examination of brain structural deviation in schizophrenia. Using these algorithms, it is 

possible to generate estimates of the biological age of an individual’s brain (i.e., brain-age) 

by comparing their neuroimaging data against a normative population dataset of the same 

neuroimaging features [Franke et al. 2010; Franke and Gaser, 2019]. In each individual, 

subtracting their chronological age from their brain-age generates a metric that quantifies the 

degree of deviation; this is referred to here as “brain-predicted age difference” (brainPAD) 

although the term brain-age-gap-estimation has also been used to denote the same metric; a 

positive brainPAD indicates that the biological age of an individual’s brain is “older” than 

their actual age, and a negative brainPAD reflects the inverse.

A recent study using brain structural magnetic resonance imaging (sMRI) data from 35,474 

healthy individuals and 1,110 patients with schizophrenia found a moderate increase in 

brainPAD (Cohen’s d effect size = 0.51) in patients [Kaufmann et al. 2019]. Five further 

studies have estimated brainPAD in schizophrenia using various machine learning 

algorithms applied to sMRI data [Koutsouleris et al. 2014; Schnack et al. 2016; Nenadic et 

al. 2017; Hajek et al. 2019; Shahab et al. 2019], Koutsouleris and colleagues [2014] used a 

support vector regression (SVR) algorithm trained on data from 800 healthy individuals, and 

found that patients with schizophrenia (n=141) had a mean brainPAD of 5.5 years. Schnack 

and colleagues [2016] using a SVR algorithm trained on healthy individuals (n=386) 

reported that patients with schizophrenia from two independent samples (n=341 and n=60) 

had mean brainPAD of 3.8 years and 5.6 years. Using relevance vector regression (RVR), 

Nenadic and colleagues [2017] reported that patients with schizophrenia (n=45) had a mean 

brainPAD of 2.6 years compared to 70 healthy individuals. A similar mean brainPAD of 2.6 

years in patients with schizophrenia (n=43) was reported by Hajek and colleagues [2019] 

using RVR trained on data from 504 healthy individuals. Shahab and colleagues [2019] used 

random forest regression trained on data from 50 healthy individuals, and showed that 

patients with schizophrenia (n=81) had a mean brainPAD of 7.8 years. Inter-study variability 
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has been typically considered in terms of sample characteristics while brainPAD estimation 

can also be influenced by the algorithm used and the choice of neuroimaging features 

entered into the model. At present, the influence of these various algorithms on brain-age 

estimation remains unclear as their comparative performance has not been systematically 

evaluated.

In response, the current study evaluated six algorithms, namely ordinary least squares (OLS) 

regression [Rudolph et al. 2017], least absolute shrinkage and selection operator (Lasso) 

regression [Bagarinao et al. 2018; Cole, 2020], ridge regression [Guggenmos et al. 2017; 

Zhao et al. 2019], elastic-net regression [Khundrakpam et al. 2015], SVR, and RVR, which 

are commonly used because they are interpretable and resilient to over-fitting. The six 

algorithms were applied to the same morphological features from each of four independent 

samples. Two samples comprised healthy individuals participating either in the Human 

Connectome Project (HCP) [van Essen et al. 2013] or the Cambridge Centre for Ageing and 

Neuroscience project (Cam-CAN) [Shafto et al. 2014]. Two further samples, from the Icahn 

School of Medicine at Mount Sinai (ISMMS) and the Center of Biomedical Research 

Excellence (COBRE) [Aine et al. 2017], comprised both patients with schizophrenia and 

healthy individuals. Using four datasets enabled testing the robustness of the results to 

sample composition. The sMRI data of all samples were processed using identical pipelines 

to extract FreeSurfer-derived regional morphometric measures. We chose these measures as 

they are amongst the most widely used features in brain imaging studies of schizophrenia 

[van Erp et al. 2016, 2018], are cost-efficient alternatives to using more fine-grained 

parcellations for brain-age estimation [Valizadeh et al. 2017] and have been employed to 

study brain-age in recent large scale studies in neuropsychiatric disorders [Han et al. 2000; 

Kaufmann et al. 2019].

2. Materials and Methods

2.1 Samples

Human Connectome Project: The HCP (www.humanconnectome.org) acquired sMRI 

data from 1113 adults living in the USA. Following exclusion of participants with medical 

problems, we used data from 1092 individuals aged 22–37 years [mean age=28.8 years, 

standard deviation (SD)=3.7 years; 507 males] (details in Supplementary Methods).

Cambridge Centre for Ageing and Neuroscience Project.—The Cam-CAN Project 

(www.mrc-cbu.cam.ac.uk) acquired sMRI data from 652 adults living in the UK. Following 

exclusion of participants with medical morbidity and/or poor image quality, we used data 

from 492 individuals aged 18–87 years (mean age=54.4 years, SD=18.3 years; 248 males) 

(details in Supplementary Methods).

Ethical approval enabling sharing de-identified data from the HCP and Cam-CAN was 

obtained by the respective coordinating study centres.

ISMMS Sample: This sample was recruited and assessed at the Icahn School of Medicine 

at Mount Sinai (ISMMS) (details in Supplementary Methods). It comprised 90 outpatients 

(mean age=27.4 years, SD=7.5 years; 69 males) fulfilling diagnostic criteria of 
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schizophrenia according to the Diagnostic and Statistical Manual of Mental disorders, 5th 

Edition (DSM-5) [APA, 2013] and 200 healthy individuals without a personal or family 

history of major psychiatric disorders (mean age=37 years, SD=12.4 years; 110 males). The 

study was approved by the Institutional Review Board of the Icahn School of Medicine at 

Mount Sinai and all participants gave written informed consent.

COBRE Sample: This sample was recruited by Center of Biomedical Research Excellence 

(COBRE) (http://cobre.mrn.org & http://coins.mrn.org) (details in Supplementary Methods). 

It comprised 76 outpatients (mean age=37.9 years, SD=14.2 years; 62 males) fulfilling 

DSM-IV criteria for schizophrenia [APA, 2000] and 87 healthy individuals (mean age=38.2 

years, SD=11.8 years; 62 males) without a personal or family history of major psychiatric 

disorders. The study was approved by the Institutional Review Board of the University of 

New Mexico and all participants gave written informed consent.

All participants in the ISMMS and in the COBRE samples were screened to exclude those 

with IQ<70, a history of neurological disorders, severe head trauma, substance abuse or 

dependence within the last 12 months and MRI contra-indications.

Neuroimaging Acquisition, Processing and Feature Extraction

T1-weighted images for all samples were acquired on 3T Siemens scanners (Siemens 

Medical Systems, Erlangen, Germany). The acquisition parameters are described in the 

Supplementary Material. The initial studies on sMRI-based brain-age prediction used voxel-

based analyses [Franke et al. 2010; Franker and Gaser, 2019]. The T1-weighted MRI images 

of the four study samples were processed using identical pipelines to extract morphometric 

measures using FreeSurfer 6.0 (http://surfer.nmr.mgh.harvard.edu) (Supplementary 

Material). Cortical reconstruction was based on the Desikan-Killiany atlas [Desikan et al. 

2006] and subcortical segmentation was performed using the probabilistic atlas in 

FreeSurfer [Fischl et al. 2002]. In each participant’s dataset, this procedure generated 

measures of total intracranial volume and regional measures of cortical thickness (n=68), 

cortical surface area (n=68) and subcortical volumes (n=16) (Supplementary Table S2).

Machine learning algorithms for brain-age prediction

The linear models examined can be generally formalized as follows:

yi = ∑j = 1
p βjxi, j + β0

where yi is the age of the ith individual, p is the number of features, xi,j is the value of jth 

feature of the ith subject, and βj is the regression coefficient.

We evaluated the following six algorithms:

(1) Ordinary least squares (OLS) regression: OLS regression algorithm fits a linear 

model by minimizing the residual sum of squares between the observed yi in the training 

dataset (i=1,..,N, the sample size) and the values f(xi) predicted by the linear model. The 

object function is as follows:
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min
β

∑i = 1
N (f(xi) − yi)2

where yi is the actual value of the chronological age. The least squares solution was 

computed using the singular value decomposition (SVD).

(2) Ridge regression: Ridge regression is a regularized linear model that minimizes the 

sum of the squared prediction error in the training data and a L2-norm regularization, i.e., 

the sum of the squares of regression coefficients [Hoerl and Kennard, 1970]. The object 

function is as follows:

min
β

∑i = 1
N (f(xi) − yi)2 + λ∑j = 1

p βj2

The tuning parameter λ controls the model’s complexity. If λ = 0, ridge regression becomes 

a traditional linear regression model. The optimal choice of λ parameter in this study was 

based on 10-fold cross-validation (see below).

(3) Least absolute shrinkage and selection operator (Lasso) 
regression: Lasso is another form of regularized linear regression using an L1-norm 

penalty, aiming to minimize the sum of the absolute value of the regression coefficients 

[Tibshirani, 1996]. The objective function is as follows:

min
β

∑i = 1
N (f(xi) − yi)2 + λ∑j = 1

p ∣ βj ∣

The L1-norm regularization tends to set most coefficients to zero and retains one random 

feature among the correlated ones, thus resulting in a sparse predictive model that facilitates 

optimization of the predictors and reduces the model complexity.

(4) Elastic-net regression: This linear regression model combines both L1-norm (i.e., 

Lasso regression) and L2-norm (i.e., ridge regression) regularizations in the OLS loss 

function [Zhou and Hastie, 2005]. The object function is as follows:

min
β

∑i = 1
N (f(xi) − yi)2 + λ∑j = 1

p (α ∣ βj ∣ + 1
2(1 − α)‖βj‖2)

This allows the number of selected features to be larger than the sample size while achieving 

a sparse model. A hyperparameter α (between 0 and 1) is used to control the relative 

weighting of the L1-norm and L2-norm contributions. The optimal choice of the α 
parameter in this study was based on 10-fold cross-validation (see below).

(5) Linear support vector regression (SVR): Linear SVR aims to find a function 

f(xi) whose predictive value deviates by no more than a required accuracy ε from the actual 

yi for all the training data while maximizing the flatness of the function [Smola and 
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Scholkopf, 2004]. Flatness maximization is implemented using the L2-norm regularization 

by minimizing the squared sum of the regression coefficients. The object function is as 

follows:

min
β

1
2 ∑j = 1

p ‖βj‖2 + C∑i = 1
l (ξi + ξi∗)

subject to

yi − f(xi) ≤ ε + ξi

f(xi) − yi ≤ ε + ξi∗

ξi, ξi∗ ≥ 0

where l is the quantity of ‘support vectors’, which are the samples that deviate by more than 

ε from the actual yi used to fit the model. A parameter C regulates the smoothness of 

functionf(xi). The optimal choice of C parameter in this study was based on 10-fold cross-

validation (see below).

(6) Relevance vector regression (RVR): RVR is a Bayesian sparse learning model 

and has an identical functional form to SVR [Tipping, 2001]. The function is as follows:

f(xi) = ∑i = 1
p βiΦi(x) + β0

where β = (β0…,βp) is a vector of weights and Φi(x) = K(x,xi) is a linear kernel function 

defining the basis function. The sparsity of RVR is induced by the hyper-priors on model 

parameters in a Bayesian framework with the maximum a posteriori (MAP) principle. RVR 

determines the relationship between the target output and the covariates by enforcing 

sparsity. The L1-norm-like regularization used in RVR encourages the sum of absolute 

values to be small, which often drives many parameters to zero and provides significantly 

few basic functions. Notably, RVR has no algorithm-specific parameter.

The scikit-learn library (version 0.23.1) was used to implement OLS regression, ridge 

regression, Lasso regression, and elastic-net regression (http://scikit-learn.org/) [Pedregosa 

et al. 2011], the LIBSVM function in MATLAB (Mathworks, Natick, MA) was used to 

implement SVR (https://www.csie.ntu.edu.tw/~cjlin/libsvm/) [Chang and Lin, 2011], and the 

PRoNTo toolbox (http://www.mlnl.cs.ucl.ac.uk/pronto/) was used to implement RVR 

[Schrouff et al. 2013].

Brain-age prediction framework

The six algorithms were applied separately to each sample (HCP, Cam-CAN, ISMMS and 

COBRE) using identical procedures involving the following steps: (i) prior to modeling, 

each neuroimaging measure was linearly scaled so that all values in the feature set ranged 

between 0 and 1; (ii) a nested 10-fold cross-validation (10F-CV) was applied to the dataset 

of healthy individuals which was randomly split into 10 equal-sized subsets. For each cross-

validation, one subset was left out as the test subset while the remaining nine subsets were 
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used together as the training set for estimating the model parameters. These parameters were 

then applied to the left-out subset. Specifically, for ridge regression, Lasso regression, 

elastic-net regression, and SVR, cross-validation procedure was applied with an outer 10F-

CV to evaluate model generalizability and an inner 10F-CV to determine the optimal 

parameters (λ, α, or C) for these algorithms; (iii) the performance of each algorithm was 

quantified by the mean absolute error (MAE), averaged across all cross-validation folds; (iv) 

for each algorithm, the regression weights for each brain region were used for the 

comparative evaluation of the algorithms; the absolute value of these weights represents the 

importance of the corresponding features in the brain-age prediction of the model [Haufe et 

al. 2014].

For the ISMMS and COBRE samples, each of the 6 models was estimated in the healthy 

participants of each sample and then the regional regression weights were applied to the 

brain structural data of the respective patient group; brainPAD was then calculated for each 

algorithm by subtracting the chronological age of each individual from their brain-age as 

predicted from that algorithm.

Statistical analysis

Comparative evaluation of the algorithms was conducted within each dataset separately (i.e., 

HCP, Cam-CAN, ISMMS, COBRE) based on the within-sample similarity in predicted 

brain-age and brain regional regression weights as assessed using correlation analyses and 

hierarchical clustering with Ward’s minimum variance method for Euclidian distances 

implemented in MATLAB (Mathworks, Natick, MA) (Supplementary Material). In the 

ISMMS and COBRE samples only, case-control differences in brainPAD were examined 

using the t-statistic and effect sizes were expressed in terms of Cohen’s d. Significance was 

set at PFDR<0.05 with the false-discovery-rate (FDR) correction [Benjamini and Hochberg, 

1995].

Results

Comparative Performance of the algorithms in the HCP and Cam-CAN samples

The MAE and R values for each algorithm in the HCP and Cam-CAN samples are shown in 

Supplementary Table S3 and Supplementary Figure S1. In the HCP sample, MAE values for 

all algorithms ranged between 2.6-2.7 and pairwise correlations in individual predicted 

brain-ages between-algorithms ranged from 0.17-0.97 (Figure 1A). Hierarchical clustering 

of the individual predicted brain-ages identified three clusters; elastic-net regression and 

Lasso formed one cluster, SVR and RVR formed another and OLS and ridge regressions 

formed a third cluster (Figure 1B). In the Cam-CAN sample, MAE values for all algorithms 

ranged between 7.2-7.7 and correlations in individual predicted brain-ages between-

algorithms ranged from 0.76-0.99 (Figure 1C). Hierarchical clustering of the individual 

predicted brain-ages in the Cam-CAN sample showed that elastic-net regression, Lasso and 

ridge regression together formed one cluster, SVR and RVR formed another cluster while 

OLS regression showed the lowest similarity with all the other algorithms (Figure 1D).
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Comparative Performance of the algorithms in the healthy individuals from the ISMMS and 
COBRE samples

The MAE and R values for each algorithm in the ISMMS and COBRE samples are shown in 

Supplementary Table S4 and Supplementary Figure S2. In the ISMMS sample, correlations 

in individual predicted brain-ages between-algorithm ranged from 0.61-0.99 (Figure 2A). 

Hierarchical clustering of the individual predicted brain-ages in the ISMMS sample 

identified three clusters; the OLS regression model showed a very low degree of similarity 

with all the other algorithms while the elastic-net regression, Lasso and ridge regression 

clustered together as did the SVR and RVR (Figure 2B). The regional regression weights of 

each algorithm are shown in Supplementary Table S5 and Supplementary Figures S3-S5. In 

the COBRE sample, individual predicted brain-ages showed moderate to high between-

algorithm correlations (R range=0.55-0.99) (Figure 2C). Hierarchical clustering of the 

individual predicted brain-ages showed that elastic-net and ridge regression together formed 

one cluster, and SVR and RVR formed another cluster; and OLS and Lasso regression 

formed a third (Figure 2D).

BrainPAD in Schizophrenia

In the ISMMS sample, with the exception of OLS regression, the mean brainPAD values 

obtained by all algorithms were statistically higher in patients with schizophrenia compared 

to healthy individuals (all PFDR<0.001), with a range of 3.8 to 5.2 years (Supplementary 

Table S6; Figure 3A). The effect size of case-control differences was moderate (d range: 

0.23-0.66) (Supplementary Table S6). No sex differences in brainPAD were observed in 

patients with schizophrenia (PFDR>0.05). Similarly in the COBRE sample, the mean 

brainPAD values obtained by all algorithms were higher in patients with schizophrenia 

compared to healthy individuals (PFDR<0.001), with a range of 4.5 to 11.7 years 

(Supplementary Table S7; Figure 3). The effect size of case-control differences was large (d 
range=0.69-1.14) (Supplementary Table S7). No sex differences in brainPAD were observed 

in patients with schizophrenia (PFDR>0.05).

Discussion

In this study, we compared the performance of six commonly used linear machine learning 

algorithms in brain-age prediction in healthy individuals and patients with schizophrenia. 

Regardless of algorithm, brainPAD was consistently higher in patients with schizophrenia 

than in healthy individuals although the mean brainPAD values differed by algorithm.

Evaluation of the six algorithms in two sizable samples of healthy individuals from the HCP 

and Cam-CAN yielded reproducible results with regards to the similarity between Lasso 

regression and elastic-net regression, and between the SVR and RVR that consistently 

clustered together. This pattern was also repeated in the smaller case-control samples 

suggesting that it is largely independent of sample size or composition. OLS regression 

underperformed in all samples. OLS regression is widely used in the neuroscience research 

as it is relatively easy to implement even when the number of predictor variables is large. 

However, the presence of collinearity among the predictor variables may be a particular 

vulnerability of OLS regression when applied to brain structural data due to the lack of 
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regularization (or penalty) term in the OLS model. By contrast, ridge regression and SVR 

apply L2-norm regularization, Lasso regression includes L1-norm regularization, elastic-net 

regression includes both L1-norm and L2-norm regularization, and RVR applies 

regularization through a Gaussian prior. Regularized algorithms tended to shrink many 

regional weights to zero, so the brain-age prediction was based on relatively few brain 

regions. It is worth noting that, across models, these regional feature weights are selected 

based on statistical properties and, they do not necessarily convey information about 

neurobiological processes [Haufe et al. 2014].

BrainPAD in patients with schizophrenia was higher than those of healthy individuals across 

all six algorithms. The mean brainPAD in patients ranged from 3.4 to 5.2 years in the 

ISMMS sample and from 4.3 to 9.4 years in the COBRE sample. In general, these findings 

are aligned with the range of the brainPAD values reported in previous studies in 

schizophrenia (range=2.6-8 years) [Koutsouleris et al. 2014; Schnack et al. 2016; Nenadic et 

al. 2017; Hajek et al. 2019; Shahab et al. 2019]. The current study demonstrates that the 

choice of algorithm has significant implications for brainPAD estimation given the variation 

observed when different algorithms were applied to the same dataset.

We acknowledge several limitations that could be addressed in future studies. The focus of 

this study was on the methodological aspects of computing brain-age in schizophrenia and 

not on the biological meaning of increased brainPAD in patients. The mechanisms 

underlying increased brainPAD in schizophrenia remain unclear. Schnack et al. [2016] have 

previously shown that the greater deviance in brainPAD is likely to occur within the first five 

years from disease onset thus implicating mechanisms that may be relevant or more active at 

the early stages of schizophrenia. All models used FreeSurfer-derived morphometric features 

and it is possible that the results may differ if finer morphometric parcellations are used. 

Schizophrenia is associated with abnormalities in other structural phenotypes, such as 

gyrification [Palaniyappan and Liddle, 2012] as well as in patterns of brain activation and 

functional connectivity [Karbasforoushan and Woodward, 2012] which were not examined 

here. Only linear regression models were evaluated while future work could assess nonlinear 

regression models such as Gaussian process regression [Jiang et al. 2019], random forest 

regression, and deep learning models [Bashyam et al. 2020; Cole et al. 2017; Jiang et al. 

2019] but at the cost of interpretability and model complexity.

In summary, we provide evidence that linear machine learning algorithms, with the 

exception of OLS regression, provided similar performance for brain-age prediction on the 

basis of a combination of cortical and subcortical structural measures. There was variation in 

the mean brainPAD across algorithms even through they were applied to the same datasets. 

Therefore algorithm choice could be an important source of inter-study variability. Further 

studies are needed to address variations in brain-age prediction in schizophrenia attributable 

to other parameters and in other neuroimaging phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Different machine learning algorithms have been used to compute brain-predicted-age-

difference (brainPAD) in schizophrenia

Inter-study BrainPAD variability is typically attributed to schizophrenia-related 

heterogeneity rather than the algorithms used

Comparison of 6 different algorithms in 4 independent samples yielded consistent 

differences in their performance

BrainPAD estimates in the same sample of patients with schizophrenia differed by up to 

10 years depending on the algorithm used
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Figure 1. Similarity in predicted brain age in healthy individuals in the HCP and Cam-CAN 
samples across algorithms.
(A) HCP: Similarity matrix representing between-algorithm correlations of individual 

predicted brain-ages in healthy individuals; (B) HCP: Distance matrix and dendrogram 

resulting from hierarchical clustering of the individual brain-age results of the six 

algorithms; (C) Cam-CAN: Similarity matrix representing between-algorithm correlations of 

individual predicted brain-ages in healthy individuals; (D) Cam-CAN: Distance matrix and 

dendrogram resulting from hierarchical clustering of the individual brain-age results of the 

six algorithms. OLS: Ordinary least squares regression; Lasso: Least absolute shrinkage and 

selection operator; SVR: Support vector regression; RVR: Relevance vector regression; 

HCP: Human Connectome Project; Cam-CAN: Cambridge Centre for Ageing and 

Neuroscience Project.
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Figure 2. Similarity in predicted brain age in healthy individuals in the ISMMS and COBRE 
samples across algorithms.
(A) ISMMS: Similarity matrix representing between-algorithm correlations of individual 

predicted brain-ages in healthy individuals; (B) ISMMS: Distance matrix and dendrogram 

resulting from hierarchical clustering of the individual brain-age results of the six algorithms 

in healthy individuals; (C) COBRE: Similarity matrix representing between-algorithm 

correlations of individual predicted brain-ages in healthy individuals; (D) COBRE: Distance 

matrix and dendrogram resulting from hierarchical clustering of the individual brain-age 

results of the six algorithms in healthy individuals;. OLS: Ordinary least squares regression; 

Lasso: Least absolute shrinkage and selection operator; SVR: Support vector regression; 

RVR: Relevance vector regression. COBRE: Center of Biomedical Research Excellence; 

ISMMS: Icahn School of Medicine at Mount Sinai.
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Figure 3. Brain-predicted age difference the ISMMS and COBRE samples
Violin plots showing the distribution of individual brain-predicted age difference (brainPAD) 

scores in patients with schizophrenia in the ISMMS sample (top panel) and the COBRE 

sample (lower panel). Horizontal line within each violin plot represents the mean and the 

white circle the median values. OLS: Ordinary least squares regression; Lasso: Least 

absolute shrinkage and selection operator; SVR: Support vector regression; RVR: Relevance 

vector regression. COBRE: Center of Biomedical Research Excellence; ISMMS: Icahn 

School of Medicine at Mount Sinai.
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