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Abstract

Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, 

anti-oxidant, and anti-cancer activities. Celastrol has shown preventive/therapeutic effects in 

experimental models of several chronic diseases. These include chronic inflammatory and 

autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematous, 

inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer’s 

disease, Parkinson’s disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 

diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with 

disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to 

limit disease progression and to facilitate recovery, where feasible. The major cell signaling 

pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT 

pathway, PI3K/Akt/mTOR pathway, and anti-oxidant defense mechanisms. Furthermore, celastrol 

modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein responses, innate 

and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the 

mechanisms of action of celastrol and information about its disease-modulating activities in 

experimental models have set the stage for testing celastrol in clinical studies as a therapeutic 

agent for several chronic human diseases.
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INTRODUCTION

Celastrol is a bioactive component of several traditional Chinese medicinal plants including 

Tripterygium wilfordii (Thunder God Vine), Celastrus orbiculatus, Celastrus aculeatus 
Celastrus reglii, Celastrus scandens, and others that belong to the Celastraceae family [1–5]. 

The extracts of the root, bark and stem of some of these plants have long been used in China 

and other Asian countries for the treatment of a wide range of chronic inflammatory 
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disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and 

allergies [1–5]. In this article, we describe the diverse molecular and cellular pathways 

modulated by celastrol, with emphasis on chronic inflammatory, autoimmune, 

neurodegenerative, and metabolic diseases [6–12]. Celastrol also possesses anti-cancer 

activity [13–15,5]. A summary of the anti-cancer mechanisms employed by celastrol is also 

presented at the end.

PHYSICO-CHEMICAL PROPERTIES OF CELASTROL

Celastrol is a pentacyclic triterpene (Figure 1) that belongs to a small class of organic 

compounds called quinone methides. It has a molecular weight of 450.6 and its molecular 

formula is C29H38O4. It is a pale brown to orange red crystalline powder, and its melting 

point is between 219–2300 C. Celastrol has maximum UV/visible absorption spectra at 253 

and 424 nm. It is sparingly soluble in water, but is soluble in nonpolar solvents such as 

dimethylsulfoxide (DMSO) and ethanol. Celastrol is an electrophilic compound and it can 

react with nucleophilic thiol groups of cysteine residues of a variety of proteins to form 

adducts or induce other modifications within those proteins [16,17,6,18]. Apparently, this is 

one of the mechanisms by which celastrol can affect biological functions of proteins. 

Celastrol is also known as tripterine/tripterin, but the name celastrol is commonly used.

CELASTROL CONTROLS INFLAMMATION AND OTHER PATHOLOGICAL 

PROCESSES IN ANIMAL MODELS OF CHRONIC DISEASES

Celastrol has been shown to be beneficial in various chronic disease conditions in studies in 

animal models of immune-mediated diseases, neurodegenerative diseases, and others. The 

preventive/therapeutic potential of celastrol in various in vivo and in vitro models of these 

diseases is summarized in Table 1. Also mentioned therein are the cell signaling pathways as 

well as cellular and molecular targets of celastrol in various disease processes. The details of 

these and other mechanisms of action of celastrol are described below in separate sections. 

In addition, celastrol has potent anti-cancer activity. The mechanisms underlying the anti-

cancer activity of celastrol are summarized below in a separate section.

Inflammatory, autoimmune, and allergic diseases

For rheumatoid arthritis (RA), using the rat adjuvant arthritis (AA) model, mouse collagen-

induced arthritis (CIA) model and fibroblast-like synoviocytes from RA patients (RA-FLS) 

culture model, celastrol has been shown to reduce the severity of clinical and 

histopathological features of arthritis, as well as to modulate the production of pro-

inflammatory cytokines and chemokines [8,9,19], to re-set the T helper 17 (Th17)/T 

regulatory (Treg) balance to facilitate the suppression of arthritis [20], and to afford 

protection against bone damage [8,9,19] (Table 1A). Celastrol also inhibits RA-FLS invasion 

and protects against bone and cartilage damage [21]. For multiple sclerosis (MS), celastrol is 

shown to modulate Th17 responses, to shift Th1 responses towards Th2, and to increase the 

production of anti-inflammatory cytokines in the experimental autoimmune 

encephalomyelitis (EAE) model of MS [22,10]. For systemic lupus erythematosus (SLE) 

(also known as lupus), celastrol treatment decreases transforming growth factor (TGF)-β 
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production, urine protein excretion, and serum autoantibody levels in BW F1 and BALB/c 

mouse models of SLE [23–25]. For ulcerative colitis, using the mouse dextran sulphate 

sodium (DSS)-induced colitis model, celastrol has been shown to modulate oxidative stress, 

inflammatory cytokines and intestinal homeostasis [11]. For asthma and other 

hypersensitivity reactions, celastrol inhibits histamine and eotaxin production and other 

mediators involved in hypersensitivity reactions [26–29]. The main mediators and pathways 

targeted by celastrol in above-mentioned diseases are described in Table 1A.

Neurodegenerative disorders

The effects of celastrol on MS, a neurological disease of autoimmune origin, have been 

described above. For other neurological diseases such as Parkinson’s disease, Alzheimer’s 

disease and amyotrophic lateral sclerosis (ALS or Lou Gehrig’s disease), celastrol has been 

shown to modulate pro-inflammatory cytokine production, to prevent the generation of 

reactive oxygen species (ROS), to limit oxidative damage, to protect against cell death, and 

to regulate heat-shock proteins (Hsps), as observed in mouse models and in vitro models of 

these diseases (Table 1B) [30–34,12,35–37]. For Gaucher disease (GD), celastrol modulates 

molecular chaperones and increases glucocerebrosidase activity in the GD fibroblasts model 

[38]. Celastrol is also known to modulate age-related macular degeneration [39].

Atherosclerotic, Metabolic, and Infectious diseases

Celastrol can inhibit platelet activation [40], prevent atherosclerotic plaque size in apo E-

deficient mice [41], and decreased ratio of the plaque area and the arterial wall cross-section 

area in a rabbit model of carotid atherosclerosis [41], thus revealing the anti-atherosclerosis 

effect of this natural triterpene (Table 1C). Recently, celastrol has been reported to be a 

leptin sensitizer, whose effects are manifest as reduced intake of food, increased energy 

expenditure, and weight loss, and thereby it may potentially serve as an anti-obesity agent 

[42]. Celastrol is also effective in improving insulin resistance and limiting renal injury in a 

mouse model of Type 2 diabetes [43]. Furthermore, celastrol can modulate human 

immunodeficiency virus (HIV) 1- transactivator of transcription (Tat)-induced inflammatory 

responses in astrocytes in vitro by inhibiting the activation of JNK, MAPK, AP-1, and NF-

kB as well as the expression of pro-inflammatory chemokines (e.g., CXCL10, IL-18, and 

monocyte chemotactic protein-1 (MCP-1)) and adhesion molecules such as intracellular 

adhesion molecule-1 (ICAM-1)/vascular cell adhesion molecule-1 (VCAM-1) [44]. 

Celastrol has also been reported to target defined functional components of pathogens such 

as the HIV-Tat [18] to inhibit the transcription and replication of that virus, and the enzyme 

enoyl-acyl carrier protein reductase of Plasmodium falciparum [45], which is a drug target 

for this malaria parasite. However, because of the limited scope of this article, we have not 

elaborated further on direct effects of celastrol on various pathogens.

CELASTROL MODULATES CELL SIGNALING PATHWAYS OF 

INFLAMMATION

Inflammation involves interplays among a variety of cellular, molecular and biochemical 

mediators that are activated/induced in response to different pro-inflammatory stimuli. These 

mediators comprise diverse pathways (Figure 2) that are described below. Inflammation is 
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associated with multiple diseases, including chronic inflammatory diseases, autoimmune 

diseases, obesity, and cancer. Celastrol controls inflammation by targeting one or many of 

these pathways depending on the underlying disease process.

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway is a 

central regulator of inflammation. A broad range of pro-inflammatory stimuli including 

cytokines, growth factors, and microbial products activate the I-kappa B kinase (IKK) 

complex consisting of IKK1, IKK2 and NF-κB essential modulator (NEMO). Activated 

IKK complex phosphorylates I-kappa B (IκB), which leads to ubiquitination and 

proteasomal degradation of IκB. The degradation of IκB in turn activates NF-κB, which 

then translocates to the nucleus, where it binds to DNA and regulates the expression of 

several target genes. NF-kB activation enhances the production of pro-inflammatory 

cytokines (e.g., interleukin-1 β (IL-1β), IL-6 and tumor necrosis factor α (TNFα)) and other 

inflammatory mediators (e.g., matrix metalloproteinases (MMPs) and inducible nitric oxide 

synthase (iNOS)) [46,47], without much effect on the induction of anti-inflammatory 

cytokines (e.g., IL-10 or IL-1 receptor antagonist (IL-1Ra)) [48]. Celastrol inhibits NF-κB 

activation and regulates NF-κB-regulated gene expression. It has been suggested that 

celastrol targets cysteine 179 in IKK [16] and blocks IKK activity as well as the degradation 

and phosphorylation of IκB [21,49,16]. This in turn blocks the activation of NF-κB and its 

nuclear translocation.

Mitogen activated protein kinase (MAPK) pathway is another important signal transduction 

pathway besides NF-κB pathway that is critical for immune-mediated inflammatory 

responses [50]. MAPKs are a family of serine/threonine protein kinases [51]. Three well-

defined members of this family are the extracellular signal-regulated kinase (ERK), c-Jun N-

terminal kinase (JNK), and p38 MAPK, and they are activated by pro-inflammatory stimuli, 

including cytokines [50]. ERK signal transduction pathway leads to the activation of 

transcription factors c-Jun, c-Fos, and activating transcription factor 2 (ATF-2), whereas 

JNK activation leads to the activation of c-Jun and ATF-2. Furthermore, the p38 MAPK-

mediated processes involve the participation of transcription factors cAMP response 

element-binding protein (CREB) and ATF-2 [50,52,53]. Celastrol selectively regulates the 

MAPK pathway. It inhibits the phosphorylation of JNK and ERK in various models of 

inflammation and arthritis [27,54,8]. However, activation of JNK by celastrol has also been 

observed in another system [55]. For p38 MAPK, one report stated that phosphorylation of 

p38 MAPK is unaffected by celastrol [56], whereas another [57] indicated that celastrol can 

activate p38 MAPK; the latter effect has been associated with the anti-metastatic activity of 

celastrol against cancer.

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway is a 

common signaling cascade for many cytokines [58] [59]. JAKs are known to associate with 

the cytoplasmic domain of cytokine receptors for interferon (IFN)-α/β, IFNγ, IL-2, IL-4, 

IL-6, IL-10, IL-12/23 and others [58]. In general, the binding of these cytokines to their 

respective receptors phosphorylates JAK, which then leads to the phosphorylation of STATs. 

Activated STATs dimerize and translocate to the nucleus, where they bind to promoter 

regions of cytokine-responsive genes and thereby activate gene transcription [58]. Different 

STATs are involved in the differentiation of naïve T cells into particular T cell subsets (Th1, 
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Th2, Th17 and Treg). In our studies, we have shown that celastrol inhibits STAT3 activation 

and suppress IL-17 expression as well as Th17 differentiation in the rat AA model [20,8]. In 

models of cancer such as multiple myeloma and hepatocellular carcinoma, constitutive 

STAT3 activation plays a role in cell proliferation, survival, and metabolism, and thereby to 

the disease process. Celastrol is shown to inhibit STAT3-mediated cell proliferation [60,61]. 

It involved inhibition of activation of upstream JAK1 and JAK2. However, effects of 

celastrol on other JAKs and STATs remain to be determined.

Another signaling pathway affected by celastrol is phosphatidylinositol-3-kinase 

(PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway, which is involved in 

immune-mediated diseases and cancer [62–67]. Altered activation of the PI3K/Akt/mTOR 

pathway is observed in many human tumors, and it regulates the proliferation, 

differentiation, metabolism and survival of cancer cells [68]. Furthermore, there is an 

association between the accumulation of hypoxia-inducible factor-1 (HIF-1) and amplified 

PI3K/Akt/mTOR pathway signaling [69]. HIF-1 is a transcription factor highly expressed 

under hypoxic conditions and regulates cell survival response to hypoxia and cancer 

[63,70,71]. Inhibitors of HIF-1 have been tried for cancer therapy [72]. Celastrol can inhibit 

both PI3 activity as well as HIF-1 [63,66]. Celastrol inhibited HIF-1 activity in various 

cancer cell lines by decreasing the accumulation of HIF-1 and preventing the expression of 

HIF-1 target genes. Furthermore, the accumulation of HIF-1 by celastrol is correlated with 

inhibition of the phosphorylation of mTOR, ribosomal protein S6 kinase (p70S6K), 

eukaryotic initiation factor 4E (eIF4E) and ERK [63]. Contrary to the above, celastrol is also 

reported to induce HIF-1 accumulation through the induction of ROS and Akt/p70S6K 

signaling, and promote transcription of HIF target genes [70]. Therefore, additional studies 

are needed to clearly understand the role of celastrol in the regulation of mTOR and HIF-1.

Celastrol possesses anti-oxidant activity. Oxidative stress is one of the mediators of 

inflammation [73]. Oxidative stress builds up with the generation of high levels of reactive 

free radicals, such as reactive oxygen species (ROS; e.g., chemically reactive molecules 

derived from O2 mainly O2
− (superoxide anions), H2O2 (hydrogen peroxide) and OH• 

(hydroxyl radicals)) and reactive nitrogen species (RNS; e.g., radicals derived from nitrogen 

and oxygen, particularly nitric oxide (NO)) in the cell [74,75]. Celastrol is shown to inhibit 

lipid peroxidation in rat liver mitochondria by direct radical scavenging [76] as well as 

neutralizing oxygen radicals [77]. Celastrol also enhanced the antioxidant defense system 

and offered protection against bleomycin-induced pulmonary fibrosis in rats by restoring 

antioxidant enzymes such as hemoxygenase-1 (HO-1), glutathione-S-transferase (GSTs) and 

nicotinamide adenine dinucleotide phosphate (H) (NADP(H)): quinine oxidoreductase 

(NQO1) via the NF-E2-related factor-2 (Nrf2) pathway [78]. Similarly, celastrol decreased 

obesity-induced oxidative stress by increasing antioxidant enzymes and inhibiting NADH 

oxidase and ROS [79]. Defense against oxidant system by celastrol has also been attributed 

to decreased expression of iNOS and NO production [30,34], and the blocking of reactive 

thiols [17]. In contrast to the above, celastrol has been reported to induce ROS accumulation 

and to initiate apoptosis through the down-regulation on HSP90 in tumor cells [80]. 

Similarly, in osteosarcoma, celastrol caused G2/M phase arrest, and induced apoptosis and 

autophagy via the ROS/JNK signaling pathway [81].
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CELASTROL HAS ANTI-ANGIOGENIC ACTIVITY AND PROTECTS AGAINST 

ENDOTHELIAL BARRIER DYSFUNCTION

Angiogenesis, the formation of new blood vessels, is a hallmark of cancer [82–84]. 

However, autoimmune diseases such as RA are also characterized by angiogenesis in the 

target organ, the inflamed joints [85,86]. Accordingly, anti-angiogenic therapy has been 

considered for both these categories of disorders [87,86]. As discussed above, celastrol 

treatment inhibits the progression of autoimmune arthritis in experimental models of AA 

and CIA [20,9,8,88]. Similarly, celastrol suppresses tumor growth, for example, in mouse 

models and in vitro models of human prostate cancer [89,90]. Interestingly, celastrol has 

been shown to inhibit angiogenesis, both in vitro and in vivo [91,83], and to inhibit vascular 

endothelial growth factor (VEGF)-induced Akt/mTOR/p70S6K signaling [83]. Furthermore, 

celastrol can inhibit hypoxia-mediated angiogenesis, which involves inhibition of HIF-1α 
and its downstream genes such as VEGF [92]. Celastrol’s ability to inhibit Hsp90 was also 

implicated in reduced HIF-1α in this process. In another study, celastrol was shown to 

inhibit vasculogenesis by decreasing VEGF secretion, adhesion of endothelial cells to the 

extracellular matrix (ECM) and their subsequent migration, and tubule formation [93]. 

Inhibition of Akt/endothelial nitric oxide synthase (eNOS) signaling was implicated in this 

process. Celastrol has also been reported to inhibit lipopolysaccharide (LPS)-induced 

angiogenesis, which involved suppression of Toll like receptor- 4 (TLR-4)-mediated NF-kB 

activation [94], and to inhibit angiogenesis via suppression of VEGFR-1 and VEGFR-2 

expression [95].

In RA, vascular endothelial cell physiology is relevant not only for angiogenesis but also for 

immune cell interaction and migration through blood vessels, as well as for maintaining a 

healthy endothelial barrier. In this regard, celastrol has been shown to inhibit the expression 

of cytokine-induced adhesion molecules such as ICAM-1 and VCAM-1 [96], and to prevent 

endothelial barrier dysfunction by inhibiting endogenous peroxynitrite formation in 

endothelial cells exposed to pro-inflammatory stimuli [97]. The latter effect involved 

inhibition of JAK-2-dependent iNOS and NADPH oxidase type 1 (Nox-1) induction.

CELASTROL-INDUCED MODULATION OF HEAT-SHOCK RESPONSE AND 

ITS POTENTIAL THERAPEUTIC APPLICATIONS IN CHRONIC DISEASES

Heat-shock proteins (Hsps), also known as Stress proteins, can be induced by heat and other 

types of stimuli that cause cellular stress [98,99]. These are highly conserved proteins 

evolutionarily. Hsps can be categorized into different families based on their molecular mass 

(kD), for example, Hsp110, Hsp90, Hsp70, Hsp60, Hsp40, and small Hsps. One of the major 

functions of Hsps is to protect cells from damage under different types of stressful 

conditions [98,99]. Acting as chaperones, Hsps bind to cellular proteins, ensure proper 

folding of cellular proteins, attempt to repair defective proteins, and protect them against 

denaturation and other types of damage. Hsps are also involved in signal transduction and 

apoptosis. Thus, heat-shock response is cytoprotective under situations that otherwise would 

promote apoptosis of cells. Stress-inducible heat-shock transcription factor-1 (HSF1) plays 
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an important regulatory role in response to environmental stress and pathophysiological 

conditions.

Dysregulation of cellular stress pathways and protein folding can lead to intracellular 

accumulation of protein aggregates, which is turn can induce tissue pathology [100,101]. 

Many pathophysiological conditions including neurodegenerative disorders (e.g., 

Alzheimer’s disease, Parkinson’s disease), cardiovascular diseases, cancer, diabetes, and 

aging are associated with accumulation of misfolded and/or aggregated proteins within 

certain tissues, attributable in part to defective cellular stress response pathways 

[32,17,102,100,101]. In addition, inflammation and oxidant damage also contribute to the 

pathogenic processes in these disorders. Accordingly, pharmacological agents that possess 

anti-inflammatory and anti-oxidant activities, and can reset these defective pathways are 

increasingly being sought [32,17,102].

Celastrol has been shown to have a cytoprotective effect in response to stress-induced cell 

death. Celastrol can induce the expression of various Hsps, for example, Hsp70, Hsp40, and 

Hsp27, by activation of HSF1 and these Hsps might contribute to its cytoprotective effect 

[103]. Celastrol’s anti-oxidant attributes can also contribute to its cytoprotective effects. As 

described under cell signaling, the anti-oxidant response involves transcription factors Nrf-2 

and Atf4, and celastrol has been shown to activate both these transcription factors [17]. In 

one study, celastrol’s cytoprotective effect was shown to be mediated via induction of Hsp32 

(also known as heme oxygenase-1; HO-1) [104]. This induction of Hsp32 was mediated via 

Nrf-2 instead of HSF-1, and Hsp32 in turn inhibited pro-apoptotic JNK. Besides the 

induction of Hsps mentioned above, inhibition of Hsp90 has been shown to have a 

therapeutic effect in certain neurodegenerative diseases; the latter effect is attributable to 

selective proteasomal degradation of Hsp90 client proteins [100]. Importantly, celastrol is an 

inhibitor of Hsp90 [105,106], and it can modulate several nuclear transcription factors that 

are Hsp90 clients, including the aryl hydrocarbon receptor (AhR) [105],[106]. The 

involvement of celastrol-induced inhibition of Hsp90 and its anti-cancer effect is discussed 

below.

ANTI-CANCER ACTIVITY OF CELASTROL

Celastrol is known to have anti-cancer and anti-metastatic activities [107,82,83,15,108]. In 

addition, celastrol is shown to enhance the therapeutic efficacy of other anti-cancer drugs 

when used with them, and to potentiate the beneficial effects of radiotherapy [109,110]. The 

major processes involved in these activities and affected by celastrol include, the inhibition 

of cellular proliferation, induction of apoptosis, prevention of malignant tissue invasion, and 

blockade of angiogenesis [82,7,111,15]. Celastrol can inhibit cell proliferation and induce 

apoptosis via multiple actions. These include, potentiation of TNF-induced apoptosis via 

suppression of the NF-kB pathway [4]; downregulation of cytokines such as IL-6, which is 

an inducer of cell proliferation [112]; activation of caspases [113–115]; inhibition of the 

expression of anti-apoptotic proteins such as cellular inhibitor of apoptosis protein 1 and 2 

(cIAP1 and cIAP2), cellular FLICE-inhibitory protein (FLIP), and B-cell lymphoma 2 

(Bcl-2) [4,114]; induction of cell cycle arrest [81,116]; and downregulation of cell survival 

proteins coupled with upregulation of death receptors [117]. Furthermore, celastrol inhibits 
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adhesion, migration and invasion of tumor cells via reduced expression of specific integrins, 

as well as reduced MMP activity [118–120]. In addition, as described above, celastrol can 

suppress angiogenesis [63,83].

Two additional mechanisms contribute to the anti-cancer effects of celastrol, namely 

inhibition of Hsp90 and proteasome inhibition. In regard to Hsp90, celastrol directly binds to 

the C-terminal domain of Hsp90 inducing oligomerization, and it interferes with specific 

biological functions through modulation of Hsp90-associated nuclear transcription factors 

[121,106]. In addition, celastrol has been shown to inhibit Hsp90 in thiol-related 

reactions[116], and to downregulate Hsp90 client proteins via inhibition of enzymes of 

mitochondrial complexes and accumulation of ROS [80]. Furthermore, celastrol-induced 

inhibition of Hsp90 contributes to HIF-1α inhibition and cell cycle arrest [92]. As far as the 

proteasome is concerned, celastrol has been shown to inhibit proteasome function by 

targeting its chymotrypsin-like activity. This in turn results in accumulation of ubiquitinated 

proteins and some of the known proteasomal substrates such as cell cycle-regulating proteins 

and others (IkBa, Bax and p27, etc.) leading to inhibition of cell proliferation coupled with 

induction of apoptosis [122,123]. Accordingly, proteasomal inhibition has also been 

exploited in cancer therapy [124,123]. Inhibition of NF-kB activation may contribute to the 

beneficial effect of proteasomal inhibition therapy. In addition, NF-kB inhibitors combined 

with standard chemotherapy drugs might be of benefit in the chronic inflammatory stage of 

tumor progression [125]. However, this aspect of cancer therapy needs further evaluation.

Another beneficial effect of celastrol in cancer relates to its ability to remodel bone by 

relatively reducing osteoclastic activity, while maintaining or increasing osteoblastic activity. 

Metastasis of cancer to the bone may cause osteolysis, which involves increased bone 

resorption. In regard to bone remodeling, the receptor activator of nuclear factor-κB ligand 

(RANKL) promotes the proliferation and differentiation of osteoclasts, whereas 

osteoprotegerin (OPG) secreted by the osteoblasts is a soluble decoy receptor for RANKL, 

and it serves as a natural inhibitor of osteoclast activation. In a study on an osteolytic bone 

metastasis model, celastrol suppressed trabecular bone loss, reduced the number and size of 

osteolytic bone lesions, osteoclast number, and bone resorption [126]. In another study on 

human osteosarcoma cells, celastrol caused G2/M phase cell cycle arrest, and induced 

apoptosis and autophagy [81]. These observations in cancer studies are supported by the 

results of our study in rat AA model [9]. Celastrol protected against bone and cartilage 

damage by regulating pro-inflammatory cytokines, inhibiting RANKL, increasing 

RANKL/OPG ratio, inhibiting the secretion of matrix-degrading enzymes such as MMPs, 

and reducing the number of osteoclasts without much effect on osteoblasts [9].

USE OF CELASTROL-CONTAINING NATURAL PRODUCTS FOR THE 

TREATMENT OF CHRONIC INFLAMMATORY AND AUTOIMMUNE DISEASES 

IN HUMANS.

Celastrol is present in several plants belonging to the celastraceae family. Some of these 

plants have been used in traditional Chinese medicine (TCM) for several decades/centuries 

as medicinal herbs for the treatment of a wide range of chronic inflammatory disorders. For 
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example, the extracts of the root, bark and stem of Tripterygium wilfordii (Thunder God 

Vine), Celastrus orbiculatus, Celastrus aculeatus and some other members of the 

Celastraceae family have been used for the treatment of RA, SLE, and other disorders 

[5,1,3,2,127]. However, a large part of this information is based on folklores as well as 

documented descriptions of the use of these herbal products in old archived literature. 

Limited available information is derived from studies on small numbers of patients and/or 

scientifically-controlled randomized clinical studies on the use of T. wilfordii in chronic 

inflammatory and autoimmune diseases such as RA, juvenile RA, ankylosing spondylitis, 

and SLE [5,128–132]. Of these, the most reliable clinical studies have been performed using 

T. wilfordii in patients with RA. The efficacy of T. wilfordii extract against RA was 

compared with that of two of the mainstream anti-arthritic drugs, namely sulphasalazine and 

methotrexate. Interestingly, T. wilfordii extract reduced the severity of RA as assessed by 

well-established criteria, and the efficacy of T. wilfordii was comparable to, or better than, 

that of sulphasalazine/ methotrexate [128,133–136]. Furthermore, the combination of T. 
wilfordii and methotrexate was better than methotrexate alone. However, the toxicity profile 

of this natural product needs further assessment before T. wilfordii is approved for 

therapeutic purposes.

CONCLUDING REMARKS

Celastrol, a natural triterpene, has anti-inflammatory, anti-oxidant, and anti-cancer activities. 

Besides targeting multiple cell signaling pathways, celastrol modulates several other 

pathophysiological processes involved in chronic inflammatory diseases, autoimmune 

diseases, and cancer. Most of this information on celastrol is based on in vitro model 

systems in the laboratory and preclinical studies in animal models of human diseases. These 

studies have also offered mechanistic insights into the use of celastrol-containing herbal 

extracts from celastraceae family of plants for the treatment of some of these disorders in the 

traditional systems of medicine. Taken together, this knowledge has encouraged the clinical 

testing of T. wilfordii and related herbal preparations. In particular, the testing of T. wilfordii 
in RA patients has shown promising results. It is hoped that in the near future, T. wilfordii 
and similar other natural products might be approved for use in mainstream therapy as 

adjuncts for, or in place of, conventional allopathic drugs for RA and some other chronic 

diseases. This would be a significant contribution to the therapeutic arsenal against several 

chronic debilitating human diseases.
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Figure 1. Molecular structure of celastrol.
Celastrol is a pentacyclic triterpenoid with a molecular weight 450.6 and molecular formula 

C29H38O4. It belongs to a small class of organic compounds known as quinone methides. 

Celastrol has an acidic group at one end and a phenolic quinone at the other end.
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Figure 2. Cell signaling pathways and other disease-related processes modulated by celastrol for 
the control of chronic diseases.
A schematic representation of the cell signaling pathways that are regulated by celastrol. 

These pathways are activated in response to diverse stimuli. Celastrol is known to target one 

or more of these pathways leading to the suppression of inflammation associated with 

various chronic diseases including inflammatory diseases, autoimmune diseases, obesity, 

and cancer. Besides cell signaling, celastrol modulates other disease-related processes such 

as angiogenesis, heat-shock protein responses, proteasome activity, etc. to limit disease 

progression and to facilitate recovery, where feasible.
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