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Abstract

The structure of neat melts of polymer-grafted nanoparticles (GNPs) is studied via coarse-grained 

molecular dynamics simulations. We systematically vary the degree of polymerization and grafting 

density at fixed NP radius, and study in detail the shape and size of the GNP coronas. For 

sufficiently high grafting density, chain sections close to the NP core are extended and form a dry 

layer. Further away from the NP there is an interpenetration layer, where the polymer coronas of 

neighboring GNPs overlap and the chain sections have almost unperturbed conformations. To 

better understand this partitioning, we develop a two-layer model, representing the grafted 

polymer around a NP by spherical dry and interpenetration layers. This model quantitatively 

predicts that the thicknesses of the two layers depend on one universal parameter, x, the degree of 

overcrowding of grafted chains relative to chains in the melt. Both simulations and theory show 

that the chain extension free energy is non-monotonic with increasing chain length at fixed 

grafting density, with a well defined maximum. This maximum is indicative of the crossover from 

the dry layer-dominated to interpenetration layer-dominated regime, and it could have profound 

consequences on our understanding of a variety of anomalous transport properties of these GNPs. 

Our theoretical approach therefore provides a facile means for understanding and designing 

solvent-free GNP-based materials.
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Over the past few decades, polymer nanocomposites have gained significant attention due to 

their wide range of applications in drug delivery,1–3 desalination,4–6 photonic,7,8 and 

phononic materials.9,10 These applications often require a homogeneous dispersion of 

nanoparticles (NPs) in the polymer matrix to optimize their physical properties. In practice, 

however, such uniform mixing is difficult to achieve, due to the chemical incompatibility 

between the two components. Instead, one often encounters undesired aggregation of the 

(inorganic) NPs in the (organic) polymer matrix, which can lead to deterioration of material 

properties and mechanical stability of the composite. Such phase separation can be 

prevented by grafting the polymers on the surface of the NPs, i.e., turning these two 

component systems into effectively one component systems.11–19 These hybrid particles, 

known as polymer-grafted NPs (GNPs) or hairy NPs, typically exhibit a core-shell 

morphology with a hard core and a soft corona. While many previous theoretical 

descriptions focused on GNPs mixed with small molecule solvents,20,21 we are interested in 

melts of GNPs where the surrounding medium is composed of other GNPs. This situation 

has received significantly less theoretical attention to date.22–25

The hybrid nature of GNPs can substantially improve, e.g., the mechanical,26–33 optical,34,35 

thermal,36,37 electrical,36,37 and rheological38,39 properties of a material in comparison to 

the corresponding bulk polymer or traditional physically mixed NP/polymer composites. 

These properties are controlled by the grafting density of the chains and their degree of 

polymerization, the size and shape of the cores, the interactions between the polymers and 

the cores, etc. For example, the elastic moduli of GNP systems can be tuned by varying the 

NP loading through the grafting density and/or the length of the grafted polymers. Even at 

fixed NP loading, the mechanical properties of GNPs depend on their microscopic details, as 

was demonstrated in recent experiments and simulations.30 In that work, significant 

deviations of the elastic moduli were observed compared to predictions based on a simple 

mean-field description,40 with sparsely grafted GNP systems exhibiting higher elastic 

moduli compared to densely grafted GNPs.30 This enhancement was attributed to the coil-

like conformations of the sparsely grafted chains, which promoted a higher degree of 

polymer interpenetration compared to densely grafted NPs with short chains. It is thus clear 

that the microscopic details of GNPs play an important role in their macroscopic material 

properties.

In previous experiments and simulations, the phase behavior of GNPs in neat melts or within 

polymer matrices was studied.41–47 It was found, e.g., that GNPs in such solvent-free 

conditions exhibit structural transitions from a simple liquid to a glass forming liquid, or 
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from star-polymer-like to colloid-like behavior with variations of grafted polymer length and 

grafting density.42,44,47 Recent field-based simulations have shown that GNPs in a 

homopolymer matrix exhibit an entropically driven mixing-demixing transition,46 which 

was controlled by the core size and the ratio of the lengths of the free and grafted polymers. 

In the demixed state, the GNPs self-assembled into a variety of nanostructures, such as 

sheets, wires, and capsules, depending on, e.g., the size and shape of the NPs, grafting 

density, length of the grafted polymers, and intermolecular interactions.48–50 However, to 

date, there is only a small number of studies on pure GNP melts that focus on the size, 

shape, and interpenetration of the polymer coronas of the GNPs on a microscopic level. 

Understanding these aspects could elucidate a variety of anomalous transport properties of 

these GNP systems.51

To fill this void, we investigate the structure of neat melts of GNPs via coarse-grained 

molecular dynamics (MD) simulations. We systematically vary the degree of polymerization 

and grafting density at fixed NP core radius, and study in detail the shape, size, and 

interpenetration of the polymer coronas surrounding the NP cores. Further, we analyze the 

conformations of the grafted polymers and compare them with their pure bulk polymer 

analogs to assess both the effects of chain grafting and of the presence of other GNPs. To 

rationalize our simulation results, we introduce a two-layer model, in which the polymer 

corona is divided into a dry layer, i.e., the region where only few monomers from 

surrounding GNPs were present, and an interpenetration layer, which is characterized by a 

significant overlap between grafted chains of surrounding GNPs. Sections of grafted chains 

belonging to the dry layer are extended, whereas parts in the interpenetration layer are 

almost unperturbed. This model predicts that the thicknesses of the two layers depend on a 

single parameter, which essentially describes the degree of overcrowding of grafted chains 

compared to unperturbed chains in a melt. The analytical predictions for the thicknesses of 

the dry and interpenetration layers are in excellent quantitative agreement with our 

simulation results across a broad parameter range with the use of a single adjustable 

constant.

Two-Layer Model

In our theoretical model, the grafted layer of a GNP consists of a dry and an interpenetration 

layer with thicknesses hdry and hinter, respectively [see the schematic shown in Fig. 1 (a)]. To 

estimate the overall brush thickness of the GNPs, h = hdry +hinter/2, we consider a single 

isolated GNP with a spherical polymer brush. In this case, the volume of the spherical shell 

between R and R + h is completely occupied by all monomers from the grafted chains, and 

the brush thickness is simply given by the space-filling condition

4
3π (R + ℎ)3 − R3 = Z N

ρ (1)

where R is the radius of the NP, Z = 4πR2ρg is the number of chains grafted to the NP with 

grafting density ρg, N is the number of Kuhn monomers per grafted chain, and ρ is the Kuhn 

monomer number density (assumed uniform) within the spherical shell. Thus, the total 

radius of the GNP is:
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Rtot = R3 + 3ZN
4πρ

1/3
(2)

and the brush thickness is given by

ℎ = Rtot − R = R3 + 3ZN
4πρ

1/3
− R . (3)

This estimate for h ignores that the actual shape of the polymer layers at dense packing must 

correspond to the Voronoi cells defined by the position of the NPs, e.g., a rhombic 

dodecahedron for the face-centered cubic (FCC) packing of spheres [see Fig. 1(b)]. In the 

simulations, the brush thickness h can be defined in various ways (see Simulations section 

and ESI for details). The resulting values for h are all within 5–10% of each other, and they 

all vary similarly with the parameters of the system N and Z (see Table 1). In our 

simulations, we chose the radially averaged center of the interpenetration layer to determine 

the brush thickness, and we can match the theoretical predictions by introducing an 

empirical shape factor α ≈ 0.93, that reduces all theoretical curves for h, hdry and hinter [see 

Eqs. (3), (8) and (10)] by 7%.

Next, we discuss the interpenetration between the polymer coronas from neighboring GNPs 

using the two-layer model. This model assumes that the dry and interpenetration layers are 

spherical, and that the overlap between neighboring GNPs is primarily pairwise. If we 

further posit that, on average, each grafted chain has ndry = N −ninter Kuhn monomers in the 

dry layer and the remaining ninter monomers in the interpenetration layer, then the space-

filling condition for the dry layer can be rewritten by analogy with Eq. (1)

4
3π R + ℎdry 

3 − R3 = Z ndry 
ρ . (4)

An analogous expression can be formulated for the interpenetration layer, which is equally 

shared between neighboring GNPs, by replacing in Eq. (1) h with hinter/2, and R with R+hdry

4
3π R + ℎdry + ℎinter/2

3 − R + ℎdry
3 = Z ninter

ρ . (5)

Here, we have assumed that all grafted chains enter the interpenetration layer which is 

corroborated by our simulations, where 98% to 100% of the grafted chains had at least one 

bead in the interpenetration layer. We can solve Eqs. (4) and (5) under the assumption that 

the chain sections in the interpenetration layer are unperturbed with root-mean-square end-

to-end distance

ℎinter  = bninter 
1/2 (6)

where b is the Kuhn length of the polymer. It is important to note that we can combine Eqs. 

(4) and (5), and then the result for hdry + hinter/2 is identical to the result for h [see Eq. (3)].
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A detailed derivation of the analytical solution of the two-layer model is provided in the ESI, 

and below we will focus on its key results. The main parameter of our analytical solution is

x = Z
πρb2Rtot

= Z
πρb2 R3 + 3ZN /(4πρ) 1/3 (7)

which monotonically decreases with increasing N at fixed Z, and monotonically increases 

with increasing Z at fixed N. To understand the physical basis of this parameter, we consider 

a volume Rtot 
3  in an unperturbed polymer melt. This volume is occupied by ρRtot 

3 /Ntot 

chains, where Ntot is defined through the equation Rtot
2 = Ntotb2. The number of chains that 

fill this volume in an unperturbed melt is on the order of ρb2Rtot, and therefore x is 

proportional to the ratio of the actual number of graft chains Z to the number of chains that 

occupy the same volume in an unperturbed melt. Hence, x ≈ O(1) corresponds to an (almost) 

unperturbed melt, whereas x ≫ 1 implies that the volume is overcrowded and the grafted 

chains are strongly extended.

We can write the analytical solution for hinter using the parameter x as

ℎinter  = 3Rtot (1 + x) 1 − 1 − 4
3

1
1 + x

2
. (8)

The volume fraction of the interpenetration layer in the GNP system, 

ϕinter  = Zninter /ρ / 4πRtot 
3 /3 , is then given by

ϕinter  = 27
4 x(1 + x)2 1 − 1 − 4

3
1

1 + x
2 2

. (9)

Hence, both hinter/Rtot and ϕinter depend only on the overcrowding parameter x. The rest of 

the GNP volume (fraction) is occupied by the NP core and a dry layer of extended chains. 

For R < Rtot − hinter/2, the thickness of the dry layer is given by

ℎdry  = Rtot  − R − ℎinter /2, (10)

whereas no dry layer exists if R > Rtot−hinter/2. In the latter case, our two-layer breaks down 

because the polymer corona is too thin to accommodate even unperturbed melt-like chains. 

Further, our theoretical model is physically meaningful only if there is enough polymer to 

uniformly fill the interstitial spaces between the NP cores. We can estimate this lower bound 

by considering the volume occupied by the grafted chains, Vpoly = ZN/ρ, and the void space 

between closely packed bare NPs, Vvoid = 8( 8 − 2π/3)R3.1 Therefore, we consider only 

cases where the conditions R < Rtot − hinter/2 and Vpoly/Vvoid ≥ 1 are both satisfied.

Supporting Information
Detailed derivation of the two-layer model; discussion of determination of brush thickness in simulations; additional information on 
end-to-end distances of grafted polymer chains; comparison of scaling models
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Figure 2(a)-(d) shows a comparison of the theoretical predictions of h, hdry, hinter/2, and 

ϕinter with the corresponding simulation results (see Simulations section for details). We 

fixed the NP radius to R = 7.5σ (σ being the diameter of a monomeric unit), and varied 

either the chain length N at fixed grafting density ρg = 0.47σ−2 or varied ρg at fixed N = 85. 

For the theoretical calculations, we used the average monomer number density of our 

simulations ρ = 0.9σ−3 (see Table 2) and the Kuhn length b = 1.28σ of this polymer model.
52 Using instead the actual monomer number density measured in the simulations (see Table 

2) leads to a change in brush thicknesses smaller than 2%, and was therefore disregarded for 

simplicity. For these parameters, our two-layer model is applicable for N ≳ 7 for GNPs with 

fixed ρg = 0.47σ−2, and for ρg ≳ 0.12σ−2 for GNPs with fixed N = 85. In all investigated 

cases, the theoretical predictions and simulation results for h, hdry and hinter/2 are in 

excellent agreement after we multiplied the theoretical curves by the shape factor α ≈ 0.93 

(see Fig. 2). For GNPs with fixed grafting density ρg = 0.47σ−2, both hdry and hinter/2 

increase with increasing N, with hdry > hinter/2 for the investigated range of N [see Fig. 2(a)]. 

For GNPs with fixed chain length N = 85, hdry increases with increasing ρg while hinter/2 

decreases [see Fig. 2(b)]. The reduced thickness of the interpenetration layer, hinter/(2Rtot), is 

a universal function monotonically decreasing with increasing x, with hinter/(2Rtot) ∝ x−1 for 

large x (see ESI). Similarly, the normalized sum of dry layer thickness and NP radius, (hdry 

+ R)/Rtot, is a universal function monotonically increasing with increasing x [see Fig. 2(c)], 

with (hdry + R)/Rtot ∝ 1 − x−1 for large x (see ESI). The volume fraction of the 

interpenetration layer, ϕinter, is a universal function of x which monotonically decreases with 

increasing x [see Fig. 2(d)], with ϕinter ∝ 3x−1 for large x (see ESI). The excellent agreement 

of the theoretical curves with the simulation data confirms that the structure of GNPs of 

different grafting densities ρg and chain lengths N are identical if they have the same x.

Due to grafting and space-filling constraints, the densely grafted chains are extended in 

comparison to unperturbed polymers in a melt. To quantify this effect, we now consider the 

chain extension free energy

Eext = 3kBTℎ2

2Nb2 = 3kBT
2Nb2 R3 + 3ZN

4πρ
1/3

− R
2

. (11)

This chain extension energy is a function of the ratio y = 3ZN/(4πρR3) of the polymer shell 

volume ZN/ρ to the NP core volume 4πR3/3

Eext  = 3kBT
8π

3Z
ρRb2y−1 (1 + y)1/3 − 1 2

(12)

where the coefficient 3Z/(Rb2ρ) is the ratio of the polymer shell volume ZN/ρ to the volume 

of a cone with base area b2N and height R. If the polymer shell volume is much smaller than 

the NP core volume, y ≪ 1, then Eext can be expanded with respect to y, leading to the 

planar brush result
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Eext
pln ≈ kBT

8π
Zy

ρRb2 = 3kBT
2

Z
4πρR2b

2
N . (13)

In the opposite limit, y ≫ 1, the chain extension energy decreases with increasing N because 

the layer thickness scales as h ∝ N1/3

Eext
sph ≈ 9kBT

8π
Zy−1/3

ρRb2 = 3kBT
2

3Z
4πρb3

2/3
N−1/3 . (14)

Thus, for small polymer to NP volume ratio y ≪ 1, the chain extension free energy increases 

as Eext ∝ y ∝ N, while for large volume ratio y ≫ 1 it decreases as Eext ∝ y−1/3 ∝ N−1/3.

Therefore, Eext goes through a maximum at ymax = 6 3 + 9 ≈ 19.4, corresponding to

Nmax = 4π(2 3 + 3)ρR3

Z ≈ 81ρR3

Z . (15)

This chain length corresponds to a polymer layer thickness

ℎmax = (6 3 + 10)1/3 − 1 R = 3R (16)

which is only 3 times larger than the NP radius. The value of the chain extension free 

energy at this maximum is

Eext
max = 3(2 3 − 3)kBT

8π
Z

ρRb2 ≈ 0.7kBT ρg
ρb2R . (17)

For the case of interest for our simulations, i.e., ρg = 0.47σ−2, R = 7.5σ, and ρ = 0.9σ−3, the 

theoretically predicted maximum of Eext is located at Nmax ≈ 93, as shown in Fig. 3(a). The 

simulation result for Eext has a maximum at Nmax = 85, which is in good agreement with the 

theoretical results when we multiply the latter by the square of the shape factor α2 ≈ 0.86. 

The maximum of Eext occurs at the same value of the volume ratio ymax ≈ 19.4, independent 

on whether the chains are strongly extended (Eext
max ≫ kBT ) or not extended at all 

(Eext 
max < kBT ), and is a result of the geometric crossover from a planar polymer layer around 

an NP (for small y) to a thick spherical polymer shell (for large y).

The case of interest for this work corresponds to GNPs which have a dry layer. It is 

interesting to note, that for such densely grafted NPs the spherical-like increase of the 

overall layer thickness h ∝ N1/3 can occur while chains are still strongly extended before 

GNPs enter the star polymer regime. This means that the geometric crossover of Eext 

between the planar increase Eext
pln ∝ N and spherical decrease Eext

sph ∝ N−1/3 is predicted by 

the two-layer model with extended polymers over the wide range of parameter N on both 

Midya et al. Page 7

ACS Nano. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sides of the free energy maximum. Figure 3(a) demonstrates that the maximum of Eext as a 

function of N and the decreasing chain extension free energy beyond this maximum are 

features that describe the GNPs of interest. In contrast, if the grafting density ρg (or Z) is 

varied at constant chain length N, then Eext does not show a maximum but increases 

monotonically with increasing ρg (or Z) instead [see Fig. 3(b)].

Finally, we want to briefly discuss an alternative model for the theoretical description of 

GNPs. Kapnistos et al. proposed a scaling model to study the structure of multi-arm star 

polymers in a melt,25 which can be adapted to our systems by including the contribution of 

the NP core. With this modification, the expression for the total brush thickness h becomes 

identical with our two-layer model given by Eq. (3), due to the incompressibility constraint 

and the conservation of the total volume. The two approaches differ, however, in the 

construction of the interpenetration layer. We assumed in our two-layer model that all 

grafted chains enter the interpenetration layer, whereas in the theory by Kapnistos et al. the 

number of chains in the interpenetration layer increases with decreasing overcrowding 

parameter x as Z ∝ Zx−1/3. Kapnistos et al. obtained the scaling of the interpenetration layer 

from the parabolic potential approximating the polymer layer by a planar brush, which leads 

to the scaling result hinter ∝ bN1/2x−1/6. We fitted this expression for hinter to our simulation 

data (see Fig. 2), giving a prefactor of β ≈ 0.85.

Despite these disparities, we observe that the predictions from both models for h, hdry, and 

hinter/2 are in good agreement with our simulation results for the investigated range of the 

overcrowding parameter 1.5 ≲ x ≲ 7, see Fig. 2(a) and (b). The two models start to deviate 

for large x (see comparison between the two approaches in the ESI), for which the polymer 

corona becomes more planar (h ≪ R). That regime is, however, outside of interest of this 

study. We emphasize that our simple analytical model for the GNPs provides an excellent 

description of h, hdry, hinter, and ϕinter across the range of interest to most experimental 

situations (see Figs. 2 and 3).

Simulations

We consider GNP melts for different values of the chain length N and grafting density ρg at 

fixed NP radius R = 7.5σ. The details of the simulations are provided in the Methods 

section. Figure 4 shows snapshots of single GNPs from these melts for various grafted chain 

lengths (a) N = 15, (b) N = 85 and (c) N = 212 at grafting density ρg = 0.47σ−2, and for 

various grafting densities (d) ρg = 0.15σ−2, (e) ρg = 0.35σ−2 and (f) ρg = 0.55σ−2 at chain 

length N = 85 for systems with random starting configurations. In this context we emphasize 

that, as discussed in the Methods section, the initial NP locations are at random, which 

should be contrasted with an ordered arrangement of initial NP locations on an FCC lattice, 

which is also considered in this work (see below). For fixed grafting density ρg = 0.47σ−2, 

the overall size of the GNPs increases with increasing N, as expected. Similarly, for fixed 

chain length N = 85, the size of the GNPs increases with increasing ρg. Based on these 

snapshots, it appears that the spherical shape of the GNPs becomes increasingly distorted 

with the increase of N at fixed ρg, whereas the shape of the GNPs remains almost unaltered 

for fixed N = 85 and varying ρg (see Fig. 6 and accompanying discussion for a quantitative 

analysis of the shape of the GNPs).
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The radial distribution functions of the NP centers, g(r), are presented in Fig. 5 for three 

different grafted chain lengths N = 15, N = 85 and N = 212 at ρg = 0.47σ−2, initialized from 

random NP locations. For all cases, we can see that g(r) oscillates around one (black 

horizontal dashed line), indicating that the NPs have some local structure but are uniformly 

dispersed in the matrix of grafted polymers. The first peak of g(r) at position rnn represents 

the average separation between the nearest neighbor NPs, and rnn shifts to larger distances as 

N is increased (see Table 1). Further, the first peak of g(r) is relatively narrow for N = 15, but 

it becomes significantly broader for N = 85 and N = 212 at fixed ρg. Since the (normalized) 

peak width is characteristic of the rattling of the GNPs in a “cage”, evidently the degree of 

GNP localization decreases with increasing chain length. This behavior can be rationalized 

by the increase of the volume fraction occupied by the interpenetration layer with increasing 

N, which leads to a softening of the effective interactions between the GNPs. A similar 

behavior is observed in the case of GNPs on an FCC lattice as well, but there the peaks are 

overall more pronounced due to the crystalline long-range order of the GNPs. The inset of 

Fig. 5 shows g(r) for three different grafting densities, ρg = 0.15σ−2, ρg = 0.35σ−2 and ρg = 

0.55σ−2 at N = 85, for systems with random starting configurations. The nearest-neighbor 

distance rnn increases with increasing ρg (see Table 1), but the (normalized) peak width is 

similar for all investigated ρg.

To quantify the size distribution of the GNPs, we have performed a Voronoi tessellation54 

around the centers of the NPs, and then computed the (normalized) distributions of the 

volume of the Voronoi cells, Vv. Figure 6(a) shows the distributions for selected N at fixed 

ρg = 0.47σ−2 for both the random and ordered starting configurations. The width of the 

distributions increases with N, indicating that the correlation between NPs is becoming 

weaker with increasing N. This behavior is consistent with the prediction from our two-layer 

model that the volume fraction of the interpenetration layer, ϕinter, monotonically increases 

with increasing N at fixed ρg [see Fig. 2(d)]. The volume distributions in the systems 

initialized from an FCC lattice are much more narrow and show a weaker N-dependence 

compared to the random GNP configurations, reflecting the high symmetry of the FCC 

lattice. Irrespective of the starting configurations, the mean value of the distribution, 〈Vv〉, 
increases almost linearly with N. Similar behavior is observed for the GNP systems with 

varying ρg (or varying Z = 4πR2ρg) at fixed N = 85. This linear relationship 

V v = (4/3)πR3 + ZN /ρ = (4/3)πRtot 
3  is expected, because the number of monomers per 

GNP (and thus the volume occupied by them) increases linearly with N at fixed ρg [see inset 

in Fig. 6(a)] or with ρg at fixed N.

The shape of the Voronoi cells and of the corona of the GNPs is probed via the asphericity 

parameter, S2, defined as

S2 = 3
2

λ1
4 + λ2

4 + λ3
4

λ1
2 + λ2

2 + λ3
2 2 − 1

2, (18)

where λ1, λ2 and λ3 are the eigenvalues of the gyration tensor (along the three principle 

axes) of the vertices of the Voronoi cell relative to the NP center, or of all of the monomers 

forming the corona of a GNP with respect to their center of mass. The value of S2 is 
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bounded between zero and one. The lower limit S2 = 0 is consistent with spherical symmetry 

(λ1 = λ2 = λ3), while the upper limit S2 = 1 indicates a rod-like shape. In Fig. 6(b) we 

present the average values of the asphericity parameter for the Voronoi cell Sv
2  and the 

polymer corona Sc
2  as functions of N at fixed ρg = 0.47σ−2. Both Sv

2 and Sc
2 increase with N 

for the GNP systems with random NP starting configurations, indicating that the polymer 

coronas are becoming less spherical. In contrast, Sv
2 as well as Sc

2 increase much more 

slowly with N for the FCC starting configurations and have consistently smaller values 

compared to the random initial configurations. (Note that Sv
2 = 0 for a rhombic 

dodecahedron, which is the Voronoi cell of a perfect FCC lattice.) Nevertheless, the 

asphericity parameters remain rather low throughout, with the largest values of Sv
2 ≈ 0.15 and 

Sc
2 ≈ 0.06 for the GNPs with the longest grafts (N = 212) initialized from random GNP 

locations. For all GNP systems with varying ρg and fixed chain length N = 85, the values of 

Sv
2 and Sc

2 fluctuate around 0.05 and 0.13 (error is < 5%), respectively. Thus, the polymer 

coronas are close to spherical supporting our initial assumption of the two-layer model.

The observed dependence of our results on the initial configurations is a strong indicator that 

the GNP systems have not reached global equilibrium in our simulations. There are two 

qualitatively different time scales that are evidently well separated from each other. The 

relaxation of the polymer brushes and the corresponding equilibration of the NPs within 

their nearest neighbor cages occurs at relatively short time scales, whereas the hopping of 

NPs between cages and the eventual diffusion of GNPs takes place on much longer time 

scales. Indeed, independent experimental rheology measurements of similar GNPs revealed 

that these cage rearrangements occur on macroscopic timescales (up to several days in some 

cases).55 In our simulations, we have achieved the first stage of equilibration, i.e., local 

relaxation of the grafted chains, but the entire system has not reached equilibrium.

To further analyze the distribution of the grafted polymers around the NPs, we computed 

radial monomer density profiles for the GNP systems with varying grafted chain lengths and 

grafting densities, as shown in Fig. 7(a)-(c). Here, we decompose the monomer density into 

two parts, ρ = ρs + ρo, where ρs is the contribution from polymers grafted to the same NP, 

while the contribution from other polymers is expressed in ρo. In all investigated cases, the 

total monomer density ρ fluctuates around the average monomer density in the system 

within our measurement uncertainty. For high grafting density ρg = 0.47σ−2, we can see a 

distinct layering of monomers near the hard NP surface [see Fig. 7(a) and (b)], which decays 

within the range of a few monomers. However, no such layering is observed around the NP 

surface at the lowest grafting density ρg = 0.15σ−2 [see Fig. 7(c)]. Further, in all cases ρs 

decays to zero at a distance r ≈ rnn − 2R, which indicates that the polymers fill the space 

between neighboring GNPs but do not wrap around them for the chosen set of simulation 

parameters. For ρg = 0.47σ−2, ρo approaches zero as we move towards the NP surface, 

because the cores of the GNPs are completely surrounded by their own monomers. For ρg = 

0.15σ−2, the surrounding polymers from the other cores can easily interpenetrate, resulting 

in non-zero values of ρo even close to the NP surface [see Fig. 7(c)]. For comparison, the 
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radial density profiles for the FCC lattice starting configurations are presented in Fig. 7(a) 

and (b) as dashed lines, and we can see only minor deviations between the two cases.

To quantify the interpenetration of polymer coronas from neighboring GNPs, we computed 

the product of the radial monomer density profiles, ρsρo, which is shown in Fig. 7(a)-(c) as 

orange lines. The full width at half maximum, δ, of the product of ρsρo provides a measure 

for the width of the interpenetration layer. We use the location of the maximum 

(corresponding to the distance where ρs and ρo cross) to extract the overall brush thickness, 

hρ. In Fig. 7(a) and (b), we have presented results from random and FCC lattice starting 

configurations. In both cases, the maxima of the distributions appear at similar locations, and 

thus provide similar values for the total brush thickness hρ, indicating that hρ does not 

depend on the starting configurations. Further, we identify the thickness of the dry layer by 

hdry = hρ − δ/2, and attribute the remaining part of the brush thickness to the interpenetration 

layer, i.e., hinter/2 = hρ − hdry = δ/2. Following this convention, the typical fraction of 

monomers from other GNPs in the dry layer is 5 – 6% for all investigated cases (note that 

the two-layer model assumed strictly 0% and a sharp boundary between the dry and 

interpenetration layers). The resulting layer thicknesses are plotted in Fig. 2(a) and (b), 

which are in excellent agreement with the theoretical predictions. We also directly compute 

the average number of monomers (grafted to the same NP) in the dry layer, ndry, and the 

average number of monomers ninter = N − ndry in the interpenetration layer.

Next, we compare three different measures of the total brush thickness obtained from our 

simulations: (i) hv = [3〈Vv〉/(4π)]1/3 −R is obtained by the Voronoi construction around the 

center of the NPs, assuming that the Voronoi cells are spherical (same definition as in our 

two-layer model); (ii) hnn = rnn/2 − R has been extracted from the first peak of the radial 

distribution function between the NPs (see Fig. 5); (iii) hρ is the radially averaged location of 

the crossing of ρs and ρo, which corresponds to the center of the interpenetration layer 

formed by the polymer brushes of adjacent GNPs. The values for hv, hnn, and hρ are listed in 

Table 1 for all simulated systems, with hnn < hρ < hv. We used hρ to define the brush 

thickness in our simulations and all quantities derived from it. The differences between these 

values can be understood by considering the rhombic dodecahedral shape of the Voronoi 

cells in the simulations with FCC starting configurations (see Fig. 1(b) and ESI for details): 

The thickness hnn corresponds to half of the face-to-face distance of the Voronoi cell, and for 

a perfect rhombic dodecahedron it is given by hnn = (π/ 18)1/3 Rtot – R ≈ 0.9 Rtot – R < Rtot 

− R = hv. If the crossing of ρs and ρo occurs exactly on the surface of the rhombic 

dodecahedron, then geometric considerations lead to hρ ≈ 1.115 (π/ 18)1/3 Rtot – R > hv. 

We found, however, that these crossings occur at slightly shorter distances compared to the 

surface of a perfect rhombic dodecahedron, so that the measured hρ is somewhat smaller 

than theoretically expected. To account for this discrepancy, we introduce an empirical shape 

factor α ≈ 0.93 based on our simulation results, and multiply all theoretical expressions for 

the brush thickness (i.e., h, hdry, and hinter/2) by this factor.

Figure 8(a) shows the values of the fraction of monomers in the interpenetration zone 

ninter/N as functions of N at fixed ρg = 0.47σ−2. The results from theory and simulation are 

in good agreement with each other, exhibiting the same trends: for small N, the ratio ninter/N 
decreases with N due to the faster growth of the dry layer in this regime, while ninter/N 
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gradually increases with N for large N, resulting in a minimum at intermediate N. Note that 

ϕinter(N) decays monotonically with increasing N for the same parameters [cf. Fig. 2(d)], as 

the calculation of ϕinter includes the NP core in the denominator as discussed in the Two-

Layer Model section. The values of ninter/N for the GNP systems with varying ρg at fixed N 
= 85 are plotted in Fig. 8(b). In this case, both the theory and the simulations show that 

ninter/N gradually decreases with increasing grafting density ρg for fixed N.

To better understand the conformational details of the grafted chains, we computed the 

polymer end-to-end vector Re and its radial (Re,r) and transverse (Re,t) components, both for 

the entire chains and for chain segments of length n. We first determined from our 

simulation data the probability distribution functions of the squared end-to-end distances of 

the entire grafted chains, P Re
2 , revealing that the grafted chains are always more extended 

than polymers of the same length in a pure melt (see Fig. S5 in ESI). Chain sections close to 

the NP surface have different conformations compared to chain sections at the periphery of 

the polymer corona because of steric crowding effects. To quantify the local polymer 

conformation, we have computed 〈Re,r〉 for subsections of fixed length n = 20 along the 

chain contour. Figure 9 shows 〈Re,r〉2 of these chain sections (the average transverse 

components 〈Re,t〉 are always zero within statistical fluctuations), normalized by the mean-

square end-to-end distance in a pure polymer melt Re, 0
2 (n) /3. All results are shown as 

functions of the chain section origin nori (nori = 0 corresponds to the grafting point) for GNP 

systems with (a) varying N at ρg = 0.47σ−2 and (b) varying ρg at N = 85. In our two-layer 

model, 3 Re,r
2/ Re, 0

2 = 3 ℎ nori + n − ℎ nori
2/ nb2 , which is also included in Fig. 9. In Fig. 

S6 of the ESI, we have plotted 3 Re,r
2/ Re, 0

2  as functions of number n of monomers in 

chain section, while fixing one chain end at the grafting point (nori = 0).

In both theory and simulations, there is a pronounced extension of chain sections near the 

NP surface in all cases, followed by a monotonic decrease of 3 Re,r
2/ Re, 0

2  with increasing 

nori. For a given nori, 3 Re,r
2/ Re, 0

2  increases with increasing grafting density ρg in both the 

dry and interpenetration layer of the polymer corona. In our simulations, chain sections deep 

in the interpenetration layer approach 〈Re,r〉2 ≈ 0, whereas 〈Re,r〉2 > 0 in our two-layer 

model for all nori. Further, the theoretical extension of chain sections was independent of the 

total chain length N, which is a consequence of our approximation that all grafted chains 

behave in the same way and uniformly fill the volume between h(nori) and h(nori +n). We 

have also computed the fluctuations of the radial and transverse components of Re(n) of 

these chain sections relative to fluctuations in pure polymer melts, 3 Re,r
2 − Re,r

2 / Re, 0
2

and 3 Re,t
2 − Re,t

2 / 2 Re, 0
2 , respectively. These data are shown in the inset of Fig. 9 as 

functions of nori for fixed n = 20, demonstrating that the fluctuations along the radial 

direction are strongly suppressed in all cases. In contrast, transverse fluctuations were 

slightly enhanced for N ≤ 85 but suppressed for N > 85. Figures S6(a) and S6(b) in the ESI 

show the square of the normalized average radial size as functions of n at fixed nori = 0, 

while the relative fluctuations are plotted in Figs. S6(c) and S6(d).
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Conclusions

In this work we studied the structure of polymer-grafted nanoparticles (GNPs) via coarse-

grained molecular dynamics simulations by systematically varying the degree of 

polymerization of the grafted polymers and their grafting density at fixed NP radius. The 

total brush thickness of the GNPs, h, was decomposed into two separate layers: a dry layer 
of extended chains, where only few monomers from the surrounding GNPs were present, 

and an interpenetration layer of unperturbed chains, where significant overlap between 

grafted chains of the surrounding GNPs occurred, presumably to maximize their 

conformational entropy. The thicknesses of the dry layer, hdry, and of the interpenetration 

layer, hinter, were estimated by a simple spherical two-layer model. According to our theory, 

the behavior of h, hdry and hinter can be described by a single universal parameter, x, which 

compares the actual number of graft chains on an NP, Z, to what is expected for the number 

of overlapping unperturbed chains in a melt with the same volume as the GNP (with both the 

core and corona included). This crowding parameter x decreases with increasing graft length 

N at fixed grafting density ρg, whereas x increases with increasing ρg at fixed N. Thus, x ≈ 1 

for unperturbed chains (e.g. sparsely grafted NPs with long grafts), while x ≫ 1 for strongly 

extended chains (e.g. densely grafted NPs with short grafts). We find that this two-layer 

model works well in the range of our simulations 1 ≲ x ≲ 7.

For GNPs with fixed grafting density ρg, both hdry and hinter/2 increase with increasing N, 

with hdry > hinter/2 for the investigated range of N at ρg = 0.47σ−2. When the chain length N 
is fixed and ρg is varied instead, hdry increases with increasing ρg whereas hinter/2 decreases. 

For sufficiently small ρg, hdry is smaller than hinter/2, but these two curves cross at some 

intermediate ρg so that eventually hinter/2 > hdry at large enough ρg. We also predict that the 

volume fraction of the interpenetration layer, ϕinter, is a universal function of x which decays 

monotonically with increasing x. All these predictions from our two-layer scaling model are 

in quantitative agreement with simulation results after we account for the slightly distorted 

shape of the polymer coronas. Most importantly, we predict a peak of the chain extension 

energy 3kBTh2/(2Nb2) at Nmax ≈ 81(ρR3)/Z, which for our system with ρg = 0.47σ−2, R = 

7.5σ, ρ = 0.9σ−3 is Nmax ≈ 93. For grafts with N = Nmax, the total brush thickness is h = 3
R, independent of grafting density ρg and monomer density ρ. The associated maximum 

value of the extension energy is Eext ≈ 0.055α2kBTZ/(ρRb2), which is ≈ 1.4kBT for our case 

(Z = 332, α ≈ 0.93).

Our theoretical model is useful for designing pure melts of GNPs with tailored structural 

properties, for instance optimizing the degree of polymer interpenetration at a given NP 

volume fraction. Further, the theoretical knowledge gained from this work provides a 

starting point for investigating systems to which an additional free component, such as small 

molecules or ungrafted polymers, are added. For example, it is conceivable that small 

additives become homogeneously dispersed in the polymer brush, whereas large additives 

could occupy the interstitial sites between the polymer coronas. A conjecture could be that 

the optimal condition for this partitioning to occur is at the maximum chain extension 

energy. It will also be interesting to investigate the structural properties of anisotropic GNPs 

with high aspect ratios.
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Methods

The grafted polymers are represented by a bead-spring model, where a chain consists of N 
spherical beads, each with diameter σ and mass m. The bonds between the individual 

monomers are modeled via the finitely extensible nonlinear elastic (FENE) potential56,57

UFENE(r) = − k
2 r0

2ln 1 − r
r0

2
. (19)

Here, r0 is the maximum bond length and k is the spring constant. To prevent unphysical 

bond crossing, which will impact our associated study on system dynamics, we employed 

the standard Kremer-Grest parameterization,56,57 i.e., r0 = 1.5σ and k = 30ε/σ2.

The interaction between any two monomers separated by distance r is represented by the 

standard Lennard-Jones (LJ) potential

UMM(r) =
4ε σ

r
12

− σ
r

6
for r ≤ rc

0 for r > rc,

 
  (20)

with cut-off distance rc = 3σ, and interaction strength ε = kBT. The pair potential UMM(r) is 

multiplied with a smoothing polynomial, S(r), for distances r ≥ rsm = 2.5σ, to gradually 

decrease both the potential and force to zero at r = rc. The functional form of S(r) is

S(r) = rc2 − r2 2 rc2 + 2r2 − 3rsm2

rc2 − rsm2
3 . (21)

The hard NPs are modeled as smooth spherical spheres with radius R. The NP-NP 

interaction is described by the shifted Lennard-Jones (sLJ) potential

UNN(r) =
4ε 2R

r − Δ
12

− 2R
r − Δ

6
for r ≤ rsLJ + Δ

0 for r > rSLJ + Δ,
(22)

with Δ = 2R − 1 and cut-off distance rSLJ = 21/6 σ to make UNN purely repulsive. The 

interaction between a monomer and an NP is also described by the sLJ potential with Δ = 

(2R + σ)/2 − 1 in Eq. (22).

The polymers are grafted to the NPs by rigidly attaching the first polymer bead to the NP 

surface. These immobile grafting points are randomly distributed on the NP surface with a 

minimum distance of σ. Then, the remainder of the chains are connected to those grafting 

beads using the FENE potential (see the schematic representation given in Fig. 10).

Throughout all our simulations, we set the radius of the NPs to R = 7.5σ and either varied 

the degree of polymerization N at fixed grafting density ρg = 0.47σ−2, or varied ρg at fixed N 
= 85 (a summary of the simulated systems is given in Table 2). Note that for σ = 1nm, this 
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model matches the experimental systems studied by Bilchak et al.51 All our MD simulations 

are performed using the HOOMD-blue software package (v. 2.5.1) with double-precision 

floating-point operations.58–60 Periodic boundary conditions are applied along the x, y and z 

directions. We set the simulation time step to Δt = 0.002τ, where τ = mσ2/ kBT  is the 

intrinsic MD unit of time.

In order to study the effect of the NP arrangement, we generated starting configurations 

where the GNPs are either randomly placed in the simulation box or on an FCC lattice. 

Initially, NNP GNPs are distributed in a cubic box, with its edge length chosen such that the 

polymer coronas of the GNPs do not overlap. Next, an isotropic compression is applied, 

until we reach a monomer density (typically between 0.7σ−3 and 0.8σ−3) close to the one at 

equilibrium, ρ ≈ 0.9σ−3. During this process, all interactions are set to purely repulsive. In 

the next step, we turn on the attractive contributions of the pair potentials, and simulate over 

2×107 time steps in the NPT ensemble at fixed pressure P = 0ε/σ3 and temperature T = 

ε/kB. After equilibrating the system in the NPT ensemble, we compute the time-averaged 

volume of the system, and simulate for 107 time steps at this volume in the NVT ensemble, 

using a Langevin thermostat. For the final production runs, we perform simulations in the N
V E ensemble for at least 5 × 107 time steps. The volume fraction of NPs in the system is 

then ϕNP = 4πR3NNP/(3V). All results presented for the GNP systems with random starting 

configurations are averaged over three independent initializations, while we use a single 

starting configuration for the systems initialized on an FCC lattice. We found that the final 

box volume, and thus also the monomer density ρ and NP loading ϕNP, did not depend on 

the starting configuration.
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Figure 1: 
(a) Schematic representation of the two-layer model, indicating the NP radius, R, the total 

radius of the GNP, Rtot, and the thicknesses of the dry and interpenetration layers, hdry and 

hinter, respectively. (b) Voronoi cell (rhombic dodecahedron) for the face-centered cubic 

(FCC) packing of spheres. The center of the cell is indicated by O and the mid point of one 

of the rhombic faces is indicated by P. The vector from O to P points to the nearest neighbor, 

and its length is given by the lattice constant of the FCC crystal, |OP| = a0. The vector from 

O to H points to the next-nearest neighbor and has a length of |OH| = 3/2a0, while the 

vector pointing from O to N has a length of |ON| = 2a0. The sphere (blue dashed line) with 

radius Rtot has the same volume as the Voronoi cell.
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Figure 2: 
(a, b) Total brush thicknesses h = hdry+hinter/2, thickness of the dry layer hdry, and half 

thickness of the interpenetration layer hinter/2 plotted (a) as a function of chain length N at 

fixed grafting density ρg = 0.47σ−2, and (b) as a function of ρg at fixed N = 85. In both cases 

R = 7.5σ fixed. (c) Reduced thicknesses hinter/(2Rtot) and (hdry +R)/Rtot as functions of x. 

[(hdry + R)/Rtot + hinter/(2Rtot) = 1.] Filled and open symbols correspond to the data shown 

in panels (a) and (b), respectively. (d) Volume fraction of the interpenetration layer, ϕinter, as 

a function of x for systems shown in (a, b). In all panels, symbols show our simulation 

results (initialized from random NP locations), while solid lines are theoretical predictions 

from our two-layer model. The dashed lines are the theoretical predictions of the modified 

model of Kapnistos et al.25
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Figure 3: 
Chain extension free energy, Eext, as a function of (a) N for fixed ρg = 0.47σ−2 and (b) ρg for 

fixed N = 85. Symbols are simulation results (initialized from random NP locations), and the 

black solid lines indicate the theoretical predictions from the two-layer model and the 

modified model of Kapnistos et al.25 The vertical dashed line in (a) indicates the position of 

the maximum of the theoretical curve.
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Figure 4: 
Simulation snapshots of a single GNP in a bulk system with varying chain lengths, (a) N = 

15, (b) N = 85 and (c) N = 212 at ρg = 0.47σ−2, and with varying grafting densities, (d) ρg = 

0.15σ−2, (e) ρg = 0.35σ−2 and (f) ρg = 0.55σ−2 at N = 85. Snapshots have been taken from 

the systems initialized from random starting configurations, and they have been rendered 

using Visual Molecular Dynamics v 1.9.3.53
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Figure 5: 
Radial distribution function, g(r), between centers of NPs with random starting 

configurations. The inset shows g(r) for GNP systems with different grafting densities at 

fixed chain length N = 85. In both plots, the x-axis is scaled with the average nearest-

neighbor distance, rnn.
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Figure 6: 
(a) Normalized distributions of the volume of Voronoi cells, Vv, of selected GNP systems 

with ρg = 0.47σ−2, as indicated. The x-axis is scaled with the mean volume of the Voronoi 

cells, 〈Vv〉. Solid colored curves show the results for simulations with random initial 

positions, whereas dashed curves represent the same quantity for GNP systems initialized on 

an FCC lattice (area under the curve normalized to 0.3 instead of unity for better 

visualization). The inset presents the average volume of Voronoi cells, 〈Vv〉, as a function of 

N. The solid black line shows V v = (4/3)πRtot
3 . (b) Asphericity parameter, S2, of the 

Voronoi cells (Sv
2 solid curves) and of the polymer coronas of the GNPs (Sc

2 dashed curves) 

as a function of N at fixed ρg = 0.47σ−2. Results from random and FCC lattice starting 

configurations are shown as red and blue curves, respectively.
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Figure 7: 
Monomer density profiles of the grafted polymers around the NPs as a function of radial 

distance from the surface of the NPs, r − R, for various grafted chain lengths and grafting 

densities, (a) N = 15, ρg = 0.47σ−2; (b) N = 85, ρg = 0.47σ−2; and (c) N = 85, ρg = 0.15σ−2. 

Here, ρ is the local monomer density, ρs is the monomer density of the chains coming from 

the central NP, and ρo is the monomer density from other GNPs. Interpenetration layers are 

quantified by the product of monomer density profiles, ρsρo, which are represented by 

orange lines. Solid and dashed colored lines show the results for random and FCC starting 
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configuration, respectively. The horizontal black dashed line represents the average 

monomer density in the GNP systems. Black vertical arrows represent the average surface-

to-surface distance between neighboring NPs, rnn − 2R.
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Figure 8: 
Fraction of monomers in the interpenetration zone ninter/N as a function of (a) N at fixed ρg 

= 0.47σ−2 and (b) ρg at fixed N = 85. The symbols show the simulation results (initialized 

from random NP locations) and the solid lines indicate the theoretical prediction from our 

two-layer model. The dashed lines are the theoretical predictions of the modified model of 

Kapnistos et al.25
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Figure 9: 

Main plots: Square of normalized average radial end-to-end distances 3 Re,r
2/ Re, 0

2  in 

chain sections of length n. The dashed lines correspond to the theoretical prediction from our 

two-layer model 3[h(nori +n)−h(nori)]2/(nb2), while vertical colored arrows indicate ndry 

from our simulations. Insets: Normalized fluctuations of the radial (solid) and transverse 

(dashed) components of the end-to-end vector, 3 Re,r
2 − Re, r

2 / Re, 0
2  and 

3 Re,t
2 − Re, t

2 / Re, 0
2 , respectively. In all panels, the chain section length is fixed at n = 
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20 with one chain end at monomer nori and the other end at monomer nori + n. Data shown 

for GNP systems with (a) N = 30, 85, 142 and 212 at ρg = 0.47σ−2, and (b) ρg = 0.15σ−2, 

0.35σ−2, 0.47σ−2, and 0.55σ−2 at N = 85.
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Figure 10: 
Schematic of (a) an NP with all grafting beads, (b) a polymer chain which will be grafted to 

the NP surface, and (c) the resulting GNP with one grafted chain.
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Table 1:

Brush thickness extracted from the average volume of Voronoi cells constructed around the NPs, hv = [3〈Vv〉/

(4π)]1/3 − R; from the distance between nearest neighbors, hnn = rnn/2 − R; and from the peak position hρ of 

the product of the radial density profiles ρsρo. The full width at half maximum δ of the product ρsρo is also 

shown. Results are included for random and FCC lattice starting configurations, as indicated.

N ρg [σ−2] hv [σ] Random FCC

hnn [σ] hρ [σ] δ [σ] hnn [σ] hρ [σ] δ [σ]

10 0.47 3.6 2.3 3.4 2.7 2.5 3.4 2.6

15 0.47 4.6 3.2 4.4 3.3 3.3 4.4 3.0

30 0.47 7.0 5.1 6.7 4.5 5.7 6.8 4.2

85 0.47 12.4 9.1 11.5 8.2 10.4 11.6 7.1

142 0.47 15.9 12.0 14.7 10.6 13.7 15.0 8.8

212 0.47 19.3 14.5 17.7 12.3 16.6 18.1 10.0

85 0.15 6.6 4.0 5.3 9.1 - - -

85 0.25 8.8 6.1 7.8 8.8 - - -

85 0.35 10.7 7.8 9.6 8.8 - - -

85 0.55 13.4 9.9 12.4 8.7 - - -
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Table 2:

Information about the simulated systems. Grafting density ρg, number of monomers per grafted chain N, 

overcrowding parameter x, number of NPs NNP, total number of monomers in the system N, average 

monomer density ρ, and packing fraction of NPs in the system ϕNP. Random and FCC lattice starting 

configurations led to the same values for ρ and ϕNP within our measurement accuracy.

ρg [σ−2] N x Random FCC ρ [σ−3] φNP

NNP N NNP N

0.47 10 6.88 50 166,000 32 106,240 0.848 0.312

0.47 15 6.10 50 249,000 32 159,360 0.873 0.237

0.47 30 4.96 50 498,000 32 318,720 0.895 0.138

0.47 85 3.57 25 705,500 32 903,040 0.910 0.054

0.47 142 3.02 25 1,1786,00 32 1,508,608 0.914 0.033

0.47 212 2.65 25 1,759,600 32 2,252,288 0.916 0.023

0.15 85 1.65 50 450,500 – – 0.877 0.147

0.25 85 2.33 40 598,400 – – 0.897 0.096

0.35 85 2.93 32 671,480 – – 0.906 0.071

0.55 85 3.97 20 659,600 – – 0.913 0.047
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