
The inability of antioxidant defense mechanisms to 
counteract reactive oxygen species (ROS) formation, which 
typically defines oxidative stress, is known to cause tissue 
damage, cell death, and acceleration of the aging process. 
Oxidative imbalance and inflammatory processes have been 
attributed a major role in the pathogenesis of various systemic 
and eye diseases, including age-related macular degeneration 

(AMD), corneal and conjunctival disorders, glaucoma, reti-
nitis pigmentosa, and different types of retinopathies, among 
others [1].

As the eye is highly vascularized, and because the retina 
is a sensorineural tissue that can be especially affected by 
high blood pressure, it is not surprising that arterial hyper-
tension (AH) is a risk factor for several vision-threatening 
eye conditions, including cataract [2-4], glaucoma [5], 
choroidopathies [6], AMD [7], and hypertensive and diabetic 
retinopathies [8]. However, and despite previous reports 
describing harmful effects on the eye as a target of AH, the 
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Purpose: Increased reactive oxygen species (ROS) released by NADPH oxidase and inflammation are associated with 
arterial hypertension and eye diseases associated with high blood pressure, including glaucoma, retinopathies (e.g., age-
related macular degeneration), and choroidopathies affecting ocular function; however, the mechanisms underlying these 
adverse outcomes remain undefined. The present study was designed to highlight the importance of oxidative stress in 
severe hypertension-related eye damage.
Methods: Male Wistar rats (n = 7, unless otherwise specified for specific experiments) were administered an oral dose 
of 30 mg of Nω-nitro-L-arginine methyl ester (L-NAME) per kilogram of bodyweight and day for 3 weeks; chronic 
administration with L-NAME is a validated experimental approach resulting in severe hypertension secondary to 
nitric oxide (NO) depletion and subsequent vasoconstriction in the systemic circulation. Upon treatment completion, 
histomorphometric studies, NADPH oxidase activity, and ROS production were measured in eyecup homogenates and 
paraffin-embedded sections from control and L-NAME-treated animals. In addition, immunohistofluorescence, western 
blotting, and real-time PCR (RT-qPCR) analyses were performed in the eye and the retina to evaluate the expression of 
i) NADPH oxidase main isoforms (NOX1, NOX2, and NOX4) and subunits (p22phox and p47phox); ii) glial fibrillary 
acidic protein (GFAP), as a marker of microglial activation in the retina; iii) antioxidant enzymes; and iv) endothelial 
constitutive (eNOS) and inflammation inducible (iNOS) nitric oxide synthase isoforms, and nitrotyrosine as a versatile 
biomarker of oxidative stress.
Results: Increased activity of NADPH oxidase and superoxide anion production, accompanied by transcriptional up-
regulation of this enzyme isoforms, was found in the retina and choroid of the hypertensive rats in comparison with the 
untreated controls. Histomorphometric analyses revealed a significant reduction in the thickness of the ganglion cell 
layer and the outer retinal layers in the hypertensive animals, which also showed a positive strong signal of GFAP in the 
retinal outer segment and plexiform layers. In addition, L-NAME-treated animals presented with upregulation of nitric 
oxide synthase (including inducible and endothelial isoforms) and abnormally elevated nitrotyrosine levels. Experiments 
on protein and mRNA expression of antioxidant enzymes revealed depletion of superoxide dismutase and glutathione 
peroxidase in the eyes of the hypertensive animals; however, glutathione reductase was significantly higher than in the 
normotensive controls.
Conclusions: The present study demonstrated structural changes in the retinas of the L-NAME-treated hypertensive 
animals and strengthens the importance of NADPH oxidase as a major ROS-generating enzyme system in the oxidative 
and inflammatory processes surrounding hypertensive eye diseases. These observations might contribute to unveiling 
pathogenic mechanisms responsible for developing ocular disturbances in the context of severe hypertension.
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precise mechanisms responsible for eye dysfunction in this 
context remain unknown.

Previous reports support the notion that the enzyme 
NADPH oxidase has a pivotal role in ROS production (mainly 
the superoxide anion (O2

.-) and/or H2O2) and subsequent organ 
damage in the hypertensive context [9,10]. Seven isoforms of 
the catalytic subunit of this enzyme complex (NOX1–5 and 
Duox1–2) have been characterized thus far and are differen-
tially expressed in various tissues [11]. The isoform NOX4 
was recently subdivided into NOX4A and NOX4B [12], 
which seem to differ in terms of tissue-specific expression 
and overall function. The predominant NOXes in vascular 
cells are isoforms NOX1, 2, 4, and 5, yet the implications of 
the latter in hypertension and cardiovascular disease remain 
obscure at present [13].

O2
.- is released mainly by NOXes 1, 2, 3, and 5, whereas 

NOX4 and Duox1–2 generate H2O2 prominently [14]. 
Independently of the precise mechanisms responsible for 
ROS production via NADPH oxidase, sustained oxidative 
stress can disturb the generation of nitric oxide (NO) from 
endothelial nitric oxide synthase (eNOS), thus leading to 
uncoupling of the latter that results in extra O2

.- production 
and perpetuates the situation. This would eventually lead 
to endothelial dysfunction and neovascularization, because 
NO helps maintain ocular hemodynamics by protecting the 
endothelial cells of vascular beds and nerve fibers against 
pathogenic processes, for example, diabetes mellitus and 
glaucoma [15,16].

Several studies have postulated the possible participa-
tion of NOX family proteins in different eye pathologies. For 
instance, NOX2 has been involved in the functional altera-
tions observed in the retina under experimental conditions 
mimicking diabetes and glucolipotoxicity [17], and the role 
of NOX4 has recently been shown in retinal vascular diseases 
[18]. In addition, NOX4 is an indicator of oxidative damage 
in retinoblastoma tumors [19], promotes neovascularization 
following O2-dependent retinopathy [20], and is involved 
in the development of retinopathies, such as AMD [21-24]. 
Regarding other ocular structures, ROS production by NOX1, 
NOX4, and NOX5 has been detected in corneal stromal cell 
cultures [25], and NOXes have been involved in experimental 
corneal neovascularization [26].

Excessive ROS production can also lead to an imbal-
ance in the inflammatory process, thus playing a decisive 
role in the development of ocular diseases. In this sense, 
retinal inflammation has been associated with many ocular 
diseases, including diabetic retinopathy [27] and AMD [28]; 
and microglial activation has been observed in the retinas 
of spontaneously hypertensive rats when compared with 

normotensive animals [28]. All these findings support the 
hypothesis that NOX isoforms are implicated in the origin 
or progression or both of many ocular pathologies, thus 
suggesting an association among oxidative stress, NADPH 
oxidase, inflammation, and hypertensive ocular disorders.

N(ω)-nitro-L-arginine methyl ester (L-NAME) is a 
well-known compound used to examine the pathophysiology 
and therapeutics of AH [29]. Chronic exposure to L-NAME 
favors prolonged vasoconstriction due to competitive inhi-
bition of eNOS and subsequent reduction of NO formation. 
Eventually, L-NAME causes persistent hypertension that is 
associated with damage to different organs [30] including 
the eye [31,32]. Therefore, rats with hypertension induced by 
NO depletion constitute a validated experimental model to 
increase our knowledge of high blood pressure–related ocular 
disorders.

The main objective of this study was to assess the 
role of oxidative stress among the mechanisms responsible 
for ocular damage in a rodent model with chronic arterial 
hypertension. To this end, morphometric studies, estimation 
of ROS levels and the activity and location or expression of 
NOX components, as well as the expression of nitric oxide 
synthase (inducible and endothelial isoforms), nitrotyrosine, 
and antioxidant enzymes (superoxide dismutase, glutathione 
peroxidase, and glutathione reductase), were determined in 
eyecups obtained from Wistar rats subjected to L-NAME-
treated hypertension. In addition, the location and quantifica-
tion of glial fibrillary acidic protein (GFAP) were investigated 
in retinal layers as a marker of local microglia activation.

METHODS

Experimental design: The study was performed in accor-
dance with the European Union (EU Directive 2010/63/
EU) and national (RD 53/2013) guidelines for the care and 
use of laboratory animals and was approved by the compe-
tent experimentation ethics committee at the University of 
Sevilla, Spain, where the animal work took place (approval 
reference # 22/10/2018/148, issued by Junta de Andalucía, 
Dirección General de la Producción Agraria y Ganadera). 
The study was also in accordance with the Association for 
Research in Vision and Ophthalmology (ARVO) Statement 
for the Use of Animals in Ophthalmic and Vision Research. 
Ten- to 12-week-old male Wistar rats housed with free access 
to food and drink and exposed to 12 h:12 h light-dark cycles 
were randomly assigned into two groups (n = 7 in both cases, 
unless otherwise stated). The hypertensive group was estab-
lished by treating the animals with 30 mg L-NAME/kg body-
weight/day p.o. for 3 weeks. The concentration of L-NAME 
in the drinking water was calculated weekly considering the 
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evolution of bodyweight and water intake. The control group 
was subjected to the same conditions except the absence of 
L-NAME in the feeding bottles.

Blood pressure measurements: On a weekly basis, systolic 
blood pressure (SBP) was estimated with the noninvasive 
tail-cuff technique with a pressure recorder (NIPREM 645; 
Cibertec, Madrid, Spain). SBP was calculated as the average 
of three to four consecutive records.

Histomorphometric studies: Intravitreal injections of 4% 
paraformaldehyde (PFA) in PBS (1X; 137 mM NaCl, 2.7 mM 
KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4) were admin-
istered in the eyecups of deeply anesthetized animals (75 mg/
kg ketamine plus 10 mg/kg diazepam, i.p.) before enucleation. 
Then, the eyeballs were post-fixed in 4% PFA for 24 h, and 
subsequently processed for paraffin embedding. Five micron 
sections were obtained with a manual rotatory microtome 
(MR2258; Histo-Line Laboratories, Milan, Italy) and stained 
with hematoxylin and eosin (H&E) for histomorphometric 
studies. H&E images were acquired using an Olympus BX41 
microscope coupled to an Olympus DP73 camera (Olympus 
Iberia, Barcelona, Spain). The relative thickness of the retinal 
layers was measured as previously described [33], using 
ImageJ-NIH freeware (v. 2.0.0).

Ocular enucleation and homogenization: Upon completion of 
treatment, the rats were anesthetized with 75 mg/kg ketamine 
and 10 mg/kg diazepam (i.p.). Both eyes were enucleated as 
described [34] and collected in a Petri dish containing Krebs 
solution. The cornea, lens, and vitreous body were discarded 
following corneal incision under a binocular stereoscopic 
microscope into eyecups containing retina/RPE/choroid/
sclera complexes. Each eyecup was subdivided into portions 
that were snap-frozen in liquid nitrogen and maintained at 
−80 °C before homogenization.

One portion of both eyecup samples was homogenized 
in protease inhibitor–containing 50 mmol/l phosphate buffer 
(pH 7.4). After immediate centrifugation (10,000 ×g, 10 min), 
the protein-containing supernatant was used for determining 
NADPH oxidase activity and protein concentration [35]. The 
remaining portion of both eyecups was maintained at −80 °C 
for mRNA isolation and gene expression analyses.

Measurement of NADPH oxidase activity and ROS levels: 
The activity of NADPH oxidase was determined as previ-
ously described [36]. Briefly, a volume equivalent to 100 μg 
proteins from the eyecup homogenates was placed on a single-
tube luminometer and mixed with 5 μmol/l lucigenin and 
0.1 mmol/l NADPH. The chemiluminescence reaction was 
continued for 4 min, and values were expressed as percent-
ages over the normotensive control group. To characterize the 

source of superoxide anion, the samples were preincubated 
with 0.1 mmol/l of oxypurinol, rotenone, or diphenylenei-
odonium (DPI), respective inhibitors of xanthine oxidase, 
complex I of the electron transport chain, and flavoenzymes, 
such as NOXes and Duoxes.

Additional experiments (n = 4 animals per group) were 
performed to measure O2

.- and the location of the NADPH 
oxidase isoforms in the retinal layers. For this purpose, 5-μm 
paraffin sections were obtained as described previously and 
further processed to estimate O2

.- by using dihydroethidium 
(DHE; Cat. No. HY-D0079; MedChemExpress, Monmouth 
Junction, NJ) as a fluorescent dye. This molecule specifi-
cally reacts with intracellular superoxide anion and turns 
into red f luorescent ethidium in nuclei. Deparaffinized 
sections were incubated with DHE for 20 min at 37 °C, as 
previously described [37]. Then, sections were mounted 
with 4′,6-diamidino-2-phenylindole (DAPI) Fluoromount-
G® (Cat. No. 0100–20; SouthernBiotech Associates, Inc., 
Birmingham, AL) and photographed under similar exposure 
conditions using a fluorescence microscope (Olympus DP73, 
Tokyo, Japan). The intensity of the staining was measured 
using ImageJ software (version 2.0.0).

RT–PCR: Eyecup samples were subjected to the TRIzol total 
RNA isolation protocol (Thermo Fisher Scientific, Madrid, 
Spain) followed by reverse transcription as previously 
reported [38]. Gene products (NOX1, NOX2, NOX4, p22phox, 
p47phox, SOD, GSH-Red, and GSH-Px) were amplified with 
a CFX96 real-time PCR System (Bio-Rad, Madrid, Spain) 
and using the specific primers summarized in Table 1. iTaq™ 
Universal SYBR® Green Supermix (BioRad, Madrid, Spain) 
reactions were initiated by activation of iTaq™ DNA poly-
merase (95 ºC, 3 min) followed by 40 cycles of denaturation 
(95 ºC, 15 s) plus annealing/extension (60 ºC, 30 s). House-
keeping gene GAPDH was used as an internal control.

Western blotting analyses: Thirty to sixty microns of proteins 
from the eyecup homogenates were subjected to gel electro-
phoresis and identified with relevant antibodies (anti-NOX1, 
anti-NOX2, anti-NOX4, anti-p22phox, anti-p47phox, anti-
eNOS, anti-iNOS, anti-nitrotyrosine, anti-SOD, anti-GSH-
Red, and anti-GSH-Px), as previously described [39]. In turn, 
GFAP expression was measured in a similar manner using a 
mouse monoclonal anti-GFAP in the retina homogenates (see 
Table 2 for antibody sources and dilutions). All immunoblots 
were analyzed with an Amersham Imager 600 blot and gel 
imager (Cytiva, Sheffield, UK), and the GAPDH protein was 
chosen as a loading control.

Immunohistofluorescence: Deparaffinized eye sections, 
obtained as described, were also used to evaluate NOX 
expression with immunohistofluorescence staining. Briefly, 
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sections were processed for antigen retrieval with Diva 
Decloaker (Biocare Medical, LLC, Pacheco, CA). The 
following primary antibodies were used for immunostaining: 
mouse monoclonal anti-NOX1 (C-10; 1:200 dilution; Santa 
Cruz Biotechnology, Santa Cruz, CA), rabbit monoclonal 
anti-NOX2 (1:100 dilution; Epitomics-Abcam, Burlingame, 
CA), rabbit monoclonal anti-NOX4 (1:500 dilution; Epit-
omics-Abcam), and mouse monoclonal anti-GFAP (1:200 
dilution; Santa Cruz Biotechnology). Goat anti-mouse Alexa 
Fluor® 647 (Cat. No. CSA3808; Cohesion Biosciences Ltd., 
London, UK) and goat anti-rabbit Alexa Fluor® 555 (Cat. No. 
CSA3411; Cohesion Biosciences Ltd.) were used as a fluores-
cent secondary antibodies. Sections were mounted with DAPI 
Fluoromount-G®, and images were acquired on an Olympus 
DP73 color digital camera using a 10X objective and suitable 
excitation and emission filters for each antibody.

Statistical analyses: All results are expressed as mean ± 
standard error of mean (SEM). Unless otherwise stated, data 

were subjected to an unpaired Student t test using GraphPad 
InStat software (San Diego, CA) and considered statistically 
different at p<0.05.

RESULTS

Effect of L-NAME on bodyweight, blood pressure values, and 
retinal layer thickness: Three-week exposure to L-NAME did 
not affect the animals’ weight (390±18.0 versus 390±9.00 for 
the control and L-NAME-treated rats, respectively). However, 
the SBP values were significantly increased from week 1 in 
the L-NAME-treated animals and appeared to plateau at 
week 3 when severe chronic hypertension was already estab-
lished (191±3.00 versus 130±3.00 for the L-NAME-treated 
and control groups, respectively; Figure 1A).

Figure 1B shows representative images of H&E-stained 
retinas. Normal distribution and morphology of the retinal 
and RPE/choroid layers were observed in the normotensive 
controls and in the L-NAME-treated animals. However, 

Table 1. Primers used for real-time PCR.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)
NOX1 TTCACCAATTCCCAGGATTGAAGTGGATGGTC GACCTGTCACGATGTCAGTGGCCTTGTCAA
NOX2 CCCTTTGGTACAGCCAGTGAAGAT CAATCCCACGTCCCACTAACATCA
NOX4 TTGCTTTTGTATCTTC CTTACCTTCGTCACAG
p22phox GCTCATCTGTCTGCTGGAGTA ACGACCTCATCTGTCACTGGA
p47phox GCTCACCGAGTACTTCAACA GCCTTCTGCAGATACATGGA
SOD CGTCATTCACTTCGAGCAGAAGG GTCTGAGACTCAGACCACATA
GSH-Red GGAAACTCGCCCATAGACTT CCAACCACCTTCTCCTCTTT
GSH-Px GGAGAATGGCAAGAATGAAGA CCGCAGGAAGGTAAAGAG
GAPDH GCCAAAAGGGTCATCATCTCCGC GGATGACCTTGCCCACAGCCTTG

Table 2. Antibodies used for western blotting analyses.

Primary antibody Origin Dilution Secondary Antibody Dilution
Anti-NOX1 Mouse monoclonal 1:1000 Goat anti-mouse 1:2000
Anti-NOX2 Rabbit monoclonal 1:8000 Goat anti-rabbit 1:4000
Anti-NOX4 Rabbit polyclonal 1:1000 Goat anti-rabbit 1:2000
Anti-p22phox Rabbit polyclonal 1:1000 Goat anti-rabbit 1:2000
Anti-p47phox Rabbit polyclonal 1:1000 Goat anti-rabbit 1:2000
Anti-eNOS Mouse monoclonal 1:2000 Goat anti-mouse 1:4000
Anti-iNOS Mouse monoclonal 1:2000 Goat anti-mouse 1:4000
Anti-nitrotyrosine Mouse monoclonal 1:1000 Goat anti-mouse 1:2000
Anti-GSH-Px Rabbit polyclonal 1:2000 Goat anti-rabbit 1:4000
Anti-GSH-Red Rabbit polyclonal 1:5000 Goat anti-rabbit 1:8000
Anti-SOD Mouse monoclonal 1:1000 Goat anti-mouse 1:2000
Anti-GFAP Mouse monoclonal 1:2000 Goat anti-mouse 1:4000
Anti-GAPDH Mouse monoclonal 1:10000 Goat anti-mouse 1:20000
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Figure 1. Effect of Nω-nitro-L-arginine methyl ester (L-NAME) on blood pressure and retinal layer thickness. A: Systolic blood pressure 
(SBP) values of rats receiving the standard control diet (black line) or subjected to treatment with L-NAME p.o. (gray line). B: Representative 
images of retinal sections subjected to hematoxylin and eosin staining (three images per group are shown as a representation of all animal 
samples processed). C: Histomorphometric analysis of relative retinal layer thickness. Plotted values are expressed as mean ± standard error 
of the mean (SEM) of seven animals per group. ***p<0.001 versus the CONTROL group.
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significant reductions of 18%, 7%, 13%, and 10% were 
measured in the latter in the ganglion cell layer (GCL), outer 
nuclear layer (ONL), outer segments (OS), and RPE/choroid, 
respectively (Figure 1B,C). The inner plexiform layer (IPL) 
of the hypertensive retinas showed a 9% thickness increase 
compared with the control group.

NADPH oxidase activity and ROS levels: The activity of 
O2

.--generating NADPH oxidase increased 2.34-fold in 
the eyecup homogenates from the hypertensive rats when 
compared with those of the normotensive controls (Figure 
2A). To elucidate the source of the superoxide anions in the 
L-NAME-treated animals, we performed additional deter-
minations in the homogenates preincubated with different 
inhibitors, as detailed. The fact that only DPI caused a major 
reduction in O2

.- generation, while no changes were observed 
in samples exposed to oxypurinol or rotenone, suggests that 
the enhanced production of O2

.- observed in the hyperten-
sive animals resulted from increased activity of the enzyme 
NADPH oxidase (Figure 2B).

To check the levels of ROS generated in situ in the 
choroid and in specific retinal layers, we used DHE reactions 
(Figure 2C) to quantify and compare the intensity of fluores-
cence staining (Figure 2D) in the two experimental groups. 
The signal strength, which is proportional to superoxide 
production, was 1.6-fold higher in the L-NAME-treated rats 
in the ganglion cell layer, in the inner nuclear layer, and in 
the outer nuclear layer of the retinas. DHE staining increased 
also by 1.5-fold in the choroids from the hypertensive rats.

Gene expression of oxidative stress–related enzymes: 
To assess whether the observed increase in the activity of 
NADPH oxidase following L-NAME treatment correlated 
with changes in gene expression of this enzyme, we quanti-
fied the isoforms and subunits of the NADPH oxidase enzyme 
assayed in this study with real-time PCR. As shown in Figure 
3, all analyzed elements revealed considerable increments of 
mRNA expression in the group subjected to L-NAME expo-
sure (1.41-, 2.18-, 2.23-, 2.57-, and 1.62-fold for NOX1, NOX2, 
NOX4, p22phox, and p47phox, respectively, compared with 
the values measured in the normotensive group).

Antioxidant enzyme expression at the mRNA level is 
shown in Figure 4. GSH-Px 1/2 and SOD-1 were downregu-
lated in the eyecups from the L-NAME-treated hypertensive 
rats (0.50- and 0.43-fold, relative to the control group, respec-
tively; Figure 4A,C). Conversely, the expression of GSH-Red 
displayed a 1.36-fold increase after treatment with L-NAME 
(Figure 4B).

Protein expression analyses: To explore whether changes 
at the functional and mRNA levels also correlate with the 

protein expression pattern, we measured the relative abun-
dance of NOX1, NOX2, NOX4, p22phox, and p47phox 
(Figure 5). NOX2 was increased 4.03-fold in the eyes from 
the hypertensive rats when compared with the control 
animals. The expression of the NOX1, NOX4, p22phox, and 
p47phox proteins was enhanced 1.62-, 1.48-, 2.48-, and 2.70-
fold, respectively (Figure 5A–E).

Immunofluorescence analyses of NOX1, NOX2, and 
NOX4 were further performed in the retinal layers and the 
choroid (Figure 5F) to strengthen the results obtained in the 
immunoblotting analyses and to confirm the presence of the 
NOX protein in the different eye layers. All three isoforms 
of the NADPH oxidase enzyme were detected in the RPE/
choroid (mostly localized around blood vessels) and the outer 
segment layers in both groups of animals, with a stronger 
signal in the hypertensive animals when compared with the 
control animals. NOX1, NOX2, and NOX4 were also detected 
in the outer plexiform layer from the hypertensive animals, 
and the latter displayed a signal in the inner plexiform layer, 
as well. In addition, NOX1 and NOX4 were slightly detected 
in the ganglion cell layer of the hypertensive rats but not in 
the control normotensive rats.

As the positive signal of the NOX isoforms in the 
plexiform layers might correspond to microglia activation, 
immunofluorescence of GFAP (a somewhat nonspecific 
response that ref lects early retinal damage in different 
retinopathies) was performed in the retinal layers, and the 
relative abundance of this protein was then quantified with 
western blotting (Figure 5G). A faint GFAP signal could be 
observed only in the outer segment layer of the normotensive 
animals. However, GFAP staining appeared as a strong signal 
in the outer segment and the inner and outer plexiform layers 
from the hypertensive animals. These results were similar to 
a considerable increase (1.54-fold) in the protein expression 
of GFAP in the retina homogenates from the hypertensive 
animals in comparison with the untreated control rats.

Protein expression analyses of eNOS and iNOS 
displayed significantly higher expression for both enzymes 
(2.21- and 3.36-fold for eNOS and iNOS, respectively) in the 
rats subjected to L-NAME administration compared to the 
normotensive controls (Figure 6A,B). The additional marker 
of oxidative stress, nitrotyrosine, showed a 1.79-fold increase 
compared with the control animals (Figure 6C).

Regarding the protein expression of antioxidant 
enzymes, the results were similar to those obtained in the 
RT-qPCR experiments and showed reductions of 79% and 
29%, respectively, in the amount of GSH-Px 1/2 and SOD-1 
enzymes (Figure 7A,C), together with a 1.7-fold increase in 
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Figure 2. Effect of L-NAME on ROS production. A: NADPH oxidase activity in eyecup homogenates from normotensive (CONTROL) 
and hypertensive (Nω-nitro-L-arginine methyl ester, L-NAME) rats. Values are expressed as mean ± standard error of the mean (SEM) 
of seven animals per group. ***p<0.001 versus the CONTROL group. B: NADPH oxidase–mediated production of the superoxide anion. 
Eyecup homogenates from L-NAME-treated rats were used for NADPH oxidase chemiluminescence assay in the presence of 0.1 mM 
diphenyleneiodonium (DPI), oxypurinol (OXI), and rotenone (ROT) inhibitors. Values were subjected to one-way analysis of variance 
(ANOVA) followed by Tukey’s multiple comparison posttest and are expressed as mean ± SEM of seven animals per group. ***p<0.001 
versus the CONTROL group; ###p<0.001 versus the L-NAME group. C, D: Estimation of reactive oxygen species (ROS) levels in the 
retina and choroid with dihydroethidium (DHE) staining. C: DHE labeling (red) for ROS was present in the ganglion cell layer (GCL), in 
the inner nuclear layer (INL), and in the outer nuclear layer (ONL) of the retina, and in the choroid (CH), which can be distinguished with 
4′,6-diamidino-2-phenylindole (DAPI, blue) nuclei staining. Three images per group are shown as a representation of all animal samples 
processed. D: Fluorescence intensity in (C) normalized to that of the CONTROL group in each corresponding layer, as quantified using 
ImageJ software. Plotted values are expressed as mean ± SEM of four animals per group: **p<0.01, ***p<0.001 versus the CONTROL 
group. RFU, relative fluorescence unit.
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Figure 3. Gene expression of 
NADPH oxidase enzyme. Rela-
tive mRNA expression of (A) 
NOX1, (B) NOX2, (C) NOX4, (D) 
p22phox, and (E) p47phox, in the 
eyes of normotensive (CONTROL) 
and hypertensive (Nω-nitro-L-
arginine methyl ester, L-NAME) 
rats. The quantitative fold changes 
in gene expression were determined 
as relative to GAPDH in each corre-
sponding group and calculated 
using the 2-ΔΔCt formula. Values are 
expressed as mean ± standard error 
of the mean (SEM) of seven animals 
per group. **p<0.01, ***p<0.001 
versus the CONTROL group.
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Figure 4. Gene expression of anti-
oxidant enzymes. Relative mRNA 
expression of (A) GSH-Px 1/2, (B) 
GSH-Red, and (C) SOD-1, in the 
eyes of normotensive (CONTROL) 
and hypertensive (Nω-nitro-L-
arginine methyl ester, L-NAME) 
rats. The quantitative fold changes 
in gene expression were determined 
relative to GAPDH in each corre-
sponding group and calculated 
using the 2-ΔΔCt formula. Values 
are expressed as mean ± standard 
error of the mean (SEM) of seven 
animals per group: ***p<0.001 
versus the CONTROL group.
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the expression of GSH-Red, in the L-NAME-treated rats 
(Figure 7B).

DISCUSSION

In agreement with previous reports, the administration 
of L-NAME had no effect on the animals’ bodyweight 
[30,40,41]. However, as expected based on previous studies 
performed in our laboratory [39], L-NAME induced a signifi-
cant and sustained elevation of SBP from the first week of 
treatment (Figure 1).

Thinner GCL, ONL, OS, and RPE/CH layers were 
observed in the L-NAME group compared with the normo-
tensive animals. Reduced retinal thickness was previously 
reported in spontaneously hypertensive rats (SHRs) [42,43], 

mainly in the outer retinal layers [44]. Similar findings have 
been reported in hypertensive patients without previous 
ocular abnormalities, thus suggesting a possible association 
between arterial sclerosis and vascular contraction due to 
high intravascular pressure in the choroid [45] and a decrease 
in the retinal blood flow [46].

Several studies highlighting the relevance of NADPH 
oxidase enzyme in the pathophysiology of AH have reported 
enhanced activity of this element in hypertensive subjects 
and in experimental models of hypertension [39,40]. The 
augmented NADPH oxidase activity observed in the present 
study in the eyes of the hypertensive rats is in line with 
previous observations in other organs, including the heart 
[47-49], liver [47], and kidney [39], as well as in renal tubular 

Figure 5. Expresion of nitric oxide synthases and protein tyrosine nitration. Relative protein expression of (A) NOX1, (B) NOX2, (C) 
NOX4, (D) p22phox, and (E) p47phox, in eyecup homogenates, and (H) GFAP in retinas from normotensive (CONTROL) and hypertensive 
(Nω-nitro-L-arginine methyl ester, L-NAME) rats. The quantitative fold changes in protein expression were determined relative to GAPDH 
protein levels in each corresponding group. Plotted values are expressed as mean ± standard error of the mean (SEM) of seven animals 
per group. *p<0.05, **p<0.01, ***p<0.001 versus the CONTROL group. F: Double-immunostaining of nuclei (blue) and NOX isoforms 
(red; NOX1 (top), NOX2 (middle), and NOX4 (bottom)) proteins in retinal layers and in RPE/choroid layers from control (left column) 
and L-NAME-treated rats (right column). Arrow heads indicate the presence of NOX proteins mainly around choroidal vessels. Images 
are representative of four animals per group. G: Double immunostaining of nuclei (blue) and GFAP (red) proteins in retinal layers from 
control (left column) and L-NAME-treated rats (right column). Three immunostained images and western blots per group are shown as a 
representation of all animal samples processed. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer 
plexiform layer; ONL, outer nuclear layer; OS, outer segments; RPE, retinal pigment epithelium; CH, choroid.
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Figure 6. Expresion of nitric oxide 
synthases and protein tyrosine 
nitration. Relative protein expres-
sion of (A) endothelial constitutive 
nitric oxide synthase (eNOS), (B) 
inflammation inducible nitric oxide 
synthase (iNOS), and (C) nitrotyro-
sine, in eyecup homogenates from 
normotensive (CONTROL) and 
hypertensive (Nω-nitro-L-arginine 
methyl ester, L-NAME) rats. The 
quantitative fold changes in protein 
expression were determined rela-
tive to GAPDH protein levels in 
each corresponding group. Plotted 
values are expressed as mean ± 
standard error of the mean (SEM) 
of seven animals per group, and 
three western blots per group are 
shown as a representation of all 
animal samples processed.*p<0.05, 
**p<0.01 versus the CONTROL 
group.
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Figure 7. Protein expression of 
antioxidant enzymes. Relative 
protein expression of (A) GSH-Px 
1/2, (B) GSH-Red, and (C) SOD-1 
in eyecup homogenates from 
normotensive (CONTROL) and 
hypertensive (Nω-nitro-L-arginine 
methyl ester, L-NAME) rats. The 
quantitative fold changes in protein 
expression were determined rela-
tive to the GAPDH protein levels in 
each corresponding group. Plotted 
values are expressed as mean ± 
standard error of the mean (SEM) 
of seven animals per group, and 
three western blots per group are 
shown as a representation of all 
animal samples processed. *p<0.05, 
***p<0.001 versus control group.
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cells in different prohypertensive environments [36,38], or in 
phagocyte cells from hypertensive patients [50].

We confirmed that NADPH oxidase was responsible 
for the rise of superoxide anion under the experimental 
conditions (i.e., following L-NAME chronic exposure) with 
the inhibitory effect of DPI on the luminometer readings. 
Conversely, coincubation with other inhibitors, such as 
rotenone (which counteracts the mitochondrial respiratory 
chain) and oxypurinol (a prototypical inhibitor of xanthine 
oxidase enzyme) did not modify the chemiluminescence 
signal. The increased NADPH oxidase activity observed in 
the hypertensive animals was mainly correlated with higher 
O2

.- production in the GCL, INL, and ONL of the retina.

Sicard and coworkers reported increased activity of 
NADPH oxidase in retinal cells of SHRs [51], with an 
increase in the content of O2

.- in the GCL and no changes 
in photoreceptors and bipolar cells in the retinas of SHRs 
when compared with normotensive rats. Furthermore, Pinto 
et al. showed an increase in superoxide anion production 
in retinas from SHRs [52]. We might extrapolate that the 
hyperactivity of this O2

.--generating enzyme in the eyecups 
of the L-NAME-treated hypertensive rats could be related to 
the presence of retinal cells in the homogenates. In addition, 
other eye regions, such as the choroid or the cornea, cannot be 
excluded as targets of L-NAME-dependent overexpression of 
NADPH oxidase, due to the demonstrated elevation or pres-
ence of the enzyme in these ocular layers [53].

In addition to arterial hypertension, several laboratories 
have postulated a role for NOX family proteins in the devel-
opment of different ocular pathologies, for example, retinal 
vasculitis [54], ischemic retinopathy [55], choroidal neovas-
cularization [23], and diabetes-induced retinal and choroidal 
vascular injuries [56,57]. The importance of NADPH oxidase 
has also been highlighted in tissue dysfunction, including the 
eye in different pathological conditions [17-22,24].

The present data show the first evidence of the loca-
tion and the protein and gene expression of NOX isoforms 
and subunits in the hypertensive eye. Thus, the present 
results indicate that NOX1, NOX2, and NOX4 proteins are 
detected with abnormally high intensity in retinal layers 
of L-NAME-treated hypertensive rats, mainly in the outer 
segment and outer and inner plexiform layers, and that these 
NADPH oxidase isoforms are also upregulated at the tran-
scriptional level in the eyecups of these rats. Roehlecke et 
al. [58] reported immunolocalization of NOX2 and NOX4 in 
the OS from mouse retinas subjected to blue light irradia-
tion. NADPH isoforms are also overexpressed in other target 
organs affected by hypertension [36,39,59], as well as in 
other oxidative stress-related systemic pathologies affecting 

the eye, such as diabetes [17]. In addition, the present find-
ings were matched by a high immunofluorescence signal of 
GFAP in the plexiform layers from the hypertensive animals; 
this observation might reflect microglial activation locally in 
the retina and indicate an unspecific response derived from 
early retinal damage. In agreement with the present results, 
microglial activation was previously reported in the retina 
from spontaneously hypertensive rats when compared with 
normotensive animals [28].

Multiple ocular pathologies, such as retinopathies 
(including AMD) [7], glaucoma [5], cataract [2] and choroidal 
vascular diseases [6], have thus far been related to hyper-
tensive status. The present findings highlight that the abnor-
mally high release of superoxide anions by NADPH oxidase 
system is a major component of the oxidative damage and 
the proinflammatory status surrounding hypertension-related 
ocular diseases. Nevertheless, previous studies using retinas 
from SHRs did not find any changes in the protein expres-
sion of NOX4 and gp91phox when compared with WKY rats, 
suggesting that the observed increase in the superoxide anion 
might be due to mitochondrial dysfunction [52].

Concerning the oxidative defense capacity in the present 
study experimental conditions, we observed downregulation 
of SOD-1 and GSH-Px 1/2, at the protein and mRNA levels, 
together with an increase in the expression of GSH-Red, in 
the eyecups of the hypertensive animals when compared 
to the normotensive controls. Similar results were recently 
obtained in the rat lenses of fructose-fed hypertensive rats 
[60]. The reduction in SOD-1 and GSH-Px 1/2 expression 
in the eyes from the L-NAME-treated rats might be respon-
sible for an increase in ROS, because the SOD enzyme is 
in charge of the production of O2

.- from H2O2, whereas the 
GSH-Px enzyme catalyzes the reduction of H2O2 to H2O and 
O2, at the expense of reduced GSH. However, the observed 
increase in GSH-Red might indicate possible compensation to 
supply GSH, the main component in the antioxidant defense, 
from oxidized glutathione (GSSG), as it was observed in 
retinas from SHRs [52]. This hypothesis is confirmed by the 
enhanced levels of nitrotyrosine (another oxidative stress 
marker) found in the L-NAME model of hypertension; it 
is known that O2

.- can react with NO to form peroxynitrite, 
which modifies free or protein-bound tyrosine residues to 
form nitrotyrosine. The present results are in line with those 
by Pinto et al. and Mohamed et al., who reported an enhance-
ment in nitrotyrosine levels in retinas from SHRs, together a 
rise in lipid peroxides [52,61].

Different ocular pathologies associated with oxidative 
stress present with alterations in antioxidant enzymes. In this 
sense, the levels of SOD were significantly lower in patients 
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with myopia [62], while similar studies have recently reported 
an increase in SOD and GSH-Px in patients with chronic 
glaucoma [63]. Modifications in the antioxidant enzyme 
system have been also found in AMD [64]. These alterations 
in the availability of antioxidant enzymes might result from 
local increases in oxidative stress. Nevertheless, the ultimate 
implications of elevated levels of antioxidant enzymes in 
the eye are currently unpredictable due to the complexity of 
the biochemical pathways involved [65], and certainly merit 
future investigation.

In agreement with previous studies on diabetic retinop-
athy [66], glaucoma [67,68], and AMD [69,70], the present 
results also showed that endothelial and inducible isoforms of 
nitric oxide synthase enzyme were upregulated in rats under-
going L-NAME treatment. Specifically, iNOS overexpression 
might be due to the existence of an inflammatory process in 
the eye during the development of arterial hypertension, as 
has been suggested in eye inflammatory diseases, including 
AMD [70], uveitis [71], and dry eye disease [72]. Moreover, 
upregulation of eNOS might represent cellular adaptation 
of the eye in response to changes in NO availability. Taken 
together, all these results suggest that activation of NADPH 
oxidase and O2

.--derived oxidative stress associated with 
altered metabolism of nitric oxide may affect the ocular 
vasculature and promote the occurrence of ocular patholo-
gies [16].

Although the alterations in oxidative stress and microg-
lial activation observed in this model of arterial hypertension 
are currently unknown to induce damage in ocular func-
tion, changes in retinal morphology were observed in the 
L-NAME-treated animals, which might suggest alterations in 
the hypertensive fundus. Interestingly, Sicard et al. [51] found 
alterations in retinal function (e.g., abnormally decreased 
electroretinogram b-wave amplitudes) in spontaneously 
hypertensive rats, which matched the increase in superoxide 
content found in these animals in the ganglion cell layer of the 
retina. In addition, recent studies on eye fundal exploration 
in animals with a history of normal pregnancy exposed to 
L-NAME showed narrowed retinal vessels, opacification of 
the arteriolar wall, increased and diffused optic discs, and 
slight hemorrhages when compared with control pregnant rats 
[31]. Whether these (or other) functional alterations are also 
present in the present experimental model of hypertension is 
an interesting issue that certainly warrants further research.

Conclusions: The present study demonstrated that arterial 
hypertension occurs with changes in retinal morphology 
and increased NADPH oxidase–derived oxidative stress and 
inflammation in ocular tissues, with special attention paid to 
the retinal layers and the choroid. There is existing evidence 

that involves the ROS-generating enzyme NADPH oxidase 
in the pathophysiological mechanisms contributing to the 
progression of eye diseases. ROS overproduction in hyperten-
sive rats was accompanied by alterations in the levels of nitric 
oxide synthase, antioxidant enzymes, and GFAP-revealed 
microglial activation locally in the eye, thus suggesting an 
interplay among NADPH oxidase, oxidative stress, inflam-
mation, and hypertensive ocular disease. These findings 
strengthen the importance of this ROS-generating enzyme 
system in the oxidative and inflammatory pathogenesis of 
eye hypertensive diseases.
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