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A B S T R A C T

Objectives: The novel coronavirus (COVID-19) epidemic is reaching its final phase in China. The epidemic
data are available for a complete assessment of epidemiological parameters in all regions and time
periods.
Methods: This study aims to present a spatiotemporal epidemic model based on spatially stratified
heterogeneity (SSH) to simulate the epidemic spread. A susceptible-exposed/latent-infected-removed
(SEIR) model was constructed for each SSH-identified stratum (each administrative city) to estimate the
spatiotemporal epidemiological parameters of the outbreak.
Results: We estimated that the mean latent and removed periods were 5.40 and 2.13 days, respectively.
There was an average of 1.72 latent or infected persons per 10,000 Wuhan travelers to other locations
until January 20th, 2020. The space-time basic reproduction number (R0) estimates indicate an initial
value between 2 and 3.5 in most cities on this date. The mean period for R0 estimates to decrease to 80%,
and 50% of initial values in cities were an average of 14.73 and 19.62 days, respectively.
Conclusions: Our model estimates the complete spatiotemporal epidemiological characteristics of the
outbreak in a space-time domain. These findings will help enhance a comprehensive understanding of
the outbreak and inform the strategies of prevention and control in other countries worldwide.
© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

Introduction

As of this writing, the novel coronavirus (COVID-19) outbreak is
considered to be almost over in China after an intensive spread
lasting over two months. The complete data of the COVID-19
epidemic in China enables us to make a complete and accurate
estimation of the epidemiological parameters in the country. Early
confirmed cases were mainly linked to a seafood wholesale market
in Wuhan, Hubei province, China, starting from late November
2019 (Li et al., 2020; Zhu et al., 2020). The epidemic transmission in
the early phase was associated with the movement of populations

from the seafood market and away from Wuhan. Massive human
movements via railways and airlines from Wuhan due to the
annual Chinese (Lunar) New Year holiday migration enabled the
virus to spread nationwide and worldwide (Peeri et al., 2020).
Travel restrictions and quarantine measures in Wuhan were
effective in delaying the overall epidemic progression in mainland
China and reduced the exportation of cases to international
locations (Chinazzi et al., 2020). Strict control strategies activated
by governments and individuals (e.g., transportation restrictions,
holiday extensions, and self-isolation measures) were effective in
weakening the outbreak trend in China (Lin et al., 2020).

Previous studies of the epidemiological characteristics of
COVID-19 focused on clinical and descriptive statistics (Chan
et al., 2020; Guan et al., 2020; Huang et al., 2020; Li et al., 2020; Sun
et al., 2020; Zhu et al., 2020). Modeling studies of COVID-19* Corresponding authors.
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transmission patterns include forecasting future spreads (Al-
qaness et al., 2020; Alsayed et al., 2020; Wu et al., 2020), exploring
characteristics and determinants (Li et al., 2020; Liu et al., 2020;
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iong et al., 2020), risk assessment (Boldog et al., 2020; Jung et al.,
020; Tang et al., 2020), control/restriction measure effects
Chinazzi et al., 2020; Tang et al., 2020), estimation of epidemio-
ogical parameters (e.g., basic reproduction number, R0) (Chen
t al., 2020; Mollalo et al., 2020; Wang et al., 2020; Zhang et al.,
020; Zhao et al., 2020a) and others. Epidemiological and modeling
tudies indicate that the COVID-19 epidemic has an R0 value of 2–3
Li et al., 2020; Wu et al., 2020; Zhang et al., 2020; Zhao et al.,
020a), which is lower than that of the 2003 severe acute
espiratory syndrome (SARS) outbreak (Lipsitch, 2003; Riley et al.,
003). However, the COVID-19 epidemic spread in China produced
arious regional outbreaks with diversified epidemiological
haracteristics, which varied by region and human movements
rom the epidemic center. Moreover, epidemiological parameters/
ndicators (e.g., R0, infective rate, and removed rate) generally
aried by region and time during the epidemic period because of
he various control strategies activated by multiple governments
nd other entities.
A variety of epidemics indicate the region-varying and time-

arying parameter characteristics (McCallum and Partridge, 2010),
nd a global model is inappropriate for all regions in such a large-
cale area (e.g., mainland China). Control strategies (e.g., transpor-
ation control programs and 2-week self-isolation measures) in
arious regions might cause heterogeneous interactions between
ubpopulations in the region to varying degrees. A global model
ould be confounded if the population exhibits spatially stratified
eterogeneity (SSH) (Buttle et al., 2016; Wang et al., 2016; Xu et al.,
011). Traditional mathematical models of infectious diseases,
uch as susceptible-infected-removed (SIR) and susceptible-
xposed/latent-infected-removed (SEIR) models, are appropriate
nd applicable under the mass interaction assumption (i.e.,
ubpopulations mix fully and homogeneously, and have identical
nteractions with one another) (Kermack and Mckendrick, 1991).
ontrol strategies for the restriction of human migration between
egions may cause a disagreement with a global model due to this
ssumption. Moreover, epidemic outbreaks strongly associated
ith human movement from the epidemic source (e.g., the COVID-
9 epidemic in China) generally indicate a spatiotemporal
eterogeneity typical of human movements. Therefore, to better
stimate the spatiotemporal epidemiological characteristics of an
utbreak, SSH-based models can identify similar characteristics
ithin strata (e.g., region groups) and different characteristics
etween strata (Wang et al., 2010b).
Given the above considerations, here we provide an SEIR model

ith a time-varying infective rate for each SSH-identified stratum
o simulate the spatiotemporal epidemic spread of the COVID-19
utbreak in geographical strata of mainland China, based on the
SHs (Wang et al., 2016, 2010b) of the epidemic spread and human
ovements from infection sources. This study estimates the
patiotemporal epidemiological characteristics of the outbreak
e.g., space-time varying R0) all over the country, the spatial
istribution of the imported latent and infected populations from
he epidemic source, and several other indicators (e.g., latent and
emoved periods) in strata (administrative cities in mainland
hina).

aterials and methods

SH q statistic

and assess the determinant power of explanatory variables and
their interactions without linear assumptions (Yin et al., 2019). The
fundamental formula of the q statistic is given by:

q ¼ 1 �
XL

h¼1
Nhs2

h

Ns2
ð1Þ

where q, with a value ranging from 0 to 1, is the SSH measure of an
explained variable or the determinant power of a factor to the
objective. N is the number of explained variable observations, and
s2 indicates the variance of all the observations. The explained
variable is stratified into L strata, denoted by h = 1, 2, . . . , L, which
are determined by prior knowledge, the determinant factor, or a
classification algorithm. Nh is the number of observations, and s2

h is
the corresponding variance within stratum h.

There must be at least two subregions in each stratum for the
variance calculation within strata if the explained variable
distributes spatially (Wang et al., 2010b). However, a stratum
containing only one subregion is allowable, when the explained
variable observations are constructed in a space-time domain.
There might be one or more subregions in a specific stratum under
a given geographical stratification. The variance is calculated
according to the spatiotemporal data in a specific stratum with
multiple subregions and temporal observations. Specifically, if a
stratum has only one subregion, its variance can be calculated
based on temporal observations. Multiple geographical stratifica-
tion solutions in a large-scale area can be comparatively analyzed
to identify an appropriate one to indicate the significant SSH of the
epidemic spread and human movements from an infection source.
Various epidemic models in strata can be combined to introduce a
model of a complete spatiotemporal spread of the epidemic.

The GeoDetector software is accessible at http://geodetector.
cn/, and the q statistics in this study were performed with the use
of the R software package (R Foundation for Statistical Computing).

SEIR model for a stratum

After determining a specific geographical stratification solution,
the study area is stratified into L strata denoted by h = 1, 2, . . . , L.
The epidemic SEIR model is separately calibrated in each of the
various strata. The population in stratum h is divided into four
subpopulations: the susceptible (Sh), the exposed/latent (Eh), the
infected (Ih), and the removed/isolated/recovered/dead (Rh). The
numbers of four subpopulations in stratum h are denoted by Sh(t),
Eh(t), Ih(t), and Rh(t), respectively, at time t. And the population
amount in stratum h is assumed to be constant and can be denoted
by Nh = Sh(t) + Eh(t) + Ih(t) + Rh(t). In the current stratified model,
SEIR models in various strata have a set of similar differential
equations as follows:

dSh
dt

¼ �bh tð ÞIh
Sh
Nh

ð2Þ

dEh
dt

¼ bh tð ÞIh
Sh
Nh

� lhEh ð3Þ

dIh
dt

¼ lhEh � ghIh ð4Þ
The SSH refers to ubiquitous phenomena (those within strata
re more similar than those between strata), implies potential
istinct mechanisms by stratum, and enforces the applicability of
tatistical inferences (Wang et al., 2016). The geographical detector
GeoDetector) q statistic is generally applied to quantitatively
valuate the SSH of an explained variable (Wang et al., 2016, 2010b)
24
dRh

dt
¼ ghIh ð5Þ

where lh is the latent rate at which exposed individuals become
infectious in stratum h (1/lh indicates the estimated latent period,
8
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Tl,h), and gh is the removed rate at which infectious individuals are
removed (1/gh denotes the estimated removed period, Tr,h). The
infective rate in stratum h denoted by βh indicates the average
infection number per infectious individual per timestep (e.g., one
day), and is due to the temporal change of the effects of control
programs and other factors; therefore, it is considered to depend
on time:

bh tð Þ ¼ ah þ
bh

1 þ ech t�dhð Þ ð6Þ

where ah, bh, ch and dh are the coefficients of an inverse logistic
function to describe the temporal βh(t) in stratum h. Control
measures have no explicitly representative parameters included in
the model. However, they are reflected in the observed data, and
thus, are adopted in the parameters in the modeling.

The SEIR model with time-varying infective rates is constructed
stratum by stratum according to a specific stratification solution.
The SEIR model for each SSH-identified stratum can describe the
spatiotemporal variation of the epidemic spread and can be used to
estimate the epidemiological characteristics in a space-time
domain.

In each stratum, the SEIR model has a total of eight parameters
to be estimated, including four coefficients of the βh(t) function (ah,
bh, ch, dh), gh, lh, Eh(1) and Ih(1). The latter two are the estimated
numbers of the latent and infected subpopulations in stratum h,
respectively, which are imported from the infection source at time
t = 1 (the initial time of the simulation). The initial removed
subpopulation is assumed to be zero and the susceptible
subpopulation is calculated by Sh(t) = Nh � Ih(t) � Eh(t) � Rh(t).

Using spatiotemporal data of the COVID-19 epidemic in China,
we can fit the proposed SEIR model, estimate the model
parameters in all the strata, and then estimate the spatiotemporal
epidemiological characteristics. The mean latent and removed
periods, respectively, can be estimated as follows:

Tl ¼
1
L

XL
h¼1

Tl;h ¼ 1
L

XL
h¼1

1

l̂h

ð7Þ

Tr ¼ 1
L

XL
h¼1

Tr;h ¼ 1
L

XL
h¼1

1
ĝh

ð8Þ

where L is the number of strata, l̂h is the estimated latent rate, and
ĝh is the estimated removed rate in stratum h.

During the modeling process, the latent and infected sub-
populations imported from the infection source (Wuhan for the
COVID-19 epidemic) are estimated at the initial time in all strata.
Following this, we can then calculate the latent and infected ratio
(L&I ratio) imported from Wuhan at t = 1 in stratum h as follows:

RLI;h¼bEh 1ð Þ þbIh 1ð Þ
nh 1ð Þ

ð9Þ

where RLI,h is the L&I ratio at t = 1 in stratum h, bEh 1ð Þ andbIh 1ð Þ are
the estimated imported latent and infected subpopulations,
respectively, and nh(1) denotes the cumulative number of Wuhan
travelers to stratum h from January 1st, 2020 at t = 1. Note that the
former is the date when the seafood market was closed, and
human movements from Wuhan to elsewhere in the country
contributed to the regional variation of the initial epidemic status

where R0,h(t) is the R0 estimate at time t in stratum h, and bah, bbh, bch
and bdh are the parameter estimates of the infective rate function.
The estimated R0 function depends on time, varies by stratum, and
describes the complete spatiotemporal characteristics of the
COVID-19 epidemic spread in mainland China.

Data and stratification

We collected the spatiotemporal data of daily new COVID-19
confirmed cases in administrative cities of mainland China from
the daily bulletins of the National Health Commission of the
People’s Republic of China (NHC) and various Provincial/Municipal
Health Commissions. The final epidemic dataset was compara-
tively verified through the public platform of the 2019-nCoV-
infected pneumonia epidemic from the Chinese Center for Disease
Control and Prevention (China CDC) (China CDC, 2020). Addition-
ally, demographic data were collected from the 2019 China
Statistical Yearbook to identify the populations in the strata.

The Huanan seafood wholesale market and Wuhan were
considered to be the primary and secondary epidemic centers.
Human movements of populations from these two sources were
associated with the spatiotemporal epidemic spread. We used
the data of location-based service (LBS) requests of mobile
devices to indicate human migrations from the sources to
elsewhere. The datasets of LBS requests, which cover over 80% of
mobile devices supported by the three telecommunication
operators in China, were provided by Wayz Inc., Shanghai, China,
and applied to identify the generations of the COVID-19
epidemic spreads in mainland China during the early phase
(Hu et al., 2020). The LBS-requesting statistics are implemented
every two hours with high-resolution location information, and
private individual information was deleted from the raw data of
the mobile devices.

Based on these above-mentioned data sources, we evaluated
the SSHs of the spatiotemporal data of COVID-19 confirmed cases
and the LBS-requesting data of mobile devices from two epidemic
sources. Three stratification solutions were carried out for
comparative analysis. First, considering the distance from the
epidemic source, the study area (mainland China) was stratified
into four subareas of increasing distance (strata): Wuhan, Hubei
province excluding Wuhan, provinces adjacent to Hubei, and the
rest of the country (Solution 1). Second, provinces, municipalities,
and autonomous regions were considered as the strata (Solution
2). Third, all administrative cities were considered as strata
(Solution 3).

In each stratum, the spatiotemporal observations of an
explained variable were used to calculate the corresponding
variance. That is to say, the variance in calculating the SSH q value
is about the number of confirmed cases or device traces. Note that
the variances in Solution 3 were calculated based on temporal
observations since each stratum has only one subregion (city). The
variances of the spatiotemporal observations within all strata were
compared with the variance of all observations; according to
Eq. (1), the SSH q value of the explained variable can be calculated
under a specific stratification solution. There were three stratifi-
cation solutions for the evaluations of the SSHs of the explained
variables. The SSH q values of each variable can be compared under
different solutions. As shown in Table 1, spatiotemporal COVID-19
cases and two categories of device traces from the market and
by stratum.
Finally, the space-time R0 in all the strata during the period of

the simulation can be estimated by:

R0;h tð Þ¼
bh tð Þ
ĝh

¼bah þ bbh= 1þebch t�bdh� �� �
ĝh

ð10Þ
249
Wuhan had significantly weak SSH in the strata of Solution 2 (q
statistics < 0.1). However, they had strong SSH in the strata of both
Solution 1 and Solution 3. The q statistics of device traces from
Wuhan and the seafood market (after January 1st, 2020) were
higher than 0.86 and 0.95, respectively. The spatiotemporal
COVID-19 cases had q statistic values over 0.26. It is thus
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pparently inappropriate to construct the SEIR model for strata by
rovinces. The q statistics in strata of cities were generally higher
han those in the four strata separated by increasing distance from
he epidemic source. In addition, more strata reveal more details of
he epidemic in the space-time domain. We, therefore, selected
olution 3 to implement the stratification, i.e., the proposed SEIR
odel of simulating the spatiotemporal COVID-19 epidemic
pread was constructed in strata of administrative cities in
ainland China.

xperimental setups

Each administrative city in mainland China was considered
s one single stratum, and the SEIR model for a stratum was
orrespondingly constructed to simulate the epidemic spread.
he experimental period was set from January 20th to
ebruary 29th, 2020, with a time step of one day (t = 1, 2,
. . , 41). The population amount in stratum h at the end of 2018
as assigned to Nh, which was set as a constant during the
odeling process. The infected subpopulation, Ih, had an initial
alue of the cumulative confirmed cases in the city at t = 1
January 20th) and was assumed not to exceed Nh. The latent
ubpopulation, Eh, was assumed to have a value ranging from
ero to the cumulative number of Wuhan travelers to the city at

 = 1 and had an initial importation ratio of 1/1000. Note that the
nitial values of these two variables were also set as the model
arameters and would be re-estimated during the modeling
rocess. The removed subpopulation, Rh, had an initial value of
ero at t = 1, and the susceptible subpopulation, Sh, can be
imply calculated. The latent rate, lh, and the removed rate, gh,
ere assumed to have bounds of 1/14–1/3 (day�1) and 1/9–1
day�1), respectively. That is to say, the latent and removed
eriods were estimated, respectively, from three to fourteen days
nd from one day to nine days, which covered the corresponding
alues considered in most previous studies (e.g., Guan et al.,
020; Lin et al., 2020; Wu et al., 2020).
Based on the control of the spatiotemporal COVID-19 epidemic

ata, the proposed SEIR model can be solved according to Eqs. (2)–
6), and the parameter estimates of the SEIR models in strata were
btained afterward. Furthermore, the spatiotemporal epidemio-
ogical parameters of the COVID-19 outbreak in mainland China
ould be calculated according to Eqs. (7)–(10). The root mean
quare error (RMSE), coefficient of determination (R2), and
djusted R2 were selected to evaluate the model performance
goodness-of-fit, see Appendix A). The calculation was imple-

Results

Model performance

The SEIR model for a stratum was constructed amongst a total of
315 applicable administrative cities in mainland China. The
observations of the cumulative confirmed cases were applied to
be compared with the modeled values for the evaluation of model
performance. Table 2 shows the details of the model performance.
Regarding the modeling accuracy, the mean values of R2 and
adjusted R2 of the presented model were 0.9663 and 0.9592,
respectively, and the corresponding values of one standard
deviation (1-StdDev) were 0.0396 and 0.0480, respectively.
Although several cities had slightly low-value R2 and adjusted
R2 (lower than 0.7), over 75% of cities had adjusted R2 values over
0.9. The proposed SEIR model indicated a satisfactory overall
performance in reducing the estimation errors and improving
accuracy. Several cities with extremely high numbers of confirmed
cases (e.g., Wuhan and several cities in Hubei) expanded the range
of the RMSE value range (maximum value reached 1423.55
persons). However, the mean RMSE value was 8.9190 persons (1-
StdDev = 81.15 persons), and the RMSE “box” was located around
the low values from one to two persons (Figure 1) indicating an
overall point-by-point accuracy of the model in most cities.

Furthermore, as shown in Figure 1, under the condition of
consistent coordinate-axis ranges, the “box” of adjusted R2 values
was slightly wider than R2 and exhibited a slight sinking which
brings the “box” nearer to the horizontal axis. The adjusted R2,
however, still had a median value of 0.9751 with only a few lower
outliers. The proposed SEIR model was further confirmed to have
very good accuracy in modeling the COVID-19 outbreak in
mainland China.

For the detailed modeling information in strata (cities), the
temporal estimates of the cumulative cases can be plotted by
stratum. Figure 2 demonstrates the information of the temporal
estimates in Wuhan (the most severely affected city of the COVID-
19 epidemic). Blue circles correspond to the cumulative cases, the
solid red line denotes the estimated curve, and the dashed lines
depict the 95% confidence intervals (CIs). Note that clinically
diagnosed cases were reported as confirmed ones on February
12th, 2020, leading to a very rapid increase in the numbers. The
presented model was able to deal with such a sudden shift
condition and still reached an overall satisfactory performance (see
Figures S1 and S2 for more modeling results in severe cities inside/
outside Hubei province). Note that another sudden shift condition
(a community transmission in prison caused a rapid increase of the
number of cases) occurred in Jining, Shandong province, on
February 20th, 2020. The model received a less-satisfactory
modeling performance to match the reported numbers in this
city but can still in part reflect temporal epidemiological
characteristics.

Epidemiological parameter estimates

Table 3 shows the statistics of the epidemiological parameter
estimates in strata (cities). The mean latent and removed periods,
Tl and Tr, of the COVID-19 epidemic in China, were estimated to be

able 1
 statistic values of COVID-19 cases and device traces with various stratification
olutions.1

Stratification Cases2 Market devices3 Wuhan devices
Before Jan. 1st After Jan. 1st

Solution 1 0.2682 0.7155 0.9524 0.8630
Solution 2 0.0677 0.0598 0.0865 0.0632
Solution 3 0.2742 0.7158 0.9530 0.8650

1 For all the q statistic values, p < 0.001.
2 The COVID-19 cases were cumulatively summed until February 29th, 2020.
3 Mobile device data from the seafood market was divided into two subsets
eparated by the date of January 1st, 2020, for the q statistic calculations.

Table 2

Performance of the SEIR model for a stratum.

Indicator Mean Min. Max. StdDev

RMSE 8.9190 0.1659 1423.55 81.15
R2 0.9663 0.7256 0.9985 0.0396
Adjusted R2 0.9592 0.6674 0.9982 0.0480
ented by comparing the observed and estimated (modeled)
umbers of the cumulative cases. The calculations of the proposed
EIR model were implemented using MATLAB programming
MathWorks). Thematic mapping to display the geographical
istributions of epidemiological parameters was implemented in
he ArcGIS platform (ESRI).
250
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5.40 days (1-StdDev = 1.29, 95% CI: 5.26–5.54) and 2.13 days (1-
StdDev = 0.31, 95% CI: 2.10–2.17), respectively. Most cities exhibited
a clustering trend, with low 1-StdDev values of Tl and Tr estimates,
as well as the latent and removed rates, l and g. When considering
the importations from Wuhan to other cities, the imported latent
and infected subpopulations in strata at t = 1 (January 20th, 2020)

were also estimated, and the mean values of bEh 1ð Þ and bIh 1ð Þ were
32.18 persons (1-StdDev = 157.75, 95% CI: 14.69–49.67) and 0.88
persons (1-StdDev = 12.11, 95% CI: 0.00–2.22), respectively. Based
on the cumulative number of Wuhan travelers to various cities
until t = 1, we further estimated the L&I ratios in strata at t = 1. The

mean RLI,h value was 1.72 � 10�4 (1-StdDev = 2.12 � 10�4, 95% CI:
1.49 � 10�4–1.96 � 10�4). In other words, until January 20th, there
was an average of 1.72 latent or infected persons per 10,000 Wuhan
travelers to elsewhere.

As shown in Figure 3, the geographical distributions of the
latent and removed periods in strata indicated a spatial
homogeneity of the virus characteristics. We detected no obvious
clustering trends of the latent and removed rates distributed in
cities. However, the COVID-19 epidemic spread was strongly linked
to human movements from the infection center, and the
geographical distributions of the latent populations and L&I ratios
from Wuhan at t = 1 indicated a strong spatial heterogeneity. The
latent populations and L&I ratios generally decreased by the
distance from the epidemic source (Figure 4). Several outliers that
appeared in the geographical distribution of the L&I ratios might be
caused by the low-value cumulative number of Wuhan travelers in
these cities.

Space-time R0 estimates

Figure 5 depicts the geographical distributions of the R0
estimates at t = 1 (January 20th, 2020), t = 8 (January 27th), t = 15
(February 3rd), t = 22 (February 10th), t = 29 (February 17th), t = 36
(February 24th), and t = 41 (February 29th, the experimental end
date), respectively. The experimental start date was set as January
20th (the next day after the first case was reported outside Hubei).
Most cities had an initial R0 value between 2 and 3.5 at t = 1. After
two weeks of the outbreak (t = 15), the R0 values in over 50% of
cities had decreased to lower than 2, approximately 20% of the
cities had R0 values lower than 1.5, and the R0 values in other
severely affected cities ranged from 2 to 3. After three weeks of the
outbreak (t = 22), 21 out of 315 cities had R0 estimates lower than 1,
and only a few severely affected cities maintained R0 values larger
than 2. The number of cities with estimates of R0 < 1 after four
weeks of the outbreak (t = 29) was 87, and the R0 values in most
cities decreased to lower than 1.5. At t = 36 (February 24th), over
50% (184 out of 315) of the cities had estimates of R0 < 1, and this

Figure 1. Boxplots of the accuracy indicators found from modeling the COVID-19 spread in administrative cities from January 20th to February 29th, 2020: (A) RMSE; (B) R2;
(C) adjusted R2. Note that several very large scatters in the RMSE boxplot are not shown for conciseness.

Figure 2. Estimates of the temporal cumulative cases in Wuhan. Day 1 is January
20th, 2020.

Table 3
Estimates of the epidemiological parameters of the SEIR model for a stratum.

Indicator Mean Min. Max. StdDev 95% CIs

l (day�1) 0.19 0.07 0.30 0.03 [0.1887, 0.1959]

Tl (days) 5.40 3.32 14.00 1.29 [5.26, 5.54]
g (day�1) 0.48 0.19 0.71 0.05 [0.4703, 0.4820]
Tr (days) 2.13 1.40 5.32 0.31 [2.10, 2.17]
bEh 1ð Þ (persons) 32.18 0.00 2452.56 157.75 [14.69, 49.67]

bIh 1ð Þ (persons) 0.88 0.00 214.14 12.11 [0.00, 2.22]

RLI,h (�10�4) 1.72 0.03 20.34 2.12 [1.49, 1.96]

251
number was 196 (over 60%) at t = 41 (February 29th).
Temporal boxplots of infective rate (βh) and R0 estimates in the

administrative cities of mainland China are demonstrated in Figure
6. They both indicated a mirrored “S” characteristic. The βh
estimates started with an initial value of about 1.4 (i.e., an average
of 1.4 infections per day per infectious individual), showed an
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bvious descending trend after one week of the outbreak, and after
 descending period of two weeks, maintained a relatively stable
alue of about 0.5. The spatial heterogeneity of the βh estimates in
trata was more significant during the descending period (“boxes”
re obviously narrower in stable periods). Similar spatial
eterogeneity appeared as well in the R0 estimates in strata.
Additionally, a clear descending trend appeared in temporal R0

stimates, starting after one week of the outbreak and lasting two
eeks to maintain a relatively stable value. The mean periods of R0
stimates decreasing to 80% and 50% of the initial values in strata
ere 14.73 and 19.62 days, respectively. At the end of the

began about one week into the outbreak, but the date could also be
delayed by three weeks (e.g., Wuhan and Tianmen). The
descending periods also varied by city, and most cities maintained
a descending trend for about two weeks (Figures 7 and S3).
However, the descending period could be shortened to about one
week (e.g., Wuhan and Shennongjia) or expanded to about four
weeks (e.g., Qianjiang). Figure S4 depicts the temporal curves of R0
estimates in the nine most severely affected cities outside Hubei.
The curves indicate a general consistency around the start date and
consistency in the descending trend. The epidemic spread had a
substantial spatial heterogeneity in Hubei, and the heterogeneity

Figure 3. Geographical distributions of the epidemiological period estimates: (A) latent periods (days); (B) removed periods (days).

igure 4. Geographical distributions of the estimates of the imported (A) latent subpopulations (persons) and (B) L&I ratios (1/10,000) from Wuhan at t = 1 (January 20th,
020).
xperiment (February 29th), nearly all cities had R0 estimates
ower than 30% of the initial values.

As shown in Figure 7, the time evolution of the R0 estimates in
ubei’s cities indicated several features (see Figure S3 for details).
he initial R0 values were between 2.6 and 3.2 (except Xiangyang).
he descending trend’s start date varied by city; in many cities, this
25
decreased outside Hubei (Figure 7). An exception should be noted
about the temporal curve of R0 estimates in Jining, Shandong
province. The specific community transmission in a prison on
February 20th, 2020, caused high-value R0 estimates before that
date. However, after the reports of the community outbreak, the R0
estimates were corrected by the modeling.
2



Figure 5. Geographical distribution of R0 estimates in the administrative cities of mainland China, at: (A) t = 1 (January 20th, 2020); (B) t = 8 (January 27th, 2020); (C) t = 15
(February 3rd); (D) t = 22 (February 10th, 2020); (E) t = 29 (February 17th); (F) t = 36 (February 24th, 2020); (G) t = 41 (February 29th, the end of the experimental time period).

Figure 6. Temporal boxplots of the epidemiological characteristics: (A) βh estimates; (B) R0 estimates. Day 1 is January 20th, 2020.
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iscussion

Epidemiological parameters usually exhibit stratified hetero-
eneity in regions and in time for various reasons, e.g., the various
emporal characteristics of the influenza-A 2009 pandemics in
emperate zones, tropical zones, and Pacific islands (McCallum and
artridge, 2010). A global model is inappropriate when epidemio-
ogical parameters vary in regions and by time. SSH can account for
he universal features of phenomena (Wang et al., 2016) and is
dequate to evaluate the local heterogeneity (non-homogeneity) in
trata. Effective stratifications (e.g., zoning and discretization) can
educe the errors and improve the accuracy of modeling and
stimation (Cao et al., 2013; Wang et al., 2010a, 2009). The COVID-
9 outbreak in mainland China was obviously influenced by human
ovements from infection sources and presents a significant SSH

n regions and by distance (in part caused by the much more
ignificant SSHs of human movements from Wuhan to elsewhere).
herefore, based on the SSHs of the COVID-19 epidemic spread and
uman movements, modeling in strata is more appropriate for
mproving the modeling of the spread of the epidemic in mainland
hina. Moreover, a comprehensive understanding of the epidemic
n China will help inform the measures and strategies of prevention
nd control in other countries worldwide, many of which are
urrently experiencing concurrent outbreaks.
This study presented an SEIR model for each SSH-identified

tratum to simulate a complete spread of the COVID-19 epidemic
nd accurately estimate the spatial and spatiotemporal epidemio-
ogical parameters in mainland China. The model had an overall
atisfactory performance with a median adjusted R2 value of
.9751, and the estimations were consistent with most previous
tudies. We estimated that the mean latent and removed periods
ere 5.40 and 2.13 days, respectively, which are very close to the
revious estimates (Guan et al., 2020; Li et al., 2020; Linton et al.,
020; Sun et al., 2020). Furthermore, an added value of this study is

ratios indicated that there was an average of 1.72 latent or infected
persons per 10,000 Wuhan travelers to other locations, until
January 20th.

Another main contribution of the current study is the
estimation of the space-time characteristics of R0 during the
COVID-19 epidemic spread in mainland China. To our knowledge,
this is the first study to construct simultaneously time-varying and
region-varying R0 estimates of epidemic spreads. The results
indicated that the initial R0 values were between 2 and 3.5 in most
cities on January 20th, 2020, which are very close to previous
estimates (Chen et al., 2020; Jung et al., 2020; Li et al., 2020; Wang
et al., 2020; Wu et al., 2020; Zhang et al., 2020; Zhao et al., 2020b,
2020a). The R0 values in over 50% of cities decreased to lower than
2 after two weeks of the outbreak, and only a few severely affected
cities maintained R0 values larger than 2 after three weeks of the
outbreak. There were 87 cities with estimates of R0 < 1 after four
weeks of the outbreak (February 17th), and on February 29th, the
number of cities was 196 (over 60% of all cities considered). The
mean periods of R0 estimates to decrease to 80% and 50% of the
initial values in strata were 14.73 and 19.62 days, respectively. The
temporal curves of R0 estimates indicated stronger spatial
heterogeneity in Hubei than the rest of mainland China. In most
cities, a prominent descending tread in temporal R0 estimates
started one week into the outbreak and lasted two weeks to
maintain a relatively stable value. The start date of the prominent
descending trend of R0 estimates in Hubei could be delayed about
2–3 weeks, and the descending period could be shortened to about
one week or expanded to about four weeks.

To evaluate the SSHs of the COVID-19 epidemic spread and
human movements from the infection sources, we comparatively
analyzed three stratification solutions of mainland China (four
distance-dependent subareas, provinces, and administrative cit-
ies). Stratifications with higher q statistic values and interpretably
practical implications are considered better solutions to construct

Figure 7. Time evolution of R0 estimates in Wuhan, Hubei excluding Wuhan, provinces adjacent to Hubei and the rest of mainland China.
he estimations of the imported latent and infected subpopulations
n strata from Wuhan on the initial experimental date (January
0th, 2020). The results showed the average imported latent and
nfected subpopulations from Wuhan to other cities were 32.18
nd 0.88 persons, respectively, due to the annual Chinese New Year
oliday migrations. Additional estimation of the imported L&I
25
the stratified models. Therefore, we selected a relatively better
stratification solution in this study instead of the strictly “best” one
(e.g., the one with the highest q statistic value). This might be a
limitation of the current study but remains a flexible extension of
the proposed SEIR model and its applications for modeling the
spread of other infectious diseases. A general and comprehensive
4
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solution to identify the stratification with higher q statistic value
and practical implications is one of our main future studies. The
SEIR model for each SSH-identified stratum was verified to have a
good regression accuracy with much smaller residuals in modeling
the COVID-19 outbreak in mainland China. The localization of the
SEIR model identified by SSH can bring out better modeling
performance. The epidemic spreads in most cities had a relatively
consistent trend with various spatiotemporal epidemiological
characteristics, especially in the early-phase outbreak lasting two
months.

Further prospective applications request cross-validations for
the proposed model. Moreover, during the modeling process, the
modeling results are sensitive to the initial parameter values and
their bounds. In this study, the initials and bounds of the parameter
values were set up according to observations as well as previous
studies. It is important to implement a further analysis of the
corresponding parameter sensitivities in the future. Another future
study direction is the further validation of the model's universality
to the COVID-19 epidemic in other large-scale areas (e.g., globally)
and to other infectious diseases. We also intend to apply the
proposed SEIR model in countries outside China to enhance
understanding of the COVID-19 epidemic worldwide.

Conclusions

This paper introduces an SEIR model for each SSH-identified
stratum based on the SSHs of the COVID-19 epidemic spread and
human movements from infection sources. The proposed model
estimates the spatial and spatiotemporal epidemiological param-
eters of the COVID-19 outbreak in the space-time domain, such as
the geographical distribution of L&I ratios and the space-time R0
estimates. The following conclusions were achieved:

(1) The mean latent and removed periods of the COVID-19
epidemic were 5.40 days (95% CI: 5.26–5.54) and 2.13 days
(95% CI: 2.10–2.17), respectively. The geographical distributions
of these two epidemiological parameters indicated a spatial
homogeneity amongst cities in mainland China.

(2) Due to the annual Chinese New Year holiday migrations, on
January 20th, 2020 (the next day after the first case was
reported outside Hubei), the average imported latent and
infected subpopulations traveling from Wuhan were estimated
as 32.18 (95% CI: 14.69–49.67) and 0.88 (95% CI: 0.00–2.22)
persons, respectively.

(3) There was an average of 1.72 (95% CI: 1.49–1.96) latent and
infected persons per 10,000 Wuhan travelers to other locations
until January 20th. The geographical distributions of the
imported latent and infected subpopulations amongst cities
from Wuhan indicated a spatial heterogeneity decreasing by
distance.

(4) The space-time R0 estimates indicated an initial value between
2 and 3.5 in most cities on January 20th. There were 87 cities
that had an estimate of R0 < 1 on February 17th (four weeks
after the large-scale outbreak), increasing to 196 cities by
February 29th. The mean period for R0 estimates to decrease to
80% and 50% of the initial values in cities were an average of
14.73 and 19.62 days, respectively.

(5) A noticeable descending trend in temporal R0 estimates in
most cities started one week after the outbreak and lasted two
weeks, maintaining a relatively stable value. In the outbreak

of prevention and control of the epidemic for policymakers. The
proposed SEIR model can describe the complete spatiotemporal
spread of the COVID-19 epidemic in China, conclude the space-
time epidemiological characteristics and parameters, and easily
model applications in other countries worldwide.
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ppendix A. Model performance indicators

Three indicators were selected to evaluate the performance of
he proposed SEIR model in this study, including the root mean
quare error (RMSE), the coefficient of determination (R2), and the
djusted R2. In stratum h, the performance of the specific SEIR
odel was assessed by

MSEh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

yh;t � byh;t
� �2

vuut ðA1Þ

2
h ¼ 1 �

XT

t¼1
yh;t � byh;t

� �2

XT

t¼1
yh;t � yh;t

� �2 ðA2Þ

2
h ¼ 1 �

T � 1ð Þ 1 � R2
h

� �
T � k � 1

ðA3Þ

here yh,t, and byh;t are the observed and estimated (modeled)
umbers of the COVID-19 cumulative cases, respectively, in
tratum h and at time t, and yh;t is the mean of all the observed
alues. T is the total number of considered timesteps (T = 41 in this

tudy).  eR2
h denotes the adjusted R2 in stratum h. k is the number of

he independent regressors (estimated parameters) in the SEIR
odel. These measures can be separately calculated by stratum
nd combined together to evaluate the overall performance of the
roposed SEIR model.

ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at https://doi.org/10.1016/j.ijid.2021.04.021.
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