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Background
Protein targets are strictly related to some diseases. The target’s biological activities 
reveal due to the therapeutic impact of drugs on these diseases. Therefore, to animate or 
repress a target’s biological process in the drug discovery process, we consider a drug’s 
interaction with the target proteins [1]. Thus, drug–target interactions (DTIs) play a 
prominent role in drug discovery. However, identifying and validating drug candidates 
via biological assays, from introducing the abstract concept to release it into the mar-
ket, usually take 10–15  years and costs 0.8–1.5 billion dollars [2]. Therefore, various 
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computational methods to predict drug–target interactions are being used to aid the 
drug discovery process. Computational methods have some advantages, including low 
drug development costs, short time, low drug safety risk, and exploring a wide range of 
potential drug–target interactions. The computational approaches received more atten-
tion in recent years. Chen et al. [3], for DTI prediction, introduced some state-of-the-art 
computational models, including network-based approach and machine learning-based 
approach. Bagherian et al. [4] described data and databases required and broad category 
consisting of a machine learning approach for DTI prediction. Ding et  al. [5] concen-
trated on machine learning-based methods, especially similarity-based methods that use 
drug and target similarities. Abbasi et al. [6] reviewed the deep learning-based approach 
in DTI, and they give some perspective on the future approaches.

In DTI prediction, computational approaches are divided into three major groups. The 
first group is called the ligand-based approach, which uses similar molecules and the 
similarity between the target proteins’ ligands [7]. However, the results obtained from 
ligand-based methods might be incorrect when the number of target’s known ligands 
are insufficient [8]. The second group comprises the docking approach. In this approach, 
the 3D structures of drug and protein are taken into account and used to determine their 
interaction tendency. One of the limitations of this approach is that they require the 
3D structure of the target proteins [9, 10]. Hence, these methods could not be applied 
to new drug-target pairs that the 3D structures of proteins are unavailable [11]. For 
example, predicting the 3D structure for targets like GPCRs is still challenging [12]. 
The third group comprises the chemogenomics approaches that utilize information of 
drug and target concurrently to predict DTI. One of the advantages of chemogenom-
ics approaches is that many online public databases can access their available data. For 
example, information such as the genomic sequences of targets and the chemical struc-
ture of drugs are used for DTI prediction [13]. This approach doesn’t have the limita-
tions mentioned in the previous two groups. The chemogenomics approach usually uses 
machine learning and deep learning methods for DTI predictions. This paper concen-
trates on computational methods that belong to the chemogenomics approach.

The proposed method by Chen et al. [14] integrated three different networks, such as 
protein–protein similarity network, drug-drug similarity network, and known drug-tar-
get interaction networks, into a heterogeneous network by known drug–target interac-
tions and performed the random walk on this heterogeneous network. Mazharul Islam 
et  al. [15] proposed a DTI-SNNFRA framework for DTI prediction based on shared 
nearest neighbor (SNN) by a partitioning clustering for sampling the search space in 
the first stage and fuzzy-rough approximation (FRA) in the second stage. Zeng et  al. 
[16] proposed a network-based deep-learning method for DTI prediction by integrat-
ing ten networks called DeepDR. Then the low-dimensional representation of drugs 
and drug-disease pairs by a variational autoencoder were learned from the heteroge-
neous networks. Lim et al. [17] introduced a novel approach for predicting DTI based 
on a graph neural network that directly organized the 3D structural information on a 
protein–ligand binding posed into an adjacency matrix. A distance-aware graph atten-
tion mechanism was also devised to increase the performance of the model. Zong et al. 
[18] proposed a DeepWalk deep learning method for drug-target interaction predic-
tion based on network topology similarity measures. Firstly, a heterogeneous network 
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created from biomedical linked datasets. After that DeepWalk was selected to measure 
the similarities within linked tripartite network (LTN).

With the increase of experimental data, the use of deep learning methods to predict 
DTIs has been increasing. Deep learning methods learn the input data’s hierarchical 
features, leading to better performance than other standard machine learning methods. 
In deep learning-based DTI prediction, a drug-target pair has taken as input, and then 
the affinity of interaction is predicted as output. Wen et al. [19] adapted a deep learn-
ing method named DeepDTI that used a deep belief network (DBN). Their approach 
predicted the affinity value for a pair of FDA-approved drugs and targets. In their work, 
protein targets were not divided into different classes. The features of drugs were auto-
matically extracted from extended-connectivity fingerprints (ECFP), and the features 
of target proteins were extracted from the composition of amino acids, dipeptides, and 
tripeptides [20]. Peng et  al. [21] used sparse autoencoders to reduce the original fea-
tures’ dimension into a hidden representation, and then they trained a support vector 
machine (SVM) with hidden representation. In another study called DL-CPI [22], which 
used protein domain information, domain binary vectors were employed to represent 
the domains used to describe proteins. Ozturk et al. [23] introduced a DTI prediction 
approach which used the convolutional neural network (CNN) to learn the feature vec-
tors for drug and protein target. On a kinase family bioassay dataset, their approach 
performed better [24, 25] than the conventional models like kronRLS-MKL [26] 
and SimBoost [27]. In a paper by Lee et al. [1], their DeepConv-DTI model predicted 
massive-scale DTIs using raw protein sequences for various target protein classes and 
diverse protein lengths. New protein features were generated with convolution filters 
on the entire protein sequence to capture local residue patterns. Then protein features 
and the drug features were concatenated and fed into the subsequent layers to predict 
the affinity value. Finally, their model was optimized with DTIs from MATADOR [28]. 
Abbasi et al. [29] combined convolutional layers and Long Short-Term Memory (LSTM) 
layers to learn more effective local substructures through a compound and a protein. 
Then they utilized a two-sided attention mechanism to weight each local substructure of 
the compound and protein sequence.

As an unsupervised approach to DTI prediction, matrix factorization (MF) techniques 
learn the latent feature matrices of drugs and targets from the DTI matrix. These two 
latent feature matrices are multiplied to reconstruct the interaction matrix for predic-
tion. Among various unsupervised methods in DTI, regularized matrix factorization 
methods achieve a higher performance among the previous DTI prediction methods 
[30, 31]. Matrix factorization techniques suffer from the cold start problem as well as 
the sparsity. In this study, to overcome the issues mentioned above, the unsupervised 
approach of deep learning is utilized to extract latent factors of input data. To this end, 
in this paper, we have developed a new drug-target interaction prediction method 
named AutoDTI++, an unsupervised deep learning model by using denoising autoen-
coder. Denoising autoencoder is an unsupervised deep neural network that learns the 
latent factors from the matrix interaction. However, the learned latent factors are not 
very effective due to the sparse nature of the drug-target interaction matrix. Additional 
information such as drug fingerprints information has been utilized to address the drug-
target interaction matrix sparsity problem.
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To evaluate our proposed method, we have used cross-validation to compare it with 
six other state-of-the-art methods, namely DDR [32], DNILMF [33], NRLMF [34], 
KronRLS-MKL [26], BLM-NII [35], and COSINE [36]. We have evaluated the ability of 
AutoDTI++ using new drug cross-validation, new interaction cross-validation, and new 
target cross-validation. We computationally simulated a new target case and a new drug 
case (by leaving out their respective interactions) and tested our proposed method on 
these cases to investigate its ability to predict the left-out interactions. Finally, our model 
achieved better performance than most previous models.

In section methods, firstly, we describe the dataset used in our work in “Dataset” sec-
tion. Our notations are described in “Notations” section. An overview is done on the 
neural network of denoising autoencoder (DAE) in “Denoising autoencoder” section. 
Then, our proposed method is described in “Workflow” section. The experimental 
results of our work, relevant discussion, and conclusion are given in the next sections, 
respectively.

Methods
Dataset

This study used the introduced benchmark dataset in [9] to evaluate our proposed 
approach. This dataset contains four different target protein types, namely nuclear 
receptors (NR), G protein-coupled receptors (GPCR), ion channels (IC), and enzymes 
(E). Table 1 shows some statistics, including the number of unique proteins, number of 
unique drugs, number of interactions, and the sparsity ratio for each dataset. The vari-
able Y ∈ R

n×m denotes the interaction matrix where n represents the number of drugs 
and m denotes the number of targets. Suppose the drug di and the target tj interact, then 
Yij = 1 , otherwise Yij = 0 . Rows and columns of Y show the profiles of drugs and targets, 
respectively. The interaction profile for each drug or target is determined by Yd and Yt , 
respectively. Sparsity denotes the ratio between the number of DTIs and the number of 
all possible DTIs.

Preliminaries
In this section, first, we define the notations used in this paper. Then, we simply intro-
duce denoising autoencoder.

Notations
The notation used in this paper is listed as follows:
Yd , Yt are the sparse row/columns of Y
Ỹd , Ỹt are corrupted versions of Yd , Yt

Table 1  Drugs, targets, interactions, and sparsity in each dataset

Datasets NR GPCR IC E

No. of drugs 54 223 210 445

No. of targets 26 95 204 664

No. of interactions 90 635 1476 2926

Sparsity 0.064 0.030 0.034 0.01
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Ŷd , Ŷt are dense estimates of Yd , Yt
Y d , Y t are dense low-rank representations of Yd , Yt

Denoising autoencoder

An autoencoder is an unsupervised neural network that includes two networks: an 
encoder and a decoder aiming to reconstruct the input domain. The encoding network 
maps the input to a hidden representation [37]. The decoding network reconstructs the 
original inputs from the hidden representation [38]. As a result, autoencoder is used to 
learn feature representation in an unsupervised manner. An autoencoder is considered a 
neural network that obtains higher-level representations of input data without requiring 
ground-truth label information. Given a training sample x ( x ∈ Rd0 ), it is encoded into 
the hidden representation y ∈ Rd1 by the mapping fc:

where Sc is the non-linear activation function of the encoder. Also, V  and b1 are respec-
tively the weight matrix and the bias vector. After that, the representation of the hidden 
layer y is mapped to the reconstructed output x′  of the same shape as x by function fd:

where Sd , W, and b2 are the same parameters of the decoder network. The full autoen-
coder is indicated by nn(x) def

= f d
(
f c(x)

)
.

Recently, many autoencoders have been introduced, like denoising autoencoder, sparse 
autoencoder, and variational autoencoder [29]. Denoising autoencoders add some noise 
to the input and then force the network to reconstruct the denoised input. One method 
to add some noise is to mask a random fraction of the input by replacing them with zero. 
In this case, we use the modified loss function to emphasize the denoising aspect of the 
network. To this end, two weight hyperparameters α and β are used to weight the terms 
as follows:

where x̃ ∈ R
N is a corrupted version of the input x , C is the set of corrupted elements in 

x̃ , 0 < α,β < 1 , and nn(x)j is the jth the output of the network while fed with x.

Workflow
In this section, the proposed drug-target interaction prediction method called 
AutoDTI++ is presented, which consists of three steps:

	(i)	 The first step includes a pre-processing step that transforms the binary values in 
the given drug-target matrix, Y, into the binary values in the drug fingerprint-tar-
get interaction matrix for filling missing values based on drug fingerprint.

	(ii)	 The second step is to propose an AutoDTI model that uses an unsupervised deep 
learning technique based on denoising autoencoders to predict drug–target inter-
actions.

(1)Encoder : y = fc(x) = Sc(V
Tx + b1)

(2)Decoder : x
′

= fd
(
y
)
= Sd

(
WTy+ b2

)

(3)Lα,β
�
x, x̃

�
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
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	(iii)	 The third step includes a post-processing step in which the drug-target interaction 
matrix is predicted from the output of the second step.

After presenting these three steps, we will present the proposed approach.

Pre‑processing step

While deep learning has many successes in image and speech recognition [39], sparse 
data has received less attention and remains a challenging problem for neural networks. 
Therefore, there is no standard approach for using the sparse matrix as inputs of deep 
neural networks yet. Most papers on sparse inputs are obtained by pre-calculating esti-
mates of missing values [40]. Sparse inputs have already been studied in the industry 
[41], where 5% of the values are missing. However, datasets in DTI often face more than 
95% missing values. Since the drug-target interaction matrix relies on only interactions 
between drugs and targets, when additional information is available for the drugs and 
the targets, only using the interaction matrix can sound restrictive. Therefore in our 
case, we want to handle this issue by adding information on drugs fingerprint to the 
interaction matrix. Our approach uses the fingerprint of drugs to handle autoencoders’ 
sparse input. To this end, the following steps are done:

(1)	 The first step represents the drug molecule by SMILES (simplified molecular-input 
line-entry system): each drug is represented by SMILES [42] strings, a sequential 
encoding of chemical structures.

(2)	 The second step, create the fingerprint-drug matrix (Z): utilize the PaDEL-descrip-
tor software to transform SMILES string to fingerprints. PaDEL-descriptor soft-
ware is used for calculating molecular descriptors (1D, 2D descriptors, and 3D 
descriptors) and ten types of fingerprints [43]. Each drug can be represented as a 
binary vector with a length of 800, in which indices indicate the existence of the 
specific substructures.

(3)	 The third step, create the fingerprint-target matrix (W = Z.Y  ): We multiply the fin-
gerprint-drug matrix (Z) by the drug-target interaction matrix (Y). The result is a 
fingerprint-target matrix (W).

(4)	 The fourth step, normalization: normalize the fingerprint-target matrix with the 
min–max method.

(5)	 The fifth step, convert to the binary matrix: Since values greater than zero in this 
matrix represent an interaction between the target and the drug fingerprint, these 
values are replaced by one.

By performing these five steps, the obtained matrix is not sparse like the raw drug-tar-
get interaction matrix. With these pre-processing steps, almost half of the fingerprint–
target interactions matrix is known.

The AutoDTI model

In the AutoDTI model, if it is assumed that the model’s input is a drug-target interaction 
matrix, then drug-target known interactions can be encoded as a partially drug-target 
interaction matrix Y ∈ R

n×m . Each drug d ∈ D = {1 . . . n} can be represented by a 
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partially observed vector Yd = (Yd1, . . .Ydm) ∈ R
m . Similarly, each target 

t ∈ T = {1 . . .m} can be represented by a partially observed vector 
Yt = (Y1t , . . .Ynt) ∈ R

n . Our aim in this work is to design a drug-based (target-based) 
autoencoder which can take each partially observed Yd ( Yt) as input, project it into a 
low-dimensional latent space and then reconstruct Yd ( Yt ) in the output space to predict 
unknown interactions. We reconstruct the sparse vectors Yd(Yt) , into dense vectors 
Ŷd

(
Ŷt

)
 . In this case, it is needed to define two types of autoencoders:

•	 D-AutoDTI is defined as Ŷd
def
= nn(Yd)

•	 T-AutoDTI is defined as Ŷt
def
= nn(Yt)

The learned parameters are regularized to prevent the over-fitting of the observed 
interactions. Formally, the objective function for the D-AutoDTI model is:

where ‖.‖2F means that we only consider the contribution of the known interactions and 
regularization strength � > 0. The proposed approach’s training loss differs from the clas-
sic autoencoders, which only aim to reconstruct the input. Given the learned param-
etersθ̂  , D-AutoDTI’s predicted interactions for drug d and target t are:

Figure  1 shows the overall schematic of the utilized autoencoder. The shaded nodes 
illustrate the known interactions, and the solid connections show the weights that are 
updated for the input Yd.

(4)min
θ

n∑

d=1

�Yd − nn(Yd , θ)�
2
o +

�

2
·

(
�W�2F + �V �2F

)

(5)Ŷdt =
(
nn

(
Yd; θ̂

))

t

Fig. 1  The overall schematic of the D-AutoDTI model. The shaded nodes show the known interactions, and 
the solid connections show the weights that are updated for the input Yd . There are n copies of the neural 
network for each drug



Page 8 of 19Sajadi et al. BMC Bioinformatics          (2021) 22:204 

To train the autoencoders, the following three steps are performed:

i)	Assign zero to unknown interactions in the edges of input layers,
ii)	 back-propagated values in the edges of the output layers are replaced by zero values,
iii)	use a denoising loss to emphasize interaction prediction over interaction reconstruc-

tion.

One way to restrain the edges of the input is to turn the missing values to zero. We utilize 
an empirical loss that ignores the loss of unknown values to preserve the autoencoder from 
always returning zero. Missing values do not bring information to the network. The error 
is discarded for missing values. Therefore, the empirical loss back-propagates the error for 
known values while no error is back-propagated for missing values. In other words, this 
operation is equivalent to removing the neurons with missing values described in [44, 45]. 
Finally, masking noise is used from the denoising autoencoders empirical loss. Autoencod-
ers in the training process are trained to predict missing values by simulating them. The 
final target is the prediction of these missing values. Thus, the classic unsupervised train-
ing of autoencoders converts to simulated supervised learning by emphasizing the predic-
tion criterion. The training can be turned into pseudo-semi-supervised learning by mixing 
both criteria of reconstruction and prediction. The denoising autoencoders’ loss becomes 
an assuring objective function. The final training loss function after regularization is:

(6)

Lα,β

�
Yd , Ỹd

�
= α




�

jǫC
�
Ỹd

�
�(Yd)j − nn

�
Ỹd

�

j
�
2

o



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


�

j /∈C
�
Ỹd

�
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�
Ỹd

�
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o
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·

�
�W�

f
2
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�

Fig. 2  Feed-Forward/Backward process is shown for denoising autoencoder. The input is obtained from the 
matrix of interactions, unknown values are turned to zero, some interactions input are corrupted, and a dense 
estimate is finally constructed. Before back-propagation, unknown interactions are converted to zero error. 
Use β ,α hyper-parameters, reconstruction, and prediction errors are reweighed
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W and V are the vectors of weights of the network, and � is the regularization hyper-
parameter. The full-forward/backward process is explained in Fig. 2.

Post‑processing

In the post-processing step, the drug-fingerprint matrix ( ZT ) is multiplied by the output of 
the AutoDTI model ( ̂W  ). The product of multiplication is equivalent to the predicted drug-
target interaction matrix.

AutoDTI++ proposed method

As shown in Fig. 3, the AutoDTI++ proposed method is performed in three steps which 
include: the first step is pre-processing, which explained in “Pre-processing step” section. 
The second step uses the AutoDTI model explained in “The AutoDTI model” section. In 
AutoDTI ++ proposed method, the fingerprint-target matrix is applied as the AutoDTI 
model input instead of the drug-target interaction matrix. The third step is post-processing 
that explained in “Post-processing” section. Fingerprint-target reconstructed matrix ( ̂W  ) is 
calculated as follows:

(7)
W = Z · Y

(8)Ŵ = nn
(
W ; θ̂

)

Fig. 3  The AutoDTI+ +  method includes three steps: pre-processing, AutoDTI model, post-processing
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Z is a fingerprint-drug matrix, and Y is a drug-target matrix. Predicted interactions of 
AutoDTI ++ for drug d and target t are:

where ZT
d is dth row of ZT matrix, Ŵt is tth the column of W reconstructed matrix.

Results
First, we introduce the cross-validation (CV) and the metric we used to evaluate our 
models. Second, we present the parameter settings. Then, we present some baseline 
approaches which are compared with our model. Finally, we compare our models with 
the baselines to illustrate the performance of our model.

Cross‑validation experiments

We performed cross-validation under three scenarios described in [46] to perform a 
comprehensive empirical comparison among various methods as follows:

(1)Sp , denote the random drug–target pairs that are left out to be used as the test set;
(2)Sd , denote the entire drug interaction profiles that are left out to be used as the test 

set; and.
(3)St , denote the entire target interaction profiles that are left out to be used as the test 

set.
Sp is the traditional method for performance evaluation. Meanwhile, various 

approaches to predict interactions for new drugs and targets are evaluated using Sd , and 
St test sets. Here, new drugs and targets are those for which no interaction information 
is available in the training set. As such, conducting experiments under Sd and St provides 
information about the proposed approach’s generalizability.

Such as previous works, we employed the area under the receiver operating character-
istic (AUC) curve and the area under the precision-recall (AUPR) curve to evaluate pre-
diction performance. We performed experiments to compare our proposed method with 
the existing techniques, including DDR, DNILMF, NRLMF, KRONRLS-MKL, BLM-NII, 
and COSINE. Specifically, we conducted five repetitions of the tenfold CV for each of 
the methods under each of the above scenarios using AUPR [47] as the evaluation met-
ric. That is, the interaction data set was divided into ten folds, and each fold, in turn, was 
left out as the test set while the remaining nine folds were treated as the training set. 
The prediction performance for each of the folds is evaluated in terms of AUPR. This 
process is repeated five times, and the final AUPR score was the average over five such 
repetitions. For all experiments, AUPR was used as the main metric for performance 
evaluation. AUPR is more adequate because it heavily penalizes incorrect predictions of 
interactions [48], which is desirable here. After all, we do not want false predictions rec-
ommended by the prediction algorithm in practice.

Parameter settings

Experiments are conducted on the benchmark database [9]. We repeated this splitting 
procedure 5 times and reported average AUPR and AUC. First, we calculated AUC and 

(9)Ŷdt = ZT
d · Ŵt
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AUPR on NR, GPCR, IC, and E datasets for the AutoDTI method without pre-process-
ing. The obtained results are not acceptable. Then, we applied a pre-processing step on 
the AutoDTI method and called that AutoDTI++ . Interestingly, after a pre-processing 
step, AutoDTI significantly improved the results of AUC and AUPR on all datasets.

We evaluated the performance of the AutoDTI++ model as the number of hidden 
units and the number of hidden layers varied. We observed that performance steadily 
increases with two hidden layers of (15, 5) units. We used sigmoid activation functions 
in each layer. Using a non-linear activation function in the hidden layer is critical for 
the excellent performance of AutoDTI ++. We did fine-tuning by gradient-based back-
propagation with a minibatch of size 100. We set the regularization strength to 10 for IC, 
GPCR, and E datasets, and we set it to 1 for the NR dataset.

Impact of the loss: we investigated the effects of hyper-parameters α,β on denoising 
loss. To this end, we used a greedy search, and the best performance is achieved with 
α = 0.4 and β=0.6.

Comparisons with the state‑of‑the‑art algorithms

AutoDTI++ method calculates AUC and AUPR on NR, GPCR, IC, and E datasets. For 
NR, GPCR, IC, and E datasets, AUPR and AUC scores for Sp,Sd , and St test sets show in 
Table 2. Figure 4 shows the ROC curve and precision-recall curve of the first repeat of 
tenfold cross-validation on four datasets. The mean-AUC and mean-AUPR are the aver-
age AUC and average AUPR of AutoDTI ++ in the first repeat of tenfold CV.

Baseline approaches

To measure the prediction performance, six existing state-of-the-art DTI prediction 
methods are used to compare with our AutoDTI++ model on NR, GPCR, IC, and E 
datasets under three different CV settings, including DDR, DNILMF, NRLMF, Kron-
RLS-MKL, and BLM-NII, and COSINE.

DDR

First, it is based on using a heterogeneous graph that applies a similarity selection pro-
cedure to select a set of informative and less-redundant similarities for drugs and target 

Table 2  AUC and AUPR scores of AutoDTI ++ approach obtained under three prediction tasks ( Sp , 
Sd , and St ) overall datasets (NR, GPCR, IC, and E) by 5 repeats of tenfold CV

AutoDTI ++  NR GPCR IC E

Sp

AUPR 0.84 0.85 0.90 0.82

AUC​ 0.87 0.86 0.91 0.90

Sd

AUPR 0.62 0.47 0.50 0.33

AUC​ 0.60 0.47 0.49 0.50

St

AUPR 0.84 0.83 0.86 0.77

AUC​ 0.87 0.85 0.86 0.84
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proteins. DDR combines different similarities using the non-linear similarity fusion 
method. Then, manually, 12 different path-category-based feature patterns from the het-
erogeneous network are extracted. Finally, DDR applies a random forest model to pre-
dict DTIs.

Fig. 4  The ROC and precision-recall curves of the first repeat of tenfold CV for four datasets; the right side is 
the precision-recall curve, and the left is the ROC curve. a The precision-recall and ROC curves for NR dataset; 
b The precision-recall and ROC curves for GPCR dataset; c The precision-recall and ROC curves for IC dataset; 
d The precision-recall and ROC curves for E dataset
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KronRLS‑MKL

First, it applies the weighted combination of multiple drug kernels and target kernels to 
get the final drug kernel and target kernel, and then KronRLS uses Kronecker product 
algebraic properties as the drug-target pairwise kernel. Finally, it uses Kronecker regu-
larized least squares to predict DTIs.

NRLMF

NRLMF method focuses on modeling the probability. The interaction probability of a 
drug with a target is calculated by a logistic function of the drug-specific and target-
specific latent vectors. Furthermore, the neighborhood regularization based on the local 
structure of the drug-target interaction data is utilized to improve the model’s prediction 
ability.

DNILMF

DNILMF method is followed by the non-linear combination technique of multiple simi-
larity measures for drugs and target proteins, as well as smoothing new drug-target pre-
dictions based on their neighbors.

BLM‑NII

in BLM–NII, the neighbor-based interaction-profile inferring (NII) procedure is inte-
grated into the bipartite local model (BLM) framework to form a DTI prediction 
approach, where the RLS classifier with GIP kernel was used as the local model.

We used 5-repeats of tenfold cross-validation to evaluate the predictive performance 
of DDR, KronRLS-MKL, NRLMF, DNILMF, BLM-NII, and COSINE for comparison 
with the AutoDTI++ method under the Sp CV setting. Figure  5 shows the compari-
son AUPR of AutoDTI++, DDR, KronRLS-MKL, NRLMF, DNILMF, BLM-NII, and 
COSINE on four datasets under the Sp CV setting.

We have shown that AutoDTI++, using 5-repeats of tenfold CV, achieves accept-
able AUPR values than the other methods. From Fig.  5, we can see that, in terms of 
AUPR, under St setting on three datasets of NR, GPCR, and IC, the performance of 
the AutoDTI++ model is improved. The AutoDTI++ model on NR, GPCRs, and IC 
data sets performs better than DDR that is the best baseline method. The AutoDTI++ 
model, on the E dataset, performs better than all approaches except the DDR method. 
AutoDTI++ model achieves results for NR, GPCR, and IC, which respectively are 20%, 
22%, and 6% higher than DDR. In terms of AUPR, under Sd the setting, the AutoDTI++ 
model is better than all other approaches except the DDR approach on all datasets. In 
terms of AUPR, under Sp the setting, the AutoDTI++ model performs better than DDR 
on NR and GPCRs datasets. AutoDTI++ model achieves results for NR and GPCR 
which are 1% and 6%, higher than DDR but for E and IC datasets, DDR method which 
are 10% and 2%, higher than AutoDTI++.

Case study
To evaluate the practical ability of AutoDTI++, we applied it to predict novel DTIs 
that are unknown in NR, GPCR, IC, and E datasets. For the prediction of novel interac-
tions, we applied the trained model in all datasets. Then we used from the output the 
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interaction probability. The predicted probability is ranked in descending order. The 
high-probability drug-target pairs are predicted as novel DTIs in NR, GPCR, IC, and 
E datasets. We selected the top-ranked unknown DTI interaction for each dataset. To 
validate these new interactions, we selected several reference databases that included 
ChEMBL [49], DrugBank [50], KEGG [51], CTD [52], and STITCH [53]. These reference 
databases included many validated known DTIs obtained from experimental and pub-
lished results on drug–target interactions.

Fig. 5  Comparison results of AutoDTI++ method with the six states-of-the-art methods (DDR, DNILMF, 
NRLMF, KRONRLS-MKL, BLM-NII, and COSINE) in terms of AUPR scores, using 5-repeats of tenfold CV. Results 
are obtained under Sp , Sd , and St settings on NR, GPCR, IC, and E datasets. The results for DDR, DNILMF, NRLMF, 
KRONRLS-MKL, BLM-NII, and COSINE are captured using the best parameters published
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The CTD reference database found drug D00217 represents acetaminophen, strongly 
inhibiting the enzyme cytochrome P450 2C8. AutoDTI++ also identified an interaction 
between D00217 and hsa1558 without a known interaction in the E dataset.

The KEGG reference database found drug D00636 that represents amiodarone hydro-
chloride, strongly inhibiting the target sodium voltage-gated channel alpha subunit 5. 
AutoDTI++ also identified the interaction between D00636 and hsa6331 without a 
known interaction in the IC dataset.

The DrugBank reference database found drug D02340 that represents loxapine, 
strongly inhibited the target dopamine receptor D1. AutoDTI++ also identified the 
interaction between D02340 and hsa1812 without a known interaction in the GPCR 
dataset.

In the ChEMBL reference database, found drug D00585 represents mifepristone 
strongly inhibited the target estrogen receptor 1. AutoDTI++ also identified the inter-
action between D00585 and hsa2099 without a known interaction in the NR dataset.

Discussion
This study introduces a novel DTI prediction method, AutoDTI++, which utilizes a 
denoising autoencoder for DTI prediction using a drug fingerprint-target interaction 
matrix. We have shown that we can achieve a more accurate prediction for different data-
sets by pre-processing the drug-target interaction matrix and applying it to the AutoDTI 
prediction model. To evaluate the proposed work, on different representative datasets, 
under various cross-validation settings, and using AUPR and AUC as the performance 
measures, we have shown that AutoDTI ++ outperforms the other state-of-the-art 
methods that we used in the comparison. We also demonstrated that AutoDTI++ per-
forms significantly better than the other existing methods when known DTIs are miss-
ing in the training data. We can see that AutoDTI performs worse because of the lack 
of additional side information and sparsity of the interaction matrix. In the proposed 
method, we used the drug fingerprint, which analyzes molecules as a graph and retrieves 
the molecular substructures from the whole molecular graph’s subgraphs. Specifically, 
we used PaDEL-descriptor to extract a fingerprint from a raw SMILES string. Finally, 
each drug can be represented as a binary vector with a length of 800 whose indices indi-
cate specific substructures’ existence. In our model, the drug fingerprint provides addi-
tional information to build an interaction matrix without sparsity. Actually, if a drug 
interacts with a target, that target probably interacts with the substructure of that drug. 
Therefore, if the drug-target matrix, which is a sparse matrix, is multiplied by the drug-
fingerprint matrix, which contains the drug substructure and is non-sparse, is obtained 
the fingerprint-target matrix, which is a non-sparse matrix and solves the problem of 
the sparse interaction matrix. Also, drug fingerprint adds additional information to the 
interaction matrix to build a more accurate model. Therefore, the AutoDTI++ model 
can handle the sparse interaction matrix and learn a much more effective feature vector 
for each drug, and our proposed model achieves much better performance. We observed 
that the best second method in predicting DTI in the  Sp and St cross-validation settings 
and the first method in Sd cross-validation setting, in terms of the AUPR metric over the 
four different datasets, is the DDR method. The DDR approach utilizes a heterogeneous 
drug–target graph that contains information about various similarities between drugs 
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and similarities between proteins as drug targets. The DDR gives better results than the 
AutoDTI++ model, in the Sd setting. Possibly, one reason is that it uses the similarity 
between drugs while smoothing the predictions of new drugs by incorporating neighbor 
information based on the assumption that similarity may contribute to the accuracy of 
the predictions for their neighbors. As a result, the DDR model achieves better results in 
Sd cross-validation setting.

Approaches based on MF (NRLMF, DNILMF) perform worse than the AutoDTI++ 
model, especially in AUPR. Possibly, one reason is that AutoDTI++ can learn a non-
linear latent representation through sigmoid activation function while MF models 
learn a linear latent representation. Therefore our proposed method learns sufficient 
and effective features by autoencoders neural networks to detect true DTIs. Also, a 
good advantage of using autoencoders in the AutoDTI++ approach is that they can fill 
in every vector that is not present in training data that leads to the superiority of the 
AuoDTI++ over the MF method. Another reason might be that MF approaches embed 
both drugs and targets into a shared latent space, but the AutoDTI++ model only 
embeds the target into latent space and uses the drug fingerprint feature.

In terms of AUPR, AutoDTI++ performs on IC better than E, NR, and GPCR datasets, 
possibly because IC has less sparsity than other datasets on matrix interaction. GPCR 
and NR have sparsity approximately the same, but NR is a little better than GPCRs, pos-
sibly because the number of targets affects results. Regarding a dataset, the input vector 
with a less number of targets is more suitable. Because the input vector with a larger 
number of targets is more sparsity difference, that results in an imbalance model. E 
dataset performs wost than other datasets because it has more sparsity in between all 
datasets.

Conclusions
We proposed a novel method called AutoDTI++ to predict DTIs based on autoencod-
ers. Our proposed approach includes three steps. The first step consists of a pre-process-
ing step that transforms the binary values in the given drug-target matrix to the binary 
values in the drug fingerprint-target interaction matrix for filling missing values based 
on drug fingerprint. The second step proposed an AutoDTI model that uses an unsu-
pervised deep learning technique based on denoising autoencoders to predict interac-
tions, and the third step is post-preprocessing. Subsequent pre-processing is applied 
to the AutoDTI model, and it achieves better performance. Experimental results show 
that the AutoDTI++ model achieves significantly more accurate results than the other 
state-of-the-art methods under cross-validations Sp , Sd , and St on NR, GPCR, IC, and 
E datasets, and different metrics of performance evaluation. As future work, first, we 
plan to expand our model by adding some additional information, such as amino acid 
sequences of target proteins. Second, we will develop our models to incorporate some 
additional information, such as similarity drugs and targets matrix, to solve the interac-
tion matrix’s sparsity problem. Finally, we will combine our models with other models of 
autoencoders.
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