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Abstract 

Background:  The rapid and widespread evolution of insecticide resistance has emerged as one of the major chal-
lenges facing malaria control programs in sub-Saharan Africa. Understanding the insecticide resistance status of mos-
quito populations and the underlying mechanisms of insecticide resistance can inform the development of effective 
and site-specific strategies for resistance prevention and management. The aim of this study was to investigate the 
insecticide resistance status of Anopheles gambiae (s.l.) mosquitoes from coastal Kenya.

Methods:  Anopheles gambiae (s.l.) larvae sampled from eight study sites were reared to adulthood in the insectary, 
and 3- to 5-day-old non-blood-fed females were tested for susceptibility to permethrin, deltamethrin, dichlorodiphe-
nyltrichloroethane (DDT), fenitrothion and bendiocarb using the standard World Health Organization protocol. PCR 
amplification of rDNA intergenic spacers was used to identify sibling species of the An. gambiae complex. The An. 
gambiae  (s.l.) females were further genotyped for the presence of the L1014S and L1014F knockdown resistance (kdr) 
mutations by real-time PCR.

Results:  Anopheles arabiensis was the dominant species, accounting for 95.2% of the total collection, followed by An. 
gambiae (s.s.), accounting for 4.8%. Anopheles gambiae  (s.l.) mosquitoes were resistant to deltamethrin, permethrin 
and fenitrothion but not to bendiocarb and DDT. The L1014S kdr point mutation was detected only in An. gambiae 
(s.s.), at a low allelic frequency of 3.33%, and the 1014F kdr mutation was not detected in either An. gambiae (s.s.) or 
An. arabiensis.

Conclusion:  The findings of this study demonstrate phenotypic resistance to pyrethroids and organophosphates 
and a low level of the L1014S kdr point mutation that may partly be responsible for resistance to pyrethroids. This 
knowledge may inform the development of insecticide resistance management strategies along the Kenyan Coast.
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Background
Malaria is a devastating parasitic disease transmitted by 
Anopheles mosquitoes. Africa bears the heaviest bur-
den of malaria due to presence there of the most viru-
lent malaria parasite, Plasmodium falciparum, and the 
most efficient vectors, Anopheles gambiae (s.s.) and An. 

funestus (s.s.) [1]. Although malaria continues to be a 
leading cause of mortality in Africa, sustained vector 
control interventions based on indoor residual spraying 
(IRS) and long-lasting insecticide-treated nets (LLINs) 
have contributed to a remarkable decline in malaria-
related mortality over the last two decades [2]. Until 
recently, pyrethroid insecticides were the only class 
of insecticides approved for use in LLINs, and these 
pesticides are also commonly used in IRS along with 
carbamates, organophosphates and organochlorines. 
Unfortunately, the development of resistance of malaria 
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vectors to these insecticide classes has become a major 
global threat to their long-term use in the fight against 
malaria [3–12].

In Kenya, IRS is reserved for small-scale sporadic 
spraying during epidemics, and this management strat-
egy has only been implemented in the western region of 
the country [13, 14]. The main insecticide used to sup-
plement deltamethrin (a pyrethroid ester insecticide) 
in IRS is pirimiphos-methyl (Actellic 300CS; Syngenta 
Group, Basel, Switzerland), an organophosphate [15]. 
These insecticides are also used to control agricultural 
and urban pests, thereby exposing the mosquitoes to 
persistent selection pressure that eventually results in 
the selection for insecticide resistance.

Knockdown resistance (kdr) mutations involving the 
substitution of leucine by serine (L1014S) or phenylala-
nine (L1014F) at amino acid position 1014 is the main 
mechanism of resistance to pyrethroids in malaria vec-
tors [16], although metabolic enzymes have also been 
known to play a role in resistance to pyrethroids [17, 
18]. Earlier studies reported that the L1014S mutation 
was restricted to East Africa while the L1014F muta-
tion was widely distributed in West and Central Africa 
[19]. However, recent studies have shown that both the 
L1014S and L1014F kdr mutations co-exist in East and 
West Africa [20, 21]. Conversely, resistance to carba-
mates and organophosphates results from overexpres-
sion of non-specific esterase enzymes and/or alteration 
of acetylcholinesterase (AChE) due to a single glycine 
to serine amino acid substitution at position 119 of the 
AChE gene [22, 23].

Defining the prevalence of insecticide resistance in 
malaria vectors and the underlying mechanism(s) of 
resistance in different ecological settings is necessary for 
the development of rational strategies for insecticide use 
and resistance management. The objective of this study 
was to investigate the resistance status of An. gambiae 
(s.l.) and elucidate the kdr mutation in coastal Kenya. 
Historically, An. gambiae (s.s.) and An. funestus were the 
main vectors of malaria in coastal Kenya, but the wide-
spread use of LLINs has led to a major shift in malaria 
vectors in favor of An. arabiensis, an exophilic mosquito 
species that has had less contact with LLINs [24–28]. 
Recent reports in Kilifi county [25] and the neighboring 
Kwale county [26, 27] have revealed a low frequency of 
both the kdr allele and pyrethroid phenotypic resistance 
in this region. In addition, malaria is endemic in Kilifi 
county, with 91% of households having reported pos-
sessing at least one LLIN and 51% having universal ITN 
coverage achieving the proposed target of ≤ 2 people per 
LLIN [29]. The findings of this study will provide critical 
knowledge that may contribute to improved strategies for 
malaria control in Africa.

Methods
Study area
This study was conducted in Kilifi county, located along 
the north coast of Kenya. The county is situated north and 
northeast of Mombasa county, which also has a coastline 
on the Indian Ocean, with Taita Taveta county to the 
west, Tana River county to the east and Kwale county to 
the southwest. Kilifi county covers an approximate area 
of 12,246 km2, and the population at risk of malaria and 
other mosquito-borne diseases is approximately 1.5 mil-
lion [30]. The study sites have been described in detail 
elsewhere [24, 31]. Anopheles gambiae (s.l.) and An. 
funestus (s.l.) are the key malaria vectors in the area. They 
occur throughout the year, with peak occurrence during 
the rainy season [24]. Coastal Kenya usually experiences 
two rainy seasons each year: short rains falling from 
October to November and long rains from April to July. 
The mean annual rainfall ranges between 300 mm in the 
hinterland and 1300  mm in the coastal belt. The mean 
daily temperature varies from 21 °C to 30 °C [32].

Larval mosquito sampling was carried out in eight 
randomly selected study sites (Fig.  1), of which seven 
were in Kilifi subcounty, namely Ngombeni (3.73208°S, 
39.76491°E), Mbogolo (3.69806°S, 39.81706°E), Jar-
ibuni (3.62054°S, 39.73354°E), Kidutani (3.88209°S, 
39.71819°E), Shibe (3.55840°S, 39.77921°E), Mapawa 
(3.80452°S, 39.73641°E) and Mangororo (3.56366°S, 
39.74507°E), and one, Burangi (3.09828°S, 40.04817°E), 
was in Malindi subcounty.

Selection of the study sites was based on high coverage 
with LLINs, and abundance and ease of accessibility to 
mosquito breeding sites.

Larval mosquito collection, transportation and rearing
Larval mosquito collections were done in June (during 
long rains), August (dry season) and November (short 
rains) 2013 and in July 2014 (immediately after the long 
rains). The collections were spread across the various sea-
sons to maximize the collection of the different malaria 
vectors in the study sites. Larvae were sampled from 
stagnant water bodies selected in each study site using 
the standard dipping technique [33]. In each study site, 
six larval habitats were sampled once per week. The habi-
tats included sand pits, ponds, roadside ditches, marshes, 
shallow wells and river banks. Anopheline larvae were 
transferred into Whirl-pak® bags (Thermo Fisher Sci-
entific, Waltham, MA, USA) and transported to the 
insectary at Kenya Medical Research Institute (KEMRI), 
Center for Geographic Medicine Research, Coast Kilifi.

Tetramin® (Tetra Werke, Melle, Germany) baby fish 
food was used as the larval rearing diet. The insectary 
was maintained at a constant temperature of 25–27  °C 
and relative humidity of 74–82%. The larval pans were 
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monitored daily, and the collected pupae transferred into 
plastic cups in emergence cages. Newly emerged adults 
(F0) were identified using morphological characteristics 
[34]. The adults were then kept as same-age cohorts for 
insecticide susceptibility testing.

World Health Organization susceptibility bioassay tests
Non-blood-fed female An. gambiae  (s.l.) aged between 
3 and 5  days and reared from field-collected larvae 
were used in the susceptibility bioassays. Each insec-
ticide susceptibility test was performed using 25 
mosquitoes in four replicates and two controls. The 
insecticides used and their concentrations included 
deltamethrin (0.05%), permethrin (0.75%), dichlorodi-
phenyltrichloroethane (DDT, 4%), fenitrothion (1%) 
and bendiocarb (0.1%), prepared at Universiti Sains 

Malaysia [35]. The negative control included 25 mos-
quitoes collected from each study site and exposed to 
untreated filter papers. In addition, laboratory-raised, 
susceptible An. gambiae (s.s) Kisumu strain were 
exposed to insecticide-treated filter papers as a meas-
ure of quality assurance. The knockdown time (KDT) 
of each insecticide was recorded every 10  min for 
1  h. Mosquitoes were then moved to a recovery tube 
and provided with 10% sucrose. Final mortality was 
recorded after 24 h.

After recording mortality at 24  h post-exposure, 
those mosquitoes still alive were killed by freezing 
and together with a 20% randomly selected subset of 
the dead samples per study site stored individually in 
labeled Eppendorf tubes (Eppendorf Co., Hamburg, 
Germany). The specimens were then preserved at 
− 80 °C for later molecular analysis.

Fig. 1  Map of Kenya and Kilifi county showing the study sites location
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DNA extraction and species identification
Genomic DNA was extracted from the whole body of the 
An. gambiae (s.l.) using an ethanol precipitation method 
[36]. Conventional PCR amplification of ribosomal DNA 
intergenic spacers was used to differentiate the sibling 
species of the An. gambiae complex [37].

Detection of kdr genotype mutations
Knockdown resistance was tested using 192 mosquitoes 
(59 alive and 133 dead) after performing the pyrethroid 
insecticide susceptibility tests; 20 An. gambiae (s.s.) 
Kisumu strain were used as controls. Both the L1014S 
(leucine to serine substitution) kdr allele originally 
detected in East Africa [16] and the L1014F (leucine to 
phenylalanine substitution) kdr allele  from West Africa 
[19] were tested. Real-time PCR was used to determine 
the genotype at amino acid position 1014 of the volt-
age-gated sodium channel, following the methods of 
Bass et  al. [38] as modified by Mathias et  al. [39]. Each 
PCR reaction was conducted in a 10-µl volume contain-
ing 5.0  µl 2× TaqMan mix (TaqMan® Gene expression 
Master Mix [Thermo Fisher Scientific), 0.5  µl of for-
ward primer, 0.5 µl reverse primer [for either kdr-east or 
kdr-west], 0.4 µl of each probe, 1.0 µl of template DNA 
and 2.6  µl of PCR grade water [ddH2O]). Samples were 
genotyped for the wild-type (susceptible) allele using the 
probe 5′-CTT​ACG​ACT​AAA​TTTC-3′ and for the L1014S 
kdr allele using the probe 5′-ACG​ACT​GAA​TTT​C-3′. 
The primer sequences used for this study were 5′-CAT​
TTT​TCT​TGG​CCA​CTG​TAG​TGA​-3′ (forward) and 
5′-CGA​TCT​TGG​CCA​TGT​TAA​TTT​GCA​-3′ (reverse). 
Controls loaded in the last four wells of the 96-well PCR 
plate included FAM (fluorescent label)-positive control, 
HEX (fluorescent label)-negative control, non-template 
control (NTC) and buffer. The PCR was carried out in a 
Strategene® MxPro 3000 Real-Time PCR system (Strat-
egene, Agilent Technologies, Inc., La Jolla, CA, USA) at 
the following temperature profile:  an initial denaturation 
step at 95 °C, 10 min; followed by 92 °C (for kdr-east) or 
95 °C (for kdr-west)/15 s, 60 °C/1 min, for  40 cycles; with 
a final extension step at 72 °C for 10 s.

Data analysis
Resistance was obtained using the World Health Organi-
zation criteria, with mortality rates of 98–100% indicat-
ing susceptibility, 90–97% suggesting possible resistance 
that needs further investigation and  ≤ 90%  indicating 
resistance, respectively [35]. KDT50 and KDT95 (time 
[in minutes] to knock down 50 and 95% of mosquitoes, 
respectively) were estimated using probit analysis [40]. A 
post-hoc comparison test with the Bonferroni correction 
test was performed to compare the proportions of each 

mosquito species among the study sites. The scatter-plots 
were retrieved to assess the kdr mutation and the fre-
quency of the resistance allele determined from endpoint 
fluorescence using the MxPro software (Agilent Technol-
ogies, Santa Clara, CA, USA). Final data were captured 
in Microsoft Excel 2010 (Microsoft Corp., Redmond, 
WA, USA) and analyzed using  the R statistical package, 
version 3.3.2 (R Foundation for Statistical Computing, 
Vienna, Austria).

Results
Sample size and species composition
A total of 3683 An. gambiae  (s.l.) adult females were col-
lected as larvae and used for the susceptibility bioassays 
from the eight villages: Jaribuni (500), Shibe (500), Kidu-
tani (475), Ng’ombeni (490), Mapawa (475), Mbogolo 
(455), Burangi (500) and Mangororo (288). PCR analyses 
showed that An. arabiensis (91.49%) and An. gambiae 
(s.s) (5.02%) were the only sibling species of An. gambiae  
(s.l.). No amplification occurred in the remaining 3.49% 
of samples (Table 1). Mosquitoes from Mangororo, Shibe 
and Mbogolo were predominantly An. arabiensis (Man-
gororo: 100%; Shibe: 96.8%; Mbogolo: 99.01%). A post 
hoc comparison test with Bonferroni correction revealed 
that the proportions of An. gambiae (s.s) and An. ara-
biensis species among the study sites were significant 
(Z = − 3.31, P = 0.001). No An. funestus were collected in 
this study.

Insecticide susceptibility bioassays
Anopheles gambiae (s.s) Kisumu strain were susceptible 
to all of the insecticides tested (deltamethrin, permethrin, 
DDT, bendiocarb and fenitrothion) with 100% mortality. 
The negative control did not show any mortality; there-
fore, Abbott’s formula was inapplicable to correct for the 
natural causes of mortality in this study.

Table 1  Proportions of Anopheles gambiae (s.s) and An. arabiensis 
in the eight study sites, Kilifi county

n, Number of An. gambiae (s.l.) processed for species identification

Study site n An. gambiae (s.s) An. arabiensis Not amplified

Jaribuni 172 12 (6.98%) 148 (86.04%) 12 (6.98%)

Kidutani 124 6 (4.84%) 114 (91.94%)  4(4.00%)

Mbogolo 101 0 (0.00%) 100 (99.01%) 1 (0.99%)

Ngombeni 123 18 (14.63%) 102 (82.93%) 3 (2.44%)

Shibe 124 0 (0.00%) 120 (96.77%) 4 (3.23%)

Mapawa 108 5 (4.63%) 95 (87.96%) 8 (7.41%)

Burangi 163 8 (4.91%) 153 (93.86%) 2 (1.23%)

Mangororo 60 0 (0.00%) 60 (100%) 0 (0.00%)

Total 975 49 (5.02%) 892 (91.49%) 34 (3.49%)
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Figure  2 shows the bioassay susceptibility status of 
An. gambiae  (s.l.) to the different insecticides used 
in this study. Deltamethrin resistance in An. gambiae  
(s.l.) was only recorded in one of the eight study sites 
(Burangi: n = 100, mortality 45.5%). Coincidentally, 
permethrin resistance was also reported in the same 
study site (n = 100, mortality 48%). However, full sus-
ceptibility to both permethrin and deltamethrin in An. 
gambiae  (s.l.) was indicated in all of the other study 
sites (mortality 100%). The An. gambiae (s.l.) popu-
lations tested indicated full susceptibility to DDT 
(n = 750, mortality range 99–100%) in the seven study 
sites tested.

Adult mosquitoes were resistant to fenitrothion in 
Jaribuni (n = 100, mortality 88%) and showed possible 
resistance at Ngombeni, Mapawa and Mbogolo with a 
test mortality range of 94–97%. However, mosquitoes 
from Burangi, Kidutani and Shibe indicated full sus-
ceptibility to fenitrothion. The mosquitoes tested were 
highly susceptible to bendiocarb in six of the eight 
study sites, i.e. Jaribuni, Shibe, Kidutani, Mangororo, 
Burangi and Mapawa, with test mortality of 100%. 
However, the possibility of resistance that requires 
further investigation was recorded against bendiocarb 
in Mbogolo (n = 75, mortality 93%) and Ng’ombeni 
(n = 90, mortality 97%).

Knockdown time (KDT50) at 95% CI and KDT50 ratio
Most of the knockdown resistance ratios (KDT50 
ratio: KDT50 of the test population to that of the con-
trol [Kisumu strain]) were within the An. gambiae (s.s.) 
Kisumu strain susceptible range of 1.0 to 1.7 and varied 
among study sites, as indicated in Table  2. The KDT50 
ratio for deltamethrin could not be determined in 
Burangi due to the high resistance levels. However, in 
the other study sites, the KDT50 ratio was 1.1–1.9 fold 
compared to Kisumu strain. The mosquito population 
from Burangi also recorded resistance to permethrin 
with a KDT50 ratio of 3.3. The resistance ratio indicated 
potential resistance to permethrin in Kidutani (KDT50 
ratio: 2.0) which requires further investigation. The 
KDT50 ratio was 1.0-  to 1.7-fold in the remaining six 
study sites: Jaribuni, Shibe, Ngombeni, Mapawa, Mbo-
golo and Mangororo.

The KDT50 ratio for DDT, fenitrothion and bendiocarb 
compared to that for the Kisumu strain ranged from 1.1- 
to 2.2-fold in all the study sites. The mosquitoes were 
susceptible to bendiocarb in all the study sites (KDT50 
ratio 1.0–1.6). Possible resistance was recorded in Jar-
ibuni for both DDT (KDT50 ratio 2.2) and fenitrothion 
(KDT50 ratio 2.1). The KDT50 ratio for both DDT and 
fenitrothion was 2.2 in both Mbogolo and Mapawa, indi-
cating possible resistance.
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Fig. 2  Results of bioassay tests of female Anopheles from eight study sites exposed to various insecticides. DDT Dichlorodiphenyltrichloroethane
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Knockdown resistance status
A total of 192 randomly selected samples comprising of 
An. arabiensis, An. gambiae  (s.s.) and Kisumu strain were 
genotyped for the kdr mutation. Neither L1014F nor 
L1014S kdr allelic genes were observed in An. arabiensis 

species. The kdr allelic frequency in An. gambiae, An. 
arabiensis and An. gambiae (s.s.) populations is shown in 
Table  3. Upon exposure to pyrethroids for 24  h, a total 
of 15 An. gambiae, An. arabiensis and An. gambiae (s.s.) 
were identified with the resistant phenotype, while 34 
had the susceptible phenotype. L1014S allelic genes were 
identified in only four Anopheles gambiae, An. arabien-
sis and An. gambiae (s.s.), of which two were homozygous 
(RR) and two were heterozygous (RS) for the trait. Only 
one of the 15 phenotypically resistant mosquitoes was 
observed to be genotypically resistant; this mosquito was 
heterozygous for L1014S characteristic. The remaining 
An. gambiae, An. arabiensis and An. gambiae (s.s.). mos-
quitoes genotyped were recessive (SS).

Discussion
This study has shown that Anopheles arabiensis is the 
most dominant species in the eight study sites sampled 
in Kilifi county. An earlier study reported that Anophe-
les gambiae (s.s.) was the dominant subspecies along the 
Kenyan coast and other regions of the country [24]. How-
ever, a shift in malaria vector composition has recently 
been documented that  coincides with the scaling up 
of vector control interventions, especially the ongoing 
widespread use of insecticide-treated nets (ITNs) along 
the Kenyan coast [31]. The increase in populations of An. 
arabiensis and declining populations of An. gambiae (s.s.) 
may be a result of their contrasting ecological behavior. 
Anopheles gambiae (s.s.) has anthropophilic, endophagic 
and endophilic tendencies [41, 42]. This means relatively 
more hours spent indoors and, consequently, longer con-
tact hours with LLINs, which may have contributed to its 
population decrease. In contrast, An. arabiensis is both 
exophilic and zoophilic [43–45], and this limits its con-
tact with LLINs and the insecticides used for IRS [46]. 
The observed shift in species composition in favor of 
An. arabiensis calls for an integrated vector management 

Table 2  Knockdown resistance ratio of mosquito populations 
(An. gambiae  [s.l.]) to different insecticides

CI, Confidence interval; KDT50, time taken for 50% of the test population to be 
knocked down; KDT50 ratio, KDT50 of the test population to that of the control 
(Kisumu strain)

 aLower limit estimation not possible due to a large g value [40]

Insecticide Population KDT50 (in min) 95% CI KDT50 ratio

Deltamethrin Jaribuni 18 40.9–55.2 1.1

Shibe 16 43.9–58.1 0.9

Kidutani 18 42.9–57.3 1.1

Ngombeni 23 41.9–56.2 1.4

Mapawa 32 40.8–61.1 1.9

Mbogolo 25 39.8–60.2 1.5

Burangi –a –a –a

Mangororo 30 39.8–60.2 1.8

Permethrin Jaribuni 18 39.9–60.2 1.0

Shibe 21.5 37.9–58.2 1.2

Kidutani 35.5 38.9–59.2 2.0

Ngombeni 30 40.8–61.1 1.7

Mapawa 20 39.8–60.2 1.1

Mbogolo 27 38.9–59.2 1.5

Burangi 60 37.9–58.2 3.3

Mangororo 30 39.8–60.2 1.7

Dichlorodiphenyl-
trichloroethane 
(DDT)

Jaribuni 30.5 40.9–55.2 2.1

Shibe 15 37.9–58.2 1.0

Kidutani 18 39.8–60.2 1.2

Ngombeni 27.3 39.8–60.2 1.9

Mapawa 31.5 39.8–60.2 2.2

Mbogolo 25 39.8–60.2 1.7

Burangi 24.4 36.9–57.2 1.7

Bendiocarb Jaribuni 19.2 43.9–58.1 1.0

Shibe 19.3 39.8–60.2 1.0

Kidutani 22 39.8–60.2 1.2

Ngombeni 26.9 39.8–60.2 1.4

Mapawa 30 39.8–60.2 1.6

Mbogolo 23 37.9–58.2 1.2

Burangi 24 37.9–58.2 1.3

Mangororo 30 40.8–61.1 1.6

Fenitrothion Jaribuni 46 37.9–58.1 2.1

Shibe 23.5 39.8–609.2 1.1

Kidutani 40 42.8–63.1 1.9

Ngombeni 31 38.9–59.2 1.5

Mapawa 21.5 37.9–58.2 1.0

Mbogolo 46.3 37.9–58.2 2.2

Burangi 36 36.9–57.2 1.7

Table 3  Knockdown resistance  allelic frequency in An. gambiae 
(s.s.) populations from Kilifi county, coastal Kenya

N, Number of mosquitoes genotyped
a  Resistant refers to mosquitoes alive after 24 h of exposure to pyrethroid 
pesticide; susceptible indicates dead mosquitoes after  24 h  of exposure to 
pyrethroid pesticide
b  L1014S allele: leucine to serine substitution knockdown resistance (kdr) 
allele. RR, Homozygous resistant allele; RS, heterozygous resistant allele; SS, 
susceptible allele
c   F, kdr allele frequency

Mosquito statusa N L1014S alleleb Fc

RR RS SS

Resistant to pyrethroids 15 0 1 14 0.0333

Susceptible to pyrethroids 34 2 1 33 0.0735
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(IVM) approach targeting both indoor and outdoor con-
trol of malaria vectors.

Mosquito populations from one of the eight study sites 
(Burangi) were resistant to both deltamethrin and perme-
thrin and had high median KDT compared with the other 
study sites. These findings suggest that resistant genes 
are localized and that vector control management strat-
egies should be established to prevent their spread and 
preserve the efficacy of the current vector control tools. 
Earlier studies along the Kenyan coast and neighboring 
Tanzania reported the presence of pyrethroid resistance 
characterized by a high median KDT and mortality lev-
els ranging from 62.38 to 93% following pyrethroid expo-
sure [25, 28, 47]. In some West African countries, such as 
Ivory Coast and Burkina Faso, pyrethroid resistance has 
been found to be much more intense, with high KDT50 
ratios and mortality rates of ≤ 40% reported following 
exposure to pyrethroids [48–52]. High KDT50 values 
in the test populations indicate the presence of the kdr 
mechanism of resistance [53]. The high resistance levels 
might be attributed to selection for insecticide resist-
ance due to increased use of LLINs in vector control 
programs [35, 54, 55]. Based on KDT50 values, we noted 
potential resistance to DDT in Jaribuni and Mapawa vil-
lages that might partly be linked to cross-resistance from 
pyrethroids [56] or the presence of recessive genes in the 
mosquito population [25]. These two insecticide classes 
(pyrethroids and organochlorines) have the same mode 
of action and thus pose a threat of cross-resistance.

Mosquito samples from Jaribuni were resistant to feni-
trothion based on both mortality rate and the KDT50 
ratio. In addition, potential resistance to both feni-
trothion and bendiocarb was recorded in Mbogolo and 
Ngombeni. However, susceptibility to both fenitrothion 
and bendiocarb was detected in all other study sites. This 
resistance may be due to selection pressure resulting 
from the contamination of the larval habitats with car-
bamates and organophosphates used in agriculture [57] 
as well as exposure of adult mosquitoes to insecticides 
during either sugar-feeding or outdoor resting. Agricul-
tural systems provide ideal habitats for mosquito breed-
ing [27]. Earlier studies conducted in Kenya reported the 
use of fenitrothion and bendiocarb in agricultural set-
tings and linked them to resistance [58, 59]. Fenitrothion 
(organophosphate) and bendiocarb (carbamate) have 
been proposed for IRS use to control pyrethroid-resistant 
mosquitoes [60]. Therefore, the evolution of resistance to 
these insecticides threatens their use in IRS and as substi-
tute to pyrethroids in public health systems.

The occurrence of phenotypic resistance to pyrethroids 
(deltamethrin and permethrin) may indicate the pres-
ence of target site insensitivity. Our findings that no kdr 
alleles were detected in An. arabiensis are consistent 

with results from previous studies in western and coastal 
Kenya [28, 39], suggesting other underlying resistance 
mechanisms as the cause of phenotypic resistance. How-
ever, the L1014S kdr allele was detected in An. gambiae 
(s.s.) with an allelic frequency of 3.33% in the resistant 
test population. The low allelic frequency of the L1014S 
kdr gene is consistent with results reported in  other 
studies in the neighboring Kwale county [26, 28]. In con-
trast, other studies have indicated a high frequency and 
wide distribution of the L1014S mutation in An. arabi-
ensis in western Kenya [61, 62]. These variations in the 
frequency of the resistance allele may be either due to 
movement of the mutant genes from their original selec-
tion pressure region or DNA deletion in a given genome 
in a mosquito population [39, 63, 64]. Although target 
site resistance had been detected  earlier in the neigh-
boring Kwale county along the coastal Kenya, in practice 
this may not mean that the mutant genes originated from 
there. However, it is evident that the percentage allelic 
frequency is clearly increasing. Therefore, further stud-
ies are needed to ascertain the origin of the mutant genes 
and facilitate development of strategies to mitigate their 
rapid spread.

The low kdr allele frequency compared to the high 
phenotypic resistance observed in pyrethroids is indica-
tive of other underlying resistance mechanisms. Indeed, 
metabolic-based resistance most likely plays a bigger 
role in insecticide resistance than target site resistance 
[65]. Several studies have documented the contribution 
of metabolic resistance enzymes in malaria vectors to 
pyrethroids, organophosphates and carbamates [4, 26, 
62, 63, 66–68]. Knockdown resistance is considered to be 
a weak form of resistance compared to metabolic-based 
resistance. Therefore, vector control failure is likely when 
kdr occurs along with metabolic resistance [69]. Never-
theless, the increasing kdr allele frequency coupled with 
metabolic-based resistance reported in the neighboring 
Kwale county [28] focuses attention on the risk of sub-
sequent failure of current vector control interventions 
in coastal Kenya. Therefore, further investigation on the 
evolution of insecticide resistance in An. gambiae  (s.l.) in 
Kilifi county is vital.

Conclusions
This study reported phenotypic resistance to selected pyre-
throids and organophosphate insecticides in malaria vec-
tors along the Kenyan coast. The occurrence of the L1014S 
allele in An. gambiae (s.s.) at a low frequency was also 
documented. These findings highlight the need for regu-
lar entomological surveillance and monitoring of insecti-
cide resistance and for investment in new vector control 
strategies that can supplement or even replace the use of 
synthetic insecticides. This effort may inform development 
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and implementation of an IVM approach targeting all mos-
quito life stages with diverse vector control interventions to 
limit the spread of insecticide resistance and preserve the 
efficacy of existing insecticides.
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