Skip to main content
. 2021 Apr 19;23(4):e27060. doi: 10.2196/27060

Table 5.

Testing data results and comparison with other machine learning algorithms.

Model TNa FPb FNc TPd Sene Spef Accg BAh AUCi
5-layer DNNj: copying 967 103 5 46 0.9020 0.9037 0.9037 0.9028 0.9617
5-layer DNN: SMOTEk [23] 984 86 8 43 0.8431 0.9196 0.9161 0.8814 0.9555
5-layer DNN with PCAl (8 features) 922 148 5 46 0.9020 0.8617 0.8635 0.8818 0.9549
Linear regression [24] 983 87 7 44 0.8627 0.9187 0.9161 0.8907 0.9563
Decision tree [25] 915 155 5 46 0.9020 0.8551 0.8573 0.8786 0.9252
Random forest [21] 955 115 5 46 0.9020 0.8925 0.8930 0.8972 0.9590
Support vector machine [26] 955 115 5 46 0.9020 0.8925 0.8930 0.8972 0.9588
XGBoostm [22] 945 125 6 45 0.8824 0.8832 0.8831 0.8828 0.9558
AdaBoost [19,20] 937 133 5 46 0.9020 0.8757 0.8769 0.8888 0.9586
GradBoost [27] 936 134 6 45 0.8824 0.8748 0.8751 0.8786 0.9525
HistBoost [28] 959 111 7 44 0.8627 0.8963 0.8947 0.8795 0.9535

aTN: true negative.

bFP: false positive.

cFN: false negative.

dTP: true positive.

eSen: sensitivity.

fSpe: specificity.

gAcc: accuracy.

hBA: balanced accuracy.

iAUC: area under the curve.

jDNN: deep neural network.

kSMOTE: synthetic minority oversampling technique.

lPCA: principal component analysis.

mXGBoost: eXtreme Gradient Boosting.