Skip to main content
. 2021 Apr 19;23(4):e27060. doi: 10.2196/27060

Table 6.

Test result comparison with ensemble approaches.

Model TNa FPb FNc TPd Sene Spef Accg BAh AUCi
5-layer deep neural network (DNN)
(proposed)
967 103 5 46 0.9020 0.9037 0.9037 0.9028 0.9617
DNN + linear regression (LR) 976 94 6 45 0.8824 0.9121 0.9108 0.8973 0.9589
DNN + random forest (RF) 967 103 5 46 0.9020 0.9037 0.9037 0.9028 0.9572
DNN + AdaBoost 965 105 5 46 0.9020 0.9019 0.9019 0.9019 0.9607
DNN + eXtreme Gradient Boosting (XGBoost) 963 107 6 45 0.8824 0.9000 0.8992 0.8912 0.9490
DNN + support vector machine (SVM) 962 108 5 46 0.9020 0.8991 0.8992 0.9005 0.9563
RF + AdaBoost 954 116 5 46 0.9020 0.8916 0.8921 0.8968 0.9515
DNN + RF + AdaBoost 967 103 5 46 0.9020 0.9037 0.9037 0.9028 0.9579
DNN + RF + SVM 962 108 5 46 0.9020 0.8991 0.8992 0.9005 0.9556
DNN + RF + LR 963 107 5 46 0.9020 0.9000 0.9001 0.9010 0.9585
DNN + RF + AdaBoost + XGBoost 944 126 5 46 0.9020 0.8822 0.8831 0.8921 0.9571
DNN + RF + AdaBoost + SVM 959 111 5 46 0.9020 0.8963 0.8965 0.8991 0.9562
DNN + RF + AdaBoost + XGBoost + SVM 978 92 6 45 0.8824 0.9140 0.9126 0.8982 0.9572

aTN: true negative.

bFP: false positive.

cFN: false negative.

dTP: true positive.

eSen: sensitivity.

fSpe: specificity.

gAcc: accuracy.

hBA: balanced accuracy.

iAUC: area under the curve.