Table 6.
Test result comparison with ensemble approaches.
| Model | TNa | FPb | FNc | TPd | Sene | Spef | Accg | BAh | AUCi |
| 5-layer deep neural network (DNN) (proposed) |
967 | 103 | 5 | 46 | 0.9020 | 0.9037 | 0.9037 | 0.9028 | 0.9617 |
| DNN + linear regression (LR) | 976 | 94 | 6 | 45 | 0.8824 | 0.9121 | 0.9108 | 0.8973 | 0.9589 |
| DNN + random forest (RF) | 967 | 103 | 5 | 46 | 0.9020 | 0.9037 | 0.9037 | 0.9028 | 0.9572 |
| DNN + AdaBoost | 965 | 105 | 5 | 46 | 0.9020 | 0.9019 | 0.9019 | 0.9019 | 0.9607 |
| DNN + eXtreme Gradient Boosting (XGBoost) | 963 | 107 | 6 | 45 | 0.8824 | 0.9000 | 0.8992 | 0.8912 | 0.9490 |
| DNN + support vector machine (SVM) | 962 | 108 | 5 | 46 | 0.9020 | 0.8991 | 0.8992 | 0.9005 | 0.9563 |
| RF + AdaBoost | 954 | 116 | 5 | 46 | 0.9020 | 0.8916 | 0.8921 | 0.8968 | 0.9515 |
| DNN + RF + AdaBoost | 967 | 103 | 5 | 46 | 0.9020 | 0.9037 | 0.9037 | 0.9028 | 0.9579 |
| DNN + RF + SVM | 962 | 108 | 5 | 46 | 0.9020 | 0.8991 | 0.8992 | 0.9005 | 0.9556 |
| DNN + RF + LR | 963 | 107 | 5 | 46 | 0.9020 | 0.9000 | 0.9001 | 0.9010 | 0.9585 |
| DNN + RF + AdaBoost + XGBoost | 944 | 126 | 5 | 46 | 0.9020 | 0.8822 | 0.8831 | 0.8921 | 0.9571 |
| DNN + RF + AdaBoost + SVM | 959 | 111 | 5 | 46 | 0.9020 | 0.8963 | 0.8965 | 0.8991 | 0.9562 |
| DNN + RF + AdaBoost + XGBoost + SVM | 978 | 92 | 6 | 45 | 0.8824 | 0.9140 | 0.9126 | 0.8982 | 0.9572 |
aTN: true negative.
bFP: false positive.
cFN: false negative.
dTP: true positive.
eSen: sensitivity.
fSpe: specificity.
gAcc: accuracy.
hBA: balanced accuracy.
iAUC: area under the curve.