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Abstract
The apolipoprotein E (APOE) gene associates with Alzheimer’s disease (AD) and choles-
terol levels. Upstream transcription factor 1 (USF1) regulates lipid metabolism genes,
including APOE, and the AD Ab-precursor protein. We investigated associations between
6 haplotype-tagging USF1 single-nucleotide polymorphisms (and haplotypes) and
AD-related neuropathological lesions [senile plaques (SP), neurofibrillary tangles (NFT) ]
in an autopsy series comprising 603 cases (ages 0–97, mean 62 years, 215 women) that died
out-of-hospital. In age- and APOE-adjusted analyses, the minor G-allele of rs2774276,
previously linked to elevated cholesterol, associated with late-stage burnt out SP among
women and early non-neuritic SP among men. The G-allele of the previously unreported
rs10908821 showed significant risk of having SP, especially neuritic and burnt out SP,
among women but not men. USF1 haplotype GCGCAC carriers (risk alleles of rs2774276
and rs10908821) associated with SP risk, especially neuritic and late-stage burnt out SP,
among women but not men. Younger CCGCAC carriers (risk allele of rs2774276 and
protective of rs10908821) were more likely to have non-neuritic and diffuse SP. Conversely,
USF1 CCGCAC haplotype carriers had lower NFT prevalence among 65+ year-olds.
These results suggest USF1 has an independent but gender- and age-associated effect on
AD-related brain lesion development.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common form of neurode-
generative disease, affecting millions of people and estimated to
affect 81.1 million by the year 2040 (10). Although the prevalence
of AD is high, the underlying pathogenesis has not been unraveled.
Extracellular senile plaques (SP) formed from amyloid beta (Ab)
and intracellular neurofibrillary tangles (NFT) consisting of hyper-
phosphorylated tau protein are considered hallmarks of AD (37). It
is thought that these brain lesions, by interrupting neuronal signal-
ing and instigating oxidation and inflammation, gradually lead to
loss of memory, orientation, judgment and reasoning, the typical
clinical manifestations of AD. Definite AD diagnosis involves post-
mortem detection of SP and NFT in the brain (8). Because the
pathogenesis of this disease is still largely unknown, much interest
has focused on possible genetic and environmental factors respon-
sible for this progressive disorder. Up to 80% of an individuals’ risk
for AD is thought to be genetic (13). The apolipoprotein E (APOE)
e4 allele is the most commonly accepted AD risk gene, increasing

the risk for the disease and significantly lowering the age of onset
(4, 18, 28), although other risk genes have been recently identified
(15, 25).

AD and coronary artery disease (CAD) share many risk factors,
such as elevated cholesterol levels and carriership of the APOEe4
allele (29, 47). The APOEe4 allele may affect AD risk both directly
through Ab-modifying mechanisms (18) and/or through choles-
terol metabolism (32), although the exact mechanisms have yet to
be established.

A gene that ties cholesterol metabolism and AD together would
be useful in elucidating the pathogenesis of AD. The upstream
transcription factor 1 (USF1) gene located on chromosome 1q22-
q23 (39) encodes a ubiquitously expressed important and general
transcription factor with multiple roles in transcriptional regulation
of several genes involved in glucose and lipid metabolism (27),
including APOE (36). Polymorphisms of the USF1 gene associate
with familial combined hyperlipidemia (FCHL) (33), increased
risk for cardiovascular disease in women (21), high plasma triglyc-
eride and low-density lipoprotein (LDL) levels (3), early markers
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of atherosclerosis (2), and coronary artery calcifications and ath-
erosclerotic lesions (23), and lowered APOE gene expression in fat
tissue (31). USF1 also represses the gene encoding ATP-binding
cassette A1 (ABCA1) transporter protein, which has a key role in
the cellular efflux of cholesterol and phospholipids (48). Addition-
ally, USF1 modulates genes involved in the immune response and
cell cycle control (6), and up-regulates the expression of the APP
gene encoding amyloid precursor protein (APP) (22). USFs also
associate with genes regulating synaptic plasticity (41), neuronal
survival and differentiation (44).

In a previous case-control study of living AD patients, no asso-
ciation between USF1 gene polymorphisms and disease onset was
found (38). We have previously found that the accumulation of SP
is strongly dependent on the APOEe4 allele and this association
begins in middle age (20, 34). We chose to investigate the possible
associations between USF1 polymorphisms and the prevalence of
neuropathologically confirmed AD-related lesions in the brains of
a sample representing that of a normal, non-demented population,
consisting of all ages in the Tampere Autopsy Study (TASTY).

MATERIALS AND METHODS
The Tampere Autopsy Study (TASTY) comprises a prospective
autopsy series of 603 (aged 0–97, mean 62 years, 215 women)
cases, who underwent medicolegal autopsy because of sudden or
unexpected death as described in detail in our earlier article (20).

The study was approved by the Board of Medicolegal Affairs of
Finland. The cohort is thought to represent the best available
sample of a general non-institutionalized population. None of the
cases died of AD, but 22 (3.7%) had some form of dementia, of
which six (1.0%) were diagnosed with AD prior to death. Ten cases
(1.7%) had memory problems and one had been diagnosed with
Parkinson’s disease. These data were obtained according to avail-
able hospital records and next-of-kin reports.

The salt precipitation method was used on frozen blood samples
for DNA isolation. Six reported USF1 haplotype-tagging single-
nucleotide polymorphisms (SNPs) were genotyped (rs10908821,
rs2073658, rs2774276, rs2516839, rs1556259 and rs2774279) to
capture common allelic variants of the gene using the commer-
cially available TaqMan® assays with the ABI Prism 7900HT
Sequence Detection System (Applied Biosystems, Foster City, CA,
USA) (21). APOE genotyping was performed as described else-
where (16). Bielschowsky silver staining was used to determine the
SP (cortex) and NFT (hippocampus) assessments under the super-
vision of an experienced neuropathologist (HH) in brain tissue
samples and Ab-staining was used to confirm Bielschowsky stain-
ing as previously described (20).

Estimation of USF1 haplotype frequencies was performed using
PHASE v2.1.1 (42, 43). SNP order was rs10908821, rs2073658,
rs2774276, rs2516839, rs1556259 and rs2774279 and created the
haplotypes CCCTAC (haplotype 1), CCCTAT (2), CCCCGC (3),
CCGCAC (5), CTCTAC (4), CTCTAT (6) and GCGCAC (7). Hap-

Table 1. Characteristics of the TASTY Cohort.
Valid N All Male Female P-value

603 388 (64.3%) 215 (35.7%)

Age, years � SD 62.7 � 19.1 59.6 � 18.8 68.2 � 18.6 <0.0001
<65 years 298 219 (73.5%) 79 (26.5%) <0.0001
�65 years 305 169 (55.4%) 136 (44.6%) NS

BMI, kg/m2 � SD 27.4 � 6.15 27.1 � 5.86 27.8 � 6.65 NS
Cause of death

Disease 59.1% 59.6% 58.1% NS
Accident 27.0% 26.2% 28.4% NS
Suicide 12.0% 12.4% 11.2% NS
Homicide 0.5% 0.8% 0% NS
Unknown 1.5% 1.0% 2.3% NS

Dementia Status
AD 1.0% 0.5% 1.9% NS
Dementia 2.7% 1.8% 4.2% NS
Memory problems 1.7% 1.3% 2.3% NS
Parkinson’s disease 0.2% 0.3% 0% .

Neuropathological lesions
SP 31.1% 24.9% 41.5% <0.0001
Non neuritic 9.9% 8.7% 12.1% NS
Neuritic 19.1% 15.1% 26.1% 0.001
Diffuse 3.7% 3.9% 3.4% NS
Primitive 6.2% 4.8% 8.7% 0.02
Classic 14.7% 11.2% 20.8% 0.001
Burnt out 4.4% 3.9% 5.3% NS

SP coverage � 1.05% 15.5% 13.6% 18.6% 0.02
SP coverage > 1.05% 15.5% 11.0% 23.0% <0.0001
NFT 42.1% 35.3% 54.3% <0.0001

AD = Alzheimer’s disease; BMI = body mass index; NFT = neurofibrillary tangles; NS = non-
significant; N = number of cases SP = senile plaques; SD = standard deviation; TASTY = Tampere
Autopsy Study.
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lotypes 1 and 6 were excluded from analyses based on their low
prevalence (0.001% and 0.1%, respectively).

Statistical analyses used SPSS v16.0 for Windows (SPSS Inc.,
Chicago, IL, USA). The variables used were: USF1 SNPs
(reported genotypes vs. the common homozygous genotype, and
also carriership of the rare allele vs. the common homozygous
genotype), haplotypes (yes/no carriership), SP (yes/no) and NFT
(yes/no). SP were further grouped into non-neuritic (diffuse and
primitive) and neuritic (classic and burnt out). We also used a
variable (converted from the SP variable) with percentage of SP
cortex coverage, based on the CERAD protocol, which semi-
quantitatively assessed the categories “no SP”, and equal-sized
groups “�1.05% SP coverage” and “>1.05% SP coverage”, in
order to create the strongest statistical power assessments. Logis-
tic regression analyses used age and APOEe4 carriership as cova-
riates. Based on an “a priori” hypothesis and reported differences
in age and gender on the effect of SP (5) and AD (1, 12) preva-
lence, we also chose to investigate the cohort in a stratified
manner. The analyses were performed splitting the entire data
series by gender and into two age groups at the median value:
0–64 (49.4%) and �65 (50.6%) years.

False discovery rate (FDR) multiple correction calculations were
performed assuming there were 11 independent tests (6 SNPs and 5
haplotypes), using the calculation shown later and assuming an
FDR value of <0.05 was acceptable.

FDR -value number of tests -value rank= ×P P/

RESULTS
Demographics of the TASTY cohort can be seen in Table 1. Of 603
individuals SP frequency was available for 548 (90.9%), NFT
counts for 484 (80.3%), APOE genotypes for 601 (99.7%). USF1
SNPs had a mean genotyping success rate of 87.75% (rs10908821–
87.6%, rs2073658–87.7%, rs2774276–88.4%, rs2516839–87.7%,
rs1556259–87.7% and rs2774279–87.4%). The haplotype frequen-
cies of USF1 can be seen in Table 2. All SNPs were in Hardy–
Weinberg equilibrium. There were significant interactions between
SNPs, and both age and gender on SP prevalence, as seen in
Table 3. Based on this, we did the analyses separately among those
below and above 65 years of age, and among men and women.
Women were more likely to have SP compared with men [odds
ratio (OR) 2.15, confidence interval (CI) 1.49–3.11, P < 0.0001],
although on average, women were 10 years older than men.

In general, age- and APOE-adjusted analyses did not provide
statistically significant associations between the SNPs or haplo-

types, and the neuropathological lesions. In contrast, division by
gender and age division into younger (0–64 years) and older (�65
years) individuals revealed a number of statistically significant
associations between the USF1 SNPs and haplotypes, and the neu-
ropathological lesions. The supplementary tables show complete
results for the cohort, both unstratified and stratified.

The previously unreported SNP rs10908821 female G-allele car-
riers were found to associate with SP in the simplest analysis (OR
2.95, CI 1.25–6.95, P = 0.014), as shown in Figure 1A, compared
with the common CC genotype. Additionally, the female minor
G-allele carriers were statistically more likely to have neuritic SP
(OR 3.27, CI 1.29-8.29, P = 0.013) and burnt out (OR 10.79, CI
2.34–49.71, P = 0.002) SP. In a CERAD-like analysis, female car-
riers of the G-allele were more likely to have increasing levels of SP
coverage (�1.05% OR 3.20, CI 1.20–8.51, P = 0.020; >1.05% OR
2.66, CI 0.98–7.22, P = 0.055). In analyses investigating NFT
prevalence within gender, there were no statistically significant
values. There were no significant associations seen in men.

With age division analyses, rs10908821 G-allele carriers in the
older age group (�65 years) were more likely to have SP (OR 2.01,
CI 1.14–3.55, P = 0.016) and higher SP coverage (>1.05% OR
2.06, CI 1.07–3.93, P = 0.030), compared with the CC genotype
(see Figure 1B). There were no significant associations seen in
younger individuals.

Female carriers of SNP rs2073658 showed no statistical associa-
tions with the neuropathological findings. Conversely, male

Table 2. Upstream transcription factor 1 haplotype and allele frequencies.

rs10908821 rs2073658 rs2774276 rs2516839 rs1556259 rs2774279

Haplotype 1 C C C T A C 0.001%
Haplotype 2 C C C T A T 24.6%
Haplotype 3 C C C C G C 13.2%
Haplotype 4 C C G C A C 12.2%
Haplotype 5 C T C T A C 36.6%
Haplotype 6 C T C T A T 0.1%
Haplotype 7 G C G C A C 13.3%
(Major > minor allele)
Frequency in percent %

(C > G)
79.9/20.1

(C > T)
59.1/40.9

(C > G)
67.9/32.1

(T > C)
57.8/42.2

(A > G)
79.9/20.1

(C > T)
68.2/31.8

Table 3. Upstream transcription factor 1 single-nucleotide polymor-
phism interaction terms.

P-value OR 95% CI

Age * rs10908821 G carriers vs. CC 0.001 1.0 1.01–1.02
Age * rs2073658 T carriers vs. CC 0.002 1.0 1.00–1.01
Age * rs2774276 G carriers vs. CC 0.008 1.0 1.00–1.01
Age * rs2516839 C carriers vs. TT 0.001 1.0 1.00–1.02
Age * rs1556259 G carriers vs. AA 0.359 1.0 0.99–1.01
Age * rs2774279 T carriers vs. CC 0.077 1.0 0.99–1.01
Gender * rs10908821 G carriers vs. CC 0.542 0.9 0.51–1.42
Gender * rs2073658 T carriers vs. CC 0.025 0.6 0.43–0.95
Gender * rs2774276 G carriers vs. CC 0.101 0.7 0.46–1.07
Gender * rs2516839 C carriers vs. TT 0.011 0.6 0.41–0.89
Gender * rs1556259 G carriers vs. AA 0.110 0.7 0.38–1.10
Gender * rs2774279 T carriers vs. CC 0.006 0.5 0.33–0.83

CI = confidence interval; OR = odds ratio.

Isotalo et al USF1 and Alzheimer’s Disease Neuropathology

767Brain Pathology 22 (2012) 765–775

© 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology



rs2073658 TT genotype carriers were more likely to have neuritic
SP vs. CC carriers (OR 2.82, CI 0.99–7.98, P = 0.050). No statisti-
cally significant values were discovered when comparing the minor
allele carriers against the common homozygote carriers in analyses
with age divisions.

Among women, the minor G-allele of rs2774276 increased the
risk of late stage burnt out SP (Fig. 2A), compared with CC
homozygotes (OR 6.56, CI 1.36–31.5, P = 0.019), while male car-
riers of the G-allele were more likely to have early stage non-

neuritic SP (OR 2.53, CI 1.09–5.88, P = 0.030). Analyses with age
division (Fig. 2B) revealed that younger (0–64 years) individuals
were more likely to have diffuse SP if they had a G-allele, com-
pared with CC homozygotes (OR 11.1, CI 1.37–89.7, P = 0.024).
Older individuals showed no statistically significant associations.

Female carriers of the rs2516839 C-allele were more likely to
have late stage burnt out SP (OR 9.20, CI 1.04–81.6, P = 0.046),
while we did not observe this in men (Fig. 3A). Age division analy-
ses did not reveal statistically significant associations (Fig. 3B);
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Figure 1. SNP rs10908821 prevalence (%) of SP and NFT against genotypes. (A) Grey indicates men and black for women; (B) grey indicates
0–64-year-old individuals and black refers to those over 65 years. NFT = neurofibrillary tangles; OR = odds ratio; SNP = single-nucleotide polymor-
phism; SP = senile plaques.
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however, a trend toward protection could be seen in C-carriers for
neuritic (OR 0.31, CI 0.08–1.12, P = 0.074) and classic (OR 0.31,
CI 0.09–1.14, P = 0.078) SP in younger individuals. Age or gender
divisions did not reveal statistically significant results between the
SNPs rs1556259 or rs2774279 and SP or NFT variables (see Sup-
porting Information Tables S1–S5).

Haplotypes 2, 3, 5 and 6 did not reveal statistically significant
associations with the SP or NFT variables in simple analyses, or
with gender or age divisions in our cohort. Gender division analy-
ses of haplotype CCGCAC (haplotype 4) carriers did not reveal any

associations with the neuropathological lesions (Fig. 4A), whereas
older (�65 years) carriers were less likely to have NFT (OR 0.50,
CI 0.28–0.91, P = 0.024). Conversely, younger individuals carry-
ing CCGCAC were more likely to have non-neuritic (OR 2.98,
CI 1.17–7.59, P = 0.022) and diffuse (OR 9.21, CI 2.26–37.5,
P = 0.002) SP (Fig. 4B).

The strongest associations between the SP and haplotypes were
seen for female carriers of GCGCAC (haplotype 7). These carriers
(Fig. 5A) were more likely to have SP (OR 2.93, CI 1.25–6.85,
P = 0.013), neuritic (OR 3.35, CI 1.32–8.47, P = 0.011) and late
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Figure 2. SNP rs2774276 prevalence (%) of SP and NFT against genotypes. (A) Grey indicates men and black for women; (B) grey indicates
0–64-year-old individuals and black refers to those over 65 years. NFT = neurofibrillary tangles; OR = odds ratio; SNP = single-nucleotide polymor-
phism; SP = senile plaques.
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stage burnt out SP (OR 12.4, CI 2.67–57.1, P = 0.001), as well as
increased risk for increasing SP cortical coverage (�1.05% OR
2.94, CI 1.12–7.73, P = 0.029; > 1.05% OR 2.75, CI 1.01–7.44,
P = 0.047). When concerning age division (Fig. 5B), younger indi-
viduals were not associated with the neuropathological findings;
however, older (�65 years) individuals with the GCGCAC
haplotype were more likely to have SP (OR 1.97, CI 1.13–3.43,
P = 0.017) and higher SP coverage (>1.05% OR 2.13, CI 1.12–
4.04, P = 0.020).

We performed FDR calculations on our results in order to
correct for multiple testing. These showed that with an FDR < 0.05

(5% false positives), all of our results survived multiple testing (see
Supporting Information Tables S1–S5 for full cohort results). The
SNPs and haplotypes of the USF1 gene seen most often in statisti-
cal analyses were rs10908821 (G carriers), rs2774276 (G carriers),
and haplotypes CCGCAC (5) and GCGCAC (7).

DISCUSSION
USF1 has been previously identified as a crucial and general tran-
scription factor with multiple roles in the transcription regulation of
several genes involved in lipid and glucose metabolism (27), stress
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Figure 3. SNP rs2516839 prevalence (%) of SP and NFT against genotypes. (A) Grey indicates men and black for women; (B) grey indicates
0–64-year-old individuals and black refers to those over 65 years. NFT = neurofibrillary tangles; OR = odds ratio; SNP = single-nucleotide polymor-
phism; SP = senile plaques.
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and immune responses, cell cycle and proliferation (6). It is ubiqui-
tously expressed, its E-box motif is broadly distributed across the
genome and the number of USF1-dependent genes is extremely
high (27). We discovered gender- and age-dependent associations
between the USF1 SNPs and haplotypes with both SP and NFT,
which are the characteristic neuropathological lesions inAD.

A substantial gender difference with relation to age was seen in
our cohort and is most likely caused by a bias toward the longev-
ity of women and the higher number of young men seen in acci-
dental deaths. For this reason, we included age as a covariate
when investigating gender differences, in order to counteract this
effect. Additionally, there were differential effects related to age
and SP type among our results, possibly caused by small sample

sizes, the younger ages of men in general in our cohort, or simply
that different effects come into play at different stages of SP
development.

The rs10908821 G-carrier genotype appeared as a risk factor for
SP changes in women and older individuals. This SNP has not
been previously linked to disturbances in lipid metabolism. The
rs2774276 has previously been linked to higher total serum choles-
terol and LDL-levels (GG genotype), and the G-allele with higher
waist-to-hip ratios (21). In our study, the G-allele of rs2774276
associated with increased risk for both early-stage (men and
younger individuals) and late-stage SP (women).

The rs2516839 C-allele has been previously linked to higher
high-density lipoprotein (HDL) levels, lower triglyceride levels
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Figure 4. Haplotype CCGCAC (H4) prevalence (%) of SP and NFT against haplotype carriership. (A) Grey indicates men and black for women; (B) grey
indicates 0–64-year-old individuals and black refers to those over 65 years. NFT = neurofibrillary tangles; OR = odds ratio; SP = senile plaques.
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(26) and also identified as a protective factor for calcification of
coronary arteries and less severe coronary atherosclerosis (23). In
our study, a trend toward the C-allele being protective for neuritic
and classic SP could be seen in the younger individuals. In contrast,
the C-allele appeared as a risk factor for late-stage SP in women,
which is not in correlation with previous findings concerning lipid
metabolism, although this could be a confounding factor because
of small sample numbers. The rs2073658 T-allele has been linked
to an increased risk of cardiovascular diseases (CVD) and among
female carriers to a higher risk for mortality (21). In accordance
with these previous results, we found that rs2073658 TT genotype
associated with later-stage SP in men.

Previous studies investigating USF1 haplotypes (21, 23) did not
find any significant associations with dyslipidemia for haplotypes
CCGCAC and GCGCAC (haplotypes 4 and 7, respectively) that in
our study associated with AD-related neuropathological lesions.
Although dyslipidemia was found to correlate with the haplotypes
CCCTAT and CTCTAC (haplotypes 2 and 5, respectively) (21),
these did not indicate any increased or decreased risks with neuro-
pathological lesion prevalence in our study. In our study, younger
carriers (<65 years) of CCGCAC were more likely to have non-
neuritic SP. On the other hand, a trend toward a lower tendency for
SP and NFT was seen for older carriers of the same haplotype,
possibly indicating that different effects come into play at different
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Figure 5. Haplotype GCGCAC (H7) prevalence (%) of SP and NFT against haplotype carriership. (A) Grey indicates men and black for women; (B) grey
indicates 0–64-year-old individuals and black refers to those over 65 years. NFT = neurofibrillary tangles; OR = odds ratio; SP = senile plaques.
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ages. Carriers of GCGCAC associated with SP prevalence,
especially neuritic, and higher SP cortical coverage in women.
Although this risk haplotype contains the low-risk allele of
rs2073658, it contains the high-risk G-alleles of rs2774276 and
rs10908821, indicating their strong effects. Both of these haplo-
types appeared to increase the risk of having SP, while differing
only with regards to rs10908821 alleles, suggesting a differential
effect for this particular SNP, depending on gender and age.

USF1 protein, like the tau protein of NFT, is also regulated
through phosphorylation (7). It has also been suggested that
increased intracellular cholesterol levels may accelerate phospho-
rylation of tau (47), and possibly also USF1. The reverse has also
been shown, where reduction of cholesterol can cause the hyper-
phosphorylation of tau (9), suggesting signaling pathways affected
by cholesterol levels may be the true activators. This might indicate
that risk alleles—either in the USF1 gene, or other as yet unknown
genes—could be activated by cholesterol levels.

Our current results suggest that USF1 SNPs and haplotypes
associate with neuropathological lesions. Because previous studies
on USF1 have suggested its involvement in lipid metabolism disor-
ders (3, 21, 23, 26, 27, 31, 33, 35) and elevated cholesterol associates
with AD (17, 19, 29, 32), our findings suggest that USF1 may affect
the formation of these lesions through alterations in lipid metabo-
lism. Cholesterol is actively turned over among neurons and glial
cells, with the help of apolipoproteins and their receptors, and
cholesterol has an essential role in synaptic plasticity in the central
nervous system (47). A significant increase in the levels of LDL
cholesterol, as well as a significant decrease in the levels of HDL
cholesterol was found post-mortem in AD patients (24). Suppres-
sion of de novo synthesis of cholesterol and decreased generation of
Ab has also been suggested to play a role in AD (40). The use of
statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibi-
tors) has been suggested to potentially suppress the development of
AD (46), but this observed effect might be caused by other beneficial
effects they have such as anti-inflammatory actions, immunosup-
pression and blockage of macrophage activation (45).

In addition to the hypothesis of disturbances in lipid metabolism,
there are also several other possible mechanisms by which USF1
might affect the development of AD-related lesions. The accumula-
tion of these lesions might depend upon differential expression of
USF1 target genes such as ABCA1 and APP. USF1 represses the
gene encoding the ABCA1 transporter protein (48), which has an
essential role in the cellular efflux of cholesterol and phospholip-
ids. Disturbances in its production might cause diminished cellular
efflux of lipids resulting in disturbances in cell function, possibly
leading to cell death. Another possible mechanism might be the
overproduction of Ab, as USF1 up-regulates transcription of the
APP gene (22).

It has been previously hypothesized that inflammation might
play a part in the pathogenesis of AD. A major transcription factor
for controlling inflammation, NF-kappaB (NFkB), is activated in
the brains of AD patients (14), and the APOEe4 allele is related to
the hyperactivation of NFkB and enhanced brain inflammation
(11). USF1 has been found to regulate the transcription of APOE
(31). The T-allele of USF1 SNP rs2073658 has also been associated
with higher plasma C-reactive protein (CRP) and interleukin-6
levels (IL-6) (35). As USF1 regulates genes involved in immune
responses (6), this offers yet another possible mechanism by which
USF1 contributes to AD.

One of the drawbacks of our study is that although we show
that polymorphisms of USF1 gene significantly associate with
AD-related lesions, we do not have many cases with clinically
defined AD in our series. Additionally, we did not measure cho-
lesterol levels or cerebrospinal fluid amyloid and tau metabolites.
Our study probably also underestimates the SP and NFT load, as
the lesions were examined only in three sections of brain tissue.
The selected locations are, however, thought to be informative
enough according to the CERAD protocol (30). Our cohort
also comprised mostly of non-demented individuals, and not
clinically diagnosed AD patients, although these are most
probably underdiagnosed, but our unique study thus offers an
interesting insight into the brain pathology of a series that is the
best available sample of a community-dwelling non-demented
population.

The only previous study to our knowledge that looked at the
possible associations between USF1 genotypes and clinical AD
cases did not find any associations (38). The SNPs studied differed
from the ones in our study, however, and the AD cases were not
neuropathologically confirmed. To our knowledge, this is the first
study of its kind that investigated the association with USF1 geno-
types at a neuropathological level.

Our interesting findings will need to be investigated further in
AD patient cohorts and replicated in larger epidemiological studies
to determine which and how USF1 polymorphisms may contribute
to the development of AD-related lesions. Our unique study
revealed associations between USF1 SNPs and haplotypes, and
AD-related lesions, supporting evidence for the hypothesis that
disturbances in lipid metabolism might play a part in the formation
of AD-related lesions and therefore maybe the disease itself.
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