Skip to main content
. 2021 Apr 21;134:104401. doi: 10.1016/j.compbiomed.2021.104401

Table 4.

A comparison of performances of our ensemble model and various deep learning models.

Model Methods Specificity Recall F-score Accuracy
Our ensemble method (InceptionV3+MobileNetV2) 98.97 ± 0.22 96.89 ± 0.65 96.90 ± 0.65 98.45 ± 0.32
Ensemble method [66] (Vgg16+Densenet201) 91.35 ± 0.42 74.05 ± 0.96 65.34 ± 1.10 87.04 ± 0.57
AlexNet Trained on ODS-NPTW 76.15 ± 0.37 28.48 ± 1.46 24.18 ± 1.82 64.36 ± 0.64
FT on ODS-NPTW 92.69 ± 0.70 78.11 ± 2.20 77.77 ± 2.17 89.03 ± 1.03
FT on ODS-PTW 97.41 ± 0.43 92.21 ± 1.25 92.20 ± 1.33 96.13 ± 0.62
FT on ADS-ALUF 97.67 ± 0.46 93.05 ± 1.08 92.96 ± 1.13 96.50 ± 0.64
SqueezeNet Trained on ODS-NPTW 75.28 ± 0.31 25.85 ± 0.95 14.00 ± 1.32 62.91 ± 0.69
FT on ODS-NPTW 92.46 ± 0.49 77.30 ± 1.13 77.35 ± 1.15 88.69 ± 0.65
FT on ODS-PTW 97.24 ± 0.38 91.77 ± 0.87 91.78 ± 0.95 95.87 ± 0.54
FT on ADS-ALUF 97.73 ± 0.25 93.21 ± 0.47 93.19 ± 0.47 96.60 ± 0.33
Densenet201 Trained on ODS-NPTW 74.64 ± 1.43 23.73 ± 4.03 22.20 ± 4.68 61.99 ± 2.14
FT on ODS-NPTW 87.46 ± 0.74 62.36 ± 2.49 62.55 ± 2.33 81.21 ± 1.01
FT on ODS-PTW 97.36 ± 0.43 92.08 ± 1.35 92.04 ± 1.41 96.05 ± 0.65
FT on ADS-ALUF 97.91 ± 0.38 93.67 ± 1.35 93.67 ± 1.33 96.86 ± 0.32
MobileNetV2 Trained on ODS-NPTW 74.48 ± 0.57 23.46 ± 1.73 14.29 ± 0.85 61.74 ± 1.06
FT on ODS-NPTW 92.33 ± 0.54 77.04 ± 1.06 76.68 ± 1.13 88.50 ± 0.74
FT on ODS-PTW 97.91 ± 0.21 93.76 ± 0.63 93.71 ± 0.66 96.86 ± 0.32
FT on ADS-ALUF 98.24 ± 0.27 94.71 ± 1.01 94.68 ± 1.01 97.36 ± 0.42
InceptionV3 Trained on ODS-NPTW 72.16 ± 0.58 16.57 ± 1.33 16.31 ± 1.00 58.24 ± 0.59
FT on ODS-NPTW 85.01 ± 0.41 55.02 ± 1.09 55.29 ± 1.17 77.53 ± 0.52
FT on ODS-PTW 98.08 ± 0.45 94.19 ± 1.63 94.21 ± 1.60 97.11 ± 0.70
FT on ADS-ALUF 98.49 ± 0.38 95.42 ± 1.31 95.43 ± 1.28 97.74 ± 0.58

ODS, ADS, NPTW, PTW, ALUF, FT stands for original dataset, augmented dataset, no pre-trained weights, pre-trained weights, all layers un-frozen, fine-tuned. A denotes that our deep learning ensemble model is statistically better than its competing model.