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Age is the most important risk factor for cancer, as cancer incidence and mortality increase
with age. However, how molecular alterations in tumours differ among patients of different
age remains largely unexplored. Here, using data from The Cancer Genome Atlas, we
comprehensively characterise genomic, transcriptomic and epigenetic alterations in relation
to patients’ age across cancer types. We show that tumours from older patients present an
overall increase in genomic instability, somatic copy-number alterations (SCNAs) and
somatic mutations. Age-associated SCNAs and mutations are identified in several cancer-
driver genes across different cancer types. The largest age-related genomic differences are
found in gliomas and endometrial cancer. We identify age-related global transcriptomic
changes and demonstrate that these genes are in part regulated by age-associated DNA
methylation changes. This study provides a comprehensive, multi-omics view of age-
associated alterations in cancer and underscores age as an important factor to consider in
cancer research and clinical practice.
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ge is the biggest risk factor for cancer, as cancer incidence

and mortality rates increase exponentially with age in

most cancer types!. However, the relationship between
ageing and molecular determinants of cancer remains to be
characterised. Cancer arises through the interplay between
somatic mutations and selection, in a Darwinian-like process3.
Thus, apart from the accumulation of mutations with age*-©,
microenvironment changes during ageing could also play a role in
carcinogenesis?’8. We therefore hypothesise that, due to the
differences in selective pressures from tissue environmental
changes with age, tumours arising from patients across different
ages might harbour different molecular landscapes. Consequently,
some molecular changes might be more or less common in older
or younger patients.

Recently, several studies have investigated molecular differ-
ences in the cancer genome in relation to clinical factors,
including gender®!0 and race!12. These studies demonstrated
gender- and race-specific biomarkers, actionable target genes and
provided clues to understanding the biology behind the dis-
parities in cancer incidence, aggressiveness and treatment out-
come across patients from different backgrounds. Although
differences in genomic alterations between childhood and adult
cancers have been systematically characterised!®14, the age-
related genomic landscape across adult cancers remains elusive.
Specific age-associated molecular landscapes have been reported
in the cancer genome of several cancer types, for example,
glioblastomal?, prostate cancer!® and breast cancer!”. However,
these studies focused mainly on a single cancer type and only on
some molecular data types.

Here, using data from The Cancer Genome Atlas (TCGA), we
systematically investigate age-related differences in genomic
instability (GI), somatic copy-number alterations (SCNAs), somatic
mutations, pathway alterations, gene expression, and DNA
methylation across various cancer types. We show that, in general,
GI and mutations frequency increase with age. We identify several
age-associated genomic alterations in cancers, particularly in low-
grade glioma and endometrial carcinoma. Moreover, we also
demonstrate that age-related gene expression changes are partly
controlled by age-related DNA methylation changes and that these
changes are linked to numerous biological processes.

Results

Association between age and genomic instability, loss of het-
erozygosity, and whole-genome duplication. To gain insight
into the role of patient age into the somatic genetic profile of
tumours, we evaluated associations between patient age and
genomic features of tumours in TCGA data (Table 1, Supple-
mentary Data 1). We first derived GI scores, calculated as the
genome fraction (percent-based) that does not fit the ground
state, defined as 2 for tumours that have not undergone whole-
genome duplication (WGD), and 4 for tumours that have
undergone WGD (Methods). Using multiple linear regression
adjusting for gender, race, and cancer type, we found that GI
scores increase with age in pan-cancer data (adj. R-squared =
0.35, p value=15.98x10~7) (Fig. la). We next applied simple
linear regression to investigate the relationship between GI scores
and age for each cancer type. Cancer types with a significant
association (adj. p value < 0.05) were further adjusted for clinical
variables. We found a significant positive association between age
and GI score in seven cancer types (adj. p value < 0.05) (Fig. 1b,
Supplementary Fig. 1a and Supplementary Data 2). Cancer types
with the strongest significant positive association were low-grade
glioma, ovarian cancer, endometrial cancer and sarcoma. This
result indicates that the level of GI increases with the age of
cancer patients in several cancer types.

Genomic loss of heterozygosity (LOH) refers to the irreversible
loss of one parental allele, causing an allelic imbalance, and
priming the cell for another defect at the other remaining allele of
the respective genes!8. To investigate whether there is an
association between patients” age and LOH, we quantified percent
genomic LOH. By using simple linear regression, we found a
significant positive association between age and pan-cancer
percent genomic LOH (p value = 1.20 x 10721). However, this
association was no longer significant in a multiple linear
regression analysis (adj. R-squared =0.32, p value=0.289)
(Fig. 1c). Thus, it is likely that this association might be cancer
type-specific. We then performed a linear regression between age
and percent genomic LOH for each cancer type. Six cancer types
showed a positive association between age and percent genomic
LOH (adj. p value <0.05) (Fig. 1d, Supplementary Fig. 1b, and
Supplementary Data 3). The strongest positive associations were
found in low-grade glioma and endometrial cancer (adj. p value <
0.05), corroborating with the increase in GI score with age. On
the other hand, lung adenocarcinoma, oesophageal and liver
cancer demonstrated a negative correlation between percent
genomic LOH and age (adj. p value<0.05). This negative
correlation might be due to the difference in the distribution of
age of samples with smoking status (lung adenocarcinoma and
oesophageal cancer), race (oesophageal cancer) and tumour grade
(liver cancer) (Supplementary Fig. 2), yet other unexplained
factors might also contribute to the higher LOH level in younger
patients in these three cancer types.

WGD is important in increasing the adaptive potential of the
tumour and has been linked with a poor prognosis!®-2l. We
investigated the relationship between age and WGD using logistic
regression. In a pan-cancer analysis, we found a small increase in
the probability that WGD occurs with age, using multiple logistic
regression accounting for gender, race, and cancer type (odds ratio
per year (OR)=1.0066, 95% confidence interval (CI)=
1.0030-1.0103, p value =3.84 x 10~%) (Fig. le). For the cancer-
specific analysis, a significant positive association was found in
ovarian and endometrial cancer (OR =1.0320 and 1.0248, 95%
CI = 1.0151-1.0496 and 1.0024-1.0483, adj. p value = 4.68 x 10~*
and 0.049, respectively) (Fig. le and Supplementary Data 4),
indicating that tumours from older patients are more likely to
have doubled their genome. Taken together, the findings indicate
that tumours from patients with an increased age tend to harbour
a more unstable genome and a higher level of LOH in several
cancer types. Notably, the strongest association between age and
an increase in genome instability, LOH, and WGD was evident in
endometrial cancer, suggesting potential disparities in the cancer
genome landscape with age in this cancer type.

Age-associated somatic copy-number alterations. We used
GISTIC2.0 to identify recurrently altered focal- and arm-level
SCNAs?2. We calculated the SCNA score, as a representation of
the level of SCNA occurring in a tumour!223, For each tumour,
the SCNA score was calculated at three different levels: focal-,
arm- and chromosome-level, and the overall score calculated
from the sum of all three levels. We used simple linear regression
to identify the association between age and overall SCNA scores.
Cancer types that displayed a significant association were further
adjusted for clinical variables. Consistent with the GI score results
described above, the strongest positive association between age
and overall SCNA scores was found in low-grade glioma, ovarian
and endometrial cancers. Other cancer types for which a positive
association between age and overall SCNA score was observed
were thyroid cancer and clear cell renal cell carcinoma (adj. p
value < 0.05). On the other hand, lung adenocarcinoma is the
only cancer type exhibiting a negative association between overall
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Table 1 Summary of TCGA cancer type and number of samples used in each analysis.
Cancer type Abbreviation GI, LOH, WGD SCNAs Mutations Pathway Gene DNA
(hypermutated and alterations expression methylation
MSI-H removed)
Adrenocortical carcinoma ACC 89 89 89 (88) 76 77 78
Bladder urothelial carcinoma BLCA 370 369 369 (364) 361 366 370
Breast invasive carcinoma BRCA 1015 1011 954 (946) 922 0omn 719
Cervical squamous cell CESC 287 287 271 (263) 264 284 287
carcinoma and endocervical
adenocarcinoma
Cholangiocarcinoma CHOL 35 35 35 (35) 35 35 35
Colon adenocarcinoma COAD an AN 374 (303) 323 410 278
Lymphoid neoplasm diffuse ~ DLBC 42 42 32 (32) 32 42 42
large B-cell lymphoma
Oesophageal carcinoma ESCA 176 176 176 (174) 165 175 176
Glioblastoma multiforme GBM 489 489 356 (354) 16 137 259
Head and neck squamous HNSC 489 489 472 (469) 459 481 489
cell carcinoma
Kidney chromophobe KICH 66 66 66 (66) 65 66 66
Kidney renal clear cell KIRC 496 496 343 (343) 331 493 296
carcinoma
Kidney renal papillary cell KIRP 228 228 222 (222) 215 228 213
carcinoma
Acute myeloid leukaemia LAML 126 121 55 (54) 101 102 121
Brain lower grade glioma LGG 488 488 484 (484) 482 488 488
Liver hepatocellular LIHC 355 355 342 (340) 334 349 355
carcinoma
Lung adenocarcinoma LUAD 460 460 456 (438) 446 456 402
Lung squamous cell LUSC 460 460 444 (437) 426 457 336
carcinoma
Mesothelioma MESO 82 82 77 (77) 77 82 82
Ovarian serous ov 556 556 397 (395) 173 288 545
cystadenocarcinoma
Pancreatic adenocarcinoma  PAAD 133 133 130 (129) 13 127 132
Pheochromocytoma and PCPG 165 157 165 (164) 154 165 165
Paraganglioma
Prostate adenocarcinoma PRAD 434 434 434 (432) 425 434 434
Rectum adenocarcinoma READ 152 152 132 (125) 109 151 95
Sarcoma SARC 229 229 213 (211 209 227 229
Skin cutaneous melanoma SKCM 434 434 432 (340) 332 433 434
Stomach adenocarcinoma STAD 388 388 385 (345) 340 365 341
Testicular germ cell tumours  TGCT 129 129 124 (124) 123 129 129
Thyroid carcinoma THCA 260 260 249 (248) 244 259 258
Thymoma THYM 76 76 76 (76) 73 73 76
Uterine corpus endometrial  UCEC 434 434 421 (282) 406 432 360
carcinoma
Uterine carcinosarcoma UcCs 52 52 52 (51) 52 52 52
Uveal melanoma UVM 72 72 72 (72) 72 72 72
Total 9678 9660 8899 (8448) 8055 8946 8414

SCNA score and age (Fig. 2a, Supplementary Fig. 3a, and Sup-
plementary Data 5), possibly due to the presence of current
smokers in younger lung adenocarcinoma patients (Supplemen-
tary Fig. 2a). When we analysed only non-smokers, there was no
significant association between age and overall SCNA score
(Supplementary Fig. 4a). However, the significant negative asso-
ciation was found when we analysed only current reformed
smokers and only current smokers (Supplementary Fig. 4b, c),
thus other unexplained factors apart from smoking status might
also contribute to this higher SCNA score in younger smokers.
The different SCNA classes (focal- and chromosome/arm-
level) may arise through different biological mechanisms!221.
Therefore, we separately analysed the association between age and
focal- and chromosome/arm-level SCNA scores. Most cancer
types that showed a significant relationship between age and
overall SCNA score also had an association between age and both

chromosome/arm-level and focal-level SCNA scores (Fig. 2b, c,
Supplementary Fig. 3b, ¢, and Supplementary Data 5). The only
exception was sarcoma, with a significant association between age
and chromosome/arm-level but not with focal-level and overall
SCNA scores.

We next identified the chromosomal arms that tend to be
gained and lost more often with age, for 25 cancer types with
sufficient samples (at least 100 tumours, Table 1). We conducted
logistic regression on the significant recurrently gained and lost
arms that were identified by GISTIC2.0 for each cancer type. The
significant associations between age and chromosomal arm gains
and losses are shown in Fig. 2d, e, respectively (adj. p value < 0.05)
(Supplementary Fig. 5, Supplementary Data 6). Gains of
chromosome 7p, 7q, 20p, and 20q significantly increased with
age in several cancer types including two types of gliomas, low-
grade glioma and glioblastoma. On the other hand, the gain of
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chromosome 10p decreased with increased age in gliomas
(Fig. 2d, f). For the arm losses, there was an increased occurrence
of loss in 11 arms with advanced age in endometrial cancer
(Fig. 2e, g), consistent with a higher GI and LOH with age in this
cancer type. These arms included 9p and 17p, containing tumour
suppressor genes CDKN2A and TP53, respectively. Low-grade
glioma and ovarian cancer, two other cancer types for which we
found the highest significant association between age and SCNA
scores, also exhibited a significant increase or decrease in losses
with age in multiple arms (Fig. 2e, f, Supplementary Fig. 5). We
also observed that losses of chromosome 10p and 10q increased

with age in gliomas. Recurrent losses of chromosome 10
(containing PTEN), together with gains of chromosome 7
(containing EGFR) are important features in IDH-wild-type
(IDH-WT) gliomas?*. This type of glioma was more common in
older patients, whereas IDH-mutant gliomas were predominantly
found in younger patients. Apart from gliomas and endometrial
cancer, arm-level gains and losses in other cancer types are also
related to known cancer-driver genes. For instance, we found an
increased incidence in the loss of chromosome 13q (harbouring
RBI) with age in thyroid cancer. Gains of chromosome 12
(containing the KRAS oncogene), increased with age in ovarian
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Fig. 1 Association between cancer patients’ age and genomic instability (GI) score, percent genomic loss-of-heterozygosity (LOH) and whole-genome
duplication events (WGD). a Association between age and pan-cancer Gl score. Dots are coloured by cancer type. Multiple linear regression R-squared
and p value are shown in the figure. Multiple-hypothesis testing correction was not performed (single test). b Association between age and cancer type-
specific Gl score. Linear regression coefficients and significant values are shown in the figure. Multiple-hypothesis testing correction was done using

Benjamini-Hochberg procedure. Cancers with a significant positive association between age and Gl score after using multiple linear regression (adj. p value
< 0.05) are highlighted in red. Cancers with a significant association in simple linear regression but not significant after using multiple linear regression are
showed in black. The grey line indicates adj. p value = 0.05. Dot size is proportional to median Gl score. ¢ Association between age and pan-cancer percent
genomic LOH. Dots are coloured by cancer type. Multiple linear regression R-squared and p value are shown in the figure. Multiple-hypothesis testing
correction was not performed (single test). d Association between age and cancer type-specific percent genomic LOH. Linear regression coefficients and
significant values are shown in the figure. Multiple-hypothesis testing correction was done using Benjamini-Hochberg procedure. Cancers with a significant
positive and negative association between age and percent genomic LOH after using multiple linear regression are highlighted in red and blue, respectively.
Cancer with a significant association in simple linear regression but not significant after using multiple linear regression is showed in black. The grey line
indicates adj. p value = 0.05. Dot size is proportional to median percent genomic LOH. e Association between age and WGD events in pan-cancer (FALSE
n=>5313, TRUE n = 4365 samples), OV (FALSE n=207, TRUE n= 349 samples), and UCEC (FALSE n= 294, TRUE n=140 samples). Multiple logistic
regression p values were indicated in the figure. Multiple-hypothesis testing correction was done using Benjamini-Hochberg procedure. The middle bar of
the boxplot is the median. The box represents interquartile range (IQR), 25th to 75th percentile. Whiskers represent a distance of 1.5 x IQR. TCGA cancer

type acronyms and their associated name are provided in Table 1.

cancer. Indeed, while we can explain some of the age-associated
chromosomal arm alterations, further closer inspection of arm-
level alterations is required to fully explain why some specific
arms are more or less frequently gained or lost as a function of
age in particular cancer types.

We further examined age-associated recurrent focal SCNAs.
Applying a similar logistic regression, we identified recurrent
focal SCNAs associated with the age of the patients for each
cancer type. In total, we found 113 significant age-associated
regions, including 67 gains across 10 cancer types and 46 losses
across 9 cancer types (adj. p value < 0.05) (Fig. 3a, Supplementary
Data 7). In accordance with the arm-level result, the highest
number of significant regions was found in endometrial cancer
(23 gains and 25 losses), followed by ovarian cancer (13 gains and
2 losses) and low-grade glioma (9 gains and 5 losses) (Fig. 3b, c,
Supplementary Fig. 6).

To further investigate the impact of these SCNAs, we studied
the correlation between the SCNAs and gene expression for
tumours that have both types of data using Pearson correlation.
In total, 81 genes in the list of previously identified cancer-driver
genes?>~27 (Supplementary Data 8) were presented in at least one
significant age-associated focal region in at least one cancer type
and showed a significant correlation between SCNA and gene
expression (adj. p value < 0.05) (Fig. 3d). For example, regions
showing an increased gain with age in endometrial cancer
included 1922, where the gene RITI is located in (OR = 1.0355,
95% CI=1.0151-1.0571, adj. p value =0.0018) (Fig. 3¢, e). The
Ras-related GTPases RIT1 has been reported to be highly
amplified and correlated with poor survival in endometrial
cancer?8. Therefore, an increased incidence of RIT1 gains with
age might relate to a poor prognosis in older patients. The
16p13.3 loss increased in frequency in older endometrial cancer
patients (OR = 1.0335, 95% CI = 1.0048-1.0640, adj. p value =
0.0328). This region contains the p53 coactivator gene CREBBP.
The gain of 8q24.21 (harbouring the oncogene MYC) decreased
with patient age in low-grade glioma (OR =0.9737, 95% CI=
0.9541-0.9927, adj. p value = 0.0128) and ovarian cancer (OR =
0.9729, 95% CI =0.9553-0.9904, adj. p value = 0.0063) (Fig. 3d,
e). In addition, in low-grade glioma, we found an increased
incidence of 9p21.3 loss with age (OR=1.0332, 95% CI=
1.0174-1.0496, adj. p value =0.00017). This region contains the
cell cycle-regulator genes CNKN2A and CDKN2B (Fig. 3b, d, e).
The full list of age-associated focal regions across cancer types
and the correlation between SCNA status and gene expression
can be found in Supplementary Data 7. Taken together, our
analysis demonstrates the association between age and SCNAs

across cancer types. We also identified age-associated arm-level
and focal regions, and these regions harboured several known
cancer-driver genes. Our results suggest a possible contribution of
different SCNA events in cancer initiation and progression of
patients with different ages.

Age-associated somatic mutations in cancer. The increase in
mutation burden with age is well-established*-®. This age-related
mutation accumulation is in part explained by a clock-like muta-
tional process, spontaneous deamination of 5-methylcytosine to
thymine®. As expected, we confirmed the positive association
between age and mutation load (somatic non-silent SNVs and
indels) in the pan-cancer cohort using multiple linear regression
adjusting for gender, race, and cancer type (adj. R-squared = 0.53,
p value = 1.41x107%) (Fig. 4a). In cancer-specific analyses, 18
cancer types exhibited a significant relationship between age and
mutation load using linear regression (adj. p value <0.05) (Sup-
plementary Fig. 7a, Supplementary Data 9). This increase in
mutation load was mainly contributed by C>T mutations, as we
found a positive association between the fraction of C>T mutations
and age (regression coefficient = 0.058, p value =8.57 x 10~7) in a
pan-cancer analysis. Conversely, the fraction of C>A mutations
was negatively associated with age (regression coefficient=
—0.065, p value = 8.84 x 10719) (Supplementary Data 10), con-
cordant with a previous report!. We also examined, for each
cancer type, the association between age and fraction contribution
of each substitution class. Consistent with the pan-cancer analysis,
C>T mutations showed a significant positive association with age
in six cancer types, whereas C>A mutations had a significant
negative association with age in three cancer types. (Supplemen-
tary Fig. 7b, Supplementary Data 10).

Only endometrial cancer showed a negative correlation between
mutation burden and age (Supplementary Fig. 7a). We observed a
high proportion of hypermutated tumours (>1000 non-silent
mutations per exome) from younger endometrial cancer patients.
Thirteen out of 38 tumours (34%) from the younger patients
(age < 50) were hypermutated tumours, while there were only 42
hypermutated tumours among the 383 tumours from older
patients (11%) (two-sided Fisher’s exact, p value =0.0003)
(Fig. 4b). Microsatellite instability (MSI) is a unique molecular
alteration caused by defects in DNA mismatch repair?®30. The
MSI-high (MSI-H) tumours occur as a subset of high mutation
burden tumours3!. We investigated whether high mutation loads
in endometrial cancer from young patients were due to the
presence of MSI-H tumours. Using multiple logistic regression, we

| (2021)12:2345 | https://doi.org/10.1038/s41467-021-22560-y | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a b c
Overall SCNA score Chromosome/arm SCNA score Focal SCNA score
LGG
12 re 12 8
° T T
E E g,
i 1s 1
o o - °
L 2 2
[Z] 1723 172}
2 2 24
g g g
S 4 S 4 =]
o j=2 032
8 [ 8 8
[ [ e [
0 0 0
-0.02 -0.01 0.00 0.01 0.02 -0.01 0.00 0.01 -0.010 —0.005 0.000 0.005 0.010
Regression coefficient Regression coefficient Regression coefficient
d e
Age and arm-level copy—number gain Age and arm-level copy—number loss
BLCA{ o
ESCA{ o —log10(adj. p-value) BRCA ° *-* —log10(adj. p—value)
GBM} 00 o 00| o 132 CESC oo o 137
KIRC oo 0 231 GBM ®o o 196
KIRP1 - O 662 O 11.37
LGGH 00 o o000 LGG1o c0@@ (<] oo
4 ° [} . - . .
LLLKS * o * Regression coefficient ~ LIHC o o Regression coefficient
OV o o o oo oo l ov coo o o
PRAD{ @ o0 0.05 0.06
J SKCM oo
SARC ° o oo 0.00 0.03
TGCTH oo0e@ THCA ° b4 0.00
THCA1{@ ° L 005 .
UCECH o UCEC{ oo c00Q o 00000
TOoO0QO0Q0 00 OQOQ0 0000 QT Q00T QU0 Q00U Q0 QU000 0Q0QU0Q00T
TOOVEONERoNATVCCOR]R TN OCROSOS I TOTROSrTRRY
LGG UCEC
= age — age
g7 P90
4 ~64
pars — —-31
CN changes CN changes
w3 9 =3 g
2 = = 2
1 _ 1
0 0
- 4
8 2oRS88eY 888808888882 288898882C858585S8 8 2TRg888Y8388008888882788895882C8585832§

Fig. 2 Association between cancer patients’ age and somatic copy-number alterations (SCNAs). VVolcano plot representing the association between age
and (a) overall, (b) focal-level and (€) chromosome/arm-level SCNA scores. Linear regression coefficients and significant values are shown. Multiple-
hypothesis testing correction was done using Benjamini-Hochberg procedure. Cancers with a significant positive and negative association between age and
SCNA score after using multiple linear regression (adj. p value < 0.05) are highlighted in red and blue, respectively. Cancers with a significant association in
simple linear regression but not significant after using multiple linear regression are showed in black. The grey line indicates adj. p value = 0.05. Dot size is
proportional to median SCNA score. d, e The left and right dot plots show the association between age and arm-level copy-number gains and copy-number
losses. Multiple logistic regression coefficients and significant values are shown. Multiple-hypothesis testing correction was done using
Benjamini-Hochberg procedure. Circle size corresponds to the significant level, red and blue represent positive and negative associations, respectively. f, g
Heatmaps represent arm-level copy-number alterations in LGG and UCEC, respectively. Samples are sorted by age. Colours represent copy-number
changes from GISTIC2.0, blue denotes loss and red corresponds to gain. TCGA cancer type acronyms and their associated name are provided in Table 1.

found that MSI-H tumours were associated with younger
endometrial cancer (OR=0.9751, 95% CI=0.9531-0.9971, p
value = 0.0264) (Fig. 4c). Another source of hypermutation in
cancer is defective DNA polymerase proofreading due to
mutations in polymerase ¢ (POLE) or polymerase § (POLDI)
genes233. We showed that mutations in POLE (OR = 0.9690, 95%
CI = 0.9422-0.9959, p value = 0.0243) and POLDI (OR = 0.9573,
95% CI=0.9223-0.9925, p value=0.0177) were both more
prevalent in younger endometrial cancer patients (Fig. 4d). Indeed,
when we excluded tumours with MSI-H and tumours containing
POLE/POLDI mutations from the analysis, we found a significant
positive association between mutation burden and age in
endometrial cancer (adj. R-squared=0.12, p value =0.00138)
(Supplementary Fig. 7c). Therefore, the negative correlation
between age and mutation loads in endometrial cancer could be

explained by the presence of hypermutated tumours in younger
patients, which are associated with MSI-H and POLE/POLDI
mutations. Previous studies on POLE and MSI-H subtypes in
hypermutated endometrial tumours revealed that these subtypes
associated with a better prognosis when compared with the copy-
number high subtype34-36. Together with our SCNA results,
younger endometrial cancer patients are likely to associate with a
POLE and MSI-H subtypes, high mutation rate and better survival,
whilst tumours from older patients are characterised by many
SCNAs and are generally associated with a worse prognosis,
indicating differences between age-related subtypes in endometrial
cancer. We extended the age and MSI-H analysis to other cancer
types known to have a high prevalence of MSI-H tumours,
including colon, rectal, and stomach cancers?. Only in stomach
cancer we found an association between older age and the presence
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of MSI-H tumours, as reported previously>” (OR = 1.0392, 95%
CI=1.0091-1.0720, p value=0.01, Supplementary Fig. 8a).
When we further examined associations between age and
mutations in POLE and POLDI in other cancers apart from
endometrial cancer, no significant associations were observed
(Supplementary Fig. 8b).

Although the increase in mutation load with age in cancer is well
studied*3!, differences in mutation rate in particular genes as a
function of age across cancer types are largely unknown. To better
understand this, we conducted logistic regression to investigate genes
that are more or less likely to be mutated with an increased age. To
prevent potential biases caused by hypermutated tumours, we
restricted the analysis to samples with <1000 non-silent mutations
per exome and those that are not MSI-H tumours (Table 1). We first
investigated associations between age and pan-cancer gene-level
mutations. Using multiple logistic regression correcting for gender,
race, and cancer type, mutations in IDHI (OR = 0.9608, 95% CI =
0.9497-0.9719, adj. p value = 1.73 x 10~10) and ATRX (OR = 0.9804,
95% CI=0.9725-0.9884, adj. p value=1.60x107) showed a
negative association with age. On the other hand, mutations in
PIK3CA were more common in older individuals (OR = 1.0096, 95%
CI=1.0035-1.0158, adj. p value=0.0139) (Fig. 4e). We next
identified genes exhibiting mutation rate differences associated with
age in a cancer-specific manner, in 24 cancer types with at least
100 samples (Table 1). Using logistic regression, we identified 31
mutations in 12 cancer types that increased or decreased as a
function of the patients’ age (adj. p value<0.05) (Fig. 4f g,
Supplementary Fig. 9 and Supplementary Data 11). The most striking
negative associations between mutations and age in low-grade glioma
and glioblastoma were found in IDHI (OR = 0.9509 and 0.8962, 95%
CI =0.9328-0.9686 and 0.8598-0.9291, adj. p value=4.12x 10~/
and 1.78 x 1072, respectively), ATRX (OR = 0.9471 and 0.9120, 95%
CI=0.9310-0.9628 and 0.8913-0.9466, adj. p value = 1.67 x 10710
and 2.33 x 1078, respectively), and TP53 (OR =0.9431 and 0.9736,
95% CI =0.9274-0.9582 and 0.9564-0.9905, adj. p value = 1.08 x
10~12 and 5.16 x 1073, respectively). Our observation was consistent
with the fact that the median age of IDH-mutants is younger than
IDH-WT gliomas. Patients carrying IDHI mutations generally had a
longer survival than IDH-WT patients®. Previous studies also
reported that IDHI mutations often co-occurred with ATRX and
TP53 mutations, and mutations in these three genes were more
prevalent in gliomas without EGFR mutations!>°. Indeed, we found
that EGFR mutations were more common in older low-grade glioma
patients (OR = 1.0865, 95% CI=1.0525-1.1258, adj. p value =
4.13x1077) (Fig. 4g). Moreover, our SCNA analysis revealed an
increase in focal gains of EGFR with age in low-grade glioma but not
in glioblastoma (Fig. 3d), suggesting differences in the age-associated
genomic landscape between the two glioma types. Together with the
SCNA results, gliomas from younger patients are associated with
IDHI, ATRX, and TP53 mutations, lower SCNAs, and longer
survival. In contrast, gliomas from older patients were more likely to
be IDH-WT with EGFR mutations, chromosome 7 gain and 10 loss,
CDKN2A deletion and worse prognosis. This clearly highlights
biological differences between age-related subtypes in gliomas.

Mutations in CDHI were more frequent in younger stomach
cancer patients (OR =0.9414, 95% CI=0.9027-0.9800, adj. p
value = 0.006), but more common in older breast cancer patients
(OR=1.0218, 95% CI=1.0049-1.0392, adj. p value =0.0183)
(Fig. 4f). This result highlights cancer-specific patterns of
genomic alterations with age. We tested whether age-associated
subtypes could explain differences in mutation with age. Using
subtype information from a previous TCGA study*), CDHI
mutations were found more often in the genomically stable (GS)
subtype of stomach cancer (two-sided Fisher’s exact, p value =
2.0 x 107°), which was presented more frequently in younger
patients (two-sided Wilcoxon rank sum test, p value = 0.0058)

(Supplementary Fig. 10a, b). As expected, CDHI mutations were
highly enriched in the invasive lobular carcinoma (ILC) subtype
of breast cancer’® (two-sided Fisher’s exact, p value=4.4x
10-38), which was more prevalent in older patients (two-sided
Wilcoxon rank sum test, p value =0.00081) (Supplementary
Fig. 10c, d). Overall, our results demonstrate that non-silent
mutations in cancer-driver genes were not uniformly distributed
across ages and we have comprehensively identified, based on
data available at present, genes that show age-associated mutation
patterns, which might partly be explained by the presence of age-
related subtypes in some cancers. These patterns might point out
age-associated disparities in carcinogenesis, molecular subtypes
and survival outcome.

Age-associated alterations in oncogenic signalling pathways. As
we have identified numerous age-associated alterations in cancer-
driver genes both at the level of somatic mutations and SCNAs, we
asked if the age-associated patterns also exist in particular onco-
genic signalling pathways. We used the data from a previous TCGA
study, which had comprehensively characterised 10 highly altered
signalling pathways in cancers*!. To make the subsequent analysis
comparable to previous analyses, we restricted the analysis to
samples that were used in our previous analyses, yielding
8055 samples across 33 cancer types (Table 1). Using logistic
regression adjusting for gender, race and cancer type, we identified
five out of 10 signalling pathways that showed a positive association
with age (adj. p value <0.05), indicating that the genes in these
pathways are altered more frequently in older patients, concordant
with the increase in overall mutations and SCNAs with age (Fig. 5a,
Supplementary Data 12). The strongest association was found in
cell cycle (OR = 1.0122, 95% CI = 1.0076-1.0168, adj. p value =
140x 1079 and Wnt signalling (OR=1.0122, 95% CI=
1.0073-1.0172, adj. p value =6.39 x 107°) pathways. We next
applied logistic regression to investigate the cancer-specific asso-
ciation between age and oncogenic signalling alterations for cancer
types that contained at least 100 samples. In total, we identified
28 significant associations across 15 cancer types (adj. p value <
0.05) (Fig. 5b, Supplementary Data 12). Alterations in Hippo and
TP53 signalling pathways significantly associated with age, both
positively and negatively, in five cancer types. Consistent with our
pan-cancer analysis, cell cycle, Notch and Wnt signalling each
showed an increase in alterations with age in three cancer types. We
found that alterations in cell cycle pathway increased with age in
low-grade glioma (OR=1.0313, 95% CI=1.0161-1.0467, adj. p
value = 0.00035). This was largely explained by the increase in
CDKNZ2A and CDKNZ2B deletions with age as well as epigenetic
silencing of CDKNZ2A in older patients (Fig. 5¢). On the other hand,
TP53 pathway alteration was more pronounced in younger patients
(OR = 0.9520, 95% CI = 0.9372-0.9670, adj. p value = 2.63 x 10~8),
due to mutations in the TP53 gene (Fig. 5¢). In endometrial cancer,
two pathways—Hippo (OR = 0.9681, 95% CI = 0.9459-0.9908, adj.
p value = 0.0126) and Wnt (OR = 0.9741, 95% CI = 0.9541-0.9946,
adj. p value = 0.0240)—showed a negative association with age, that
may be explained by the presence of hypermutated tumours in
younger patients. Collectively, we report pathway alterations in
relation to age in several cancer types, highlighting differences in
oncogenic pathways that might be important in cancer initiation
and progression in an age-related manner.

Age-associated gene expression and DNA methylation changes.
Apart from the genomic differences with age, we investigated age-
associated transcriptomic and epigenetic changes across cancers.
We separately performed multiple linear regression analyses on
gene expression data and methylation data of 24 cancer types that
contained at least 100 samples in both types of data (Table 1). We
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Fig. 5 Association between cancer patients’' age and oncogenic signalling pathway alterations. a Association between age and oncogenic pathway
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done using Benjamini-Hochberg procedure. Pathways with a significant positive association between age and alterations (adj. p value <0.05) are
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noticed that, across all genes, the regression coefficient of age on
gene expression negatively correlated with the regression coeffi-
cient of age on methylation in all cancer types (Supplementary
Fig. 11), suggesting that global changes of gene expression and
methylation with age are in the opposite direction. This supports
the established role of DNA methylation in suppressing gene
expression. Numbers of significant differentially expressed genes
with age (age-DEGs) (adj. p value < 0.05, Supplementary Data 13)
varied from nearly 5000 up- and down-regulated genes in low-
grade glioma to no significant gene in 5 cancer types. Similarly,
we also identified significant differentially methylated genes with
age (age-DMGs, Supplementary Data 14) (adj. p value <0.05),
and the numbers of age-DEGs and age-DMGs were consistent for
most cancer types (Fig. 6a). It is worth noting that cancers of
female reproductive organs, including breast, ovarian and endo-
metrial cancers show among the highest number of age-DEGs
and age-DMGs.

10

To exclude the possibility that germline predisposition
mutations in some patients may cause such a high number of
age-DEGs and age-DMGs in cancers of the female reproductive
system, we excluded samples harbouring germline mutations in
BRCAI, BRCA2 and TP53 as previously identified*? from the
breast, ovarian and endometrial cancer cohorts and repeated the
multiple linear regression analysis. We observed a high correla-
tion between regression coefficients of the analyses from all
tumours and the analyses excluding samples with germline
mutations, for all three cancer types and for both gene expression
and methylation (R = 0.93-0.99, p value < 2.2 x 10~16) (Supple-
mentary Fig. 12). The overlap between age-DEGs or age-DMGs
identified from all samples and from samples without germline
variants were large (Supplementary Fig. 12, Supplementary
Data 15). Therefore, the high number of age-DEGs and age-
DMGs are independent of the presence of germline predisposi-
tion mutations in some patients. We, therefore, used age-DEGs
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and age-DMGs identified from all samples for subsequent
analyses.

We next focused our analysis on ten cancer types that
contained at least 150 age-DEGs and 150 age-DMGs, including
low-grade glioma, breast cancer, endometrial cancer, oesophageal
cancer, papillary renal cell carcinoma, ovarian cancer, liver
cancer, acute myeloid leukaemia, melanoma, and prostate cancer.
We identified overlapping genes between age-DEGs and age-
DMGs and found that most of them, from 84% (37/44 genes) in
ovarian cancer to 100% in acute myeloid leukaemia (57 genes)
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and prostate cancer (7 genes), were genes that presented
increased methylation and decreased expression with age and
genes that had decreased methylation and increased expression
with age (Fig. 6b, ¢, Supplementary Fig. 13, Supplementary
Data 16). We further examined the correlation coefficient
between methylation and expression comparing between 4
groups of genes 1) genes overlapping between age-DMGs and
age-DEGs (age-DMGs-DEGs), 2) age-DMGs only, 3) age-DEGs
only, and 4) other genes. We found that age-DMGs-DEGs had
the most negative correlation between DNA methylation and
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Fig. 6 Age-related gene expression in cancers was controlled by age-related methylation. a Number of age-DEGs and age-DMGs across cancer types.
Red dots represent up-regulated genes, while blue dots denote down-regulated genes. The dot size corresponds to the number of genes. b Venn diagrams
of the overlap between age-DEGs and age-DMGs. LGG and BRCA are shown as examples. Venn diagrams of the other cancers are shown in
Supplementary Fig. 13. ¢ The distribution of overlap genes between age-DMGs and age-DEGs. The genes were classified into (1) down-regulated
methylation and down-regulated expression, (2) down-regulated methylation and up-regulated expression, (3) up-regulated methylation and down-
regulated expression, and (4) up-regulated methylation and up-regulated expression. d Violin plots showing the distribution of the Pearson correlation
coefficient between methylation and gene expression in LGG and BRCA. Genes were grouped into (1) common genes between age-DMGs and age-DEGs
(age-DMGs-DEGs), (2) age-DMGs only genes, (3) age-DEGs only genes, and (4) other genes. LGG others n = 5841, age_DEGs n = 2635, age_DMGs n =
3087, age_DMGs_DEGs n= 2212 genes; BRCA others n =9726, age_DEGs n= 2550, age_DMGs n =928, age_DMGs_DEGs n =438 genes. The group
comparison was performed by the Kruskal-Wallis test. The pairwise comparisons were done using two-sided Dunn's test. P values from Dunn's test
between age-DMGs-DEGs and the other groups adjusted by Bonforroni correction are shown. The plots for the other cancers are shown in Supplementary
Fig. 14. e The enriched gene ontology (GO) terms identified by Gene set enrichment analysis (GSEA) in LGG and BRCA. The dot size corresponds to a
significant level (permutation test). Multiple-hypothesis testing correction was done using Benjamini-Hochberg procedure. A GO term was considered
significantly enriched term if adj. p value <0.05 for gene expression and adj. p value < 0.1 for methylation. Colours represent enrichment scores, red
denotes positive score (enriched in older patients), while blue signifies negative score (enriched in younger patients). The plots for the other cancers are

shown in Supplementary Fig. 15. TCGA cancer type acronyms and their associated name are provided in Table 1.

expression when comparing with other groups of genes (Fig. 6d,
Supplementary Fig. 14, Supplementary Data 17), highlighting that
age-associated gene expression changes in cancer are repressed, at
least in part, by DNA methylation.

We next performed Gene Set Enrichment Analysis (GSEA) to
gain biological insights into expression and methylation changes
with age. We identified various significantly enriched Gene
Ontology (GO) terms across cancers (adj. p value < 0.05 for gene
expression and adj. p value<0.1 for methylation) (Fig. 6e,
Supplementary Fig. 15, Supplementary Data 18). Notably, several
GO terms were enriched in both expression and methylation
changes, in the opposite direction. The enriched terms in breast
cancer included several signalling, metabolism, and developmen-
tal pathways. The Wnt signalling pathway, which was altered
more frequently in older breast cancer patients (Fig. 5b), showed
a decrease in gene expression and increase in methylation with
age. In low-grade glioma, interestingly, mitochondrial terms were
enriched in the gene expression of older patients. Mitochondrial
dysfunction is known to be important in glioma
pathophysiology®3, thus the different levels of mitochondrial
aberrations might contribute to disparities in the aggressiveness
of gliomas in patients of different age. We also identified
numerous immune-related terms enriched across several cancer
types, including oesophageal, papillary renal cell, liver, and
prostate cancers (Supplementary Fig. 15, Supplementary Data 18).
Recent studies suggested alterations in immune-related gene
expression and immune cell abundance changes with age in
cancers**-46_ In the present study, we have systematically
characterised the transcriptome and methylation in relation to
age across cancer types. Our results suggest that gene expression
changes with age in cancer are controlled, at least in part, by DNA
methylation. These changes reflect differences in biological
pathways that might be important in tumour development.

Discussion

Although age is an important risk factor for cancer, how age
impacts the molecular landscape of cancer is not well understood.
In this study, we provide a comprehensive multi-omics overview
of the age-associated molecular landscape in cancer, including GI,
LOH, WGD, SCNAs, somatic mutations, pathway alterations,
gene expression and DNA methylation. We confirmed the known
increase in mutation load*, that can be in part explained by an
increase in C>T mutations, and found an increase in GI, LOH
and WGD with age in several cancer types. We identified several
age-related pan-cancer and cancer-specific alterations. The
highest age-related differences were evident in low-grade glioma
and endometrial cancer.

Cancer develops through the accumulation of genetic and
epigenetic alterations. Mutation accumulation with age is thought
to be a cause of cancer and a substantial portion of mutations
arise before cancer initiation®. The age-associated mutation
accumulation has been demonstrated in both cancer®> and
normal tissues*’~4°, providing a better understanding of early
carcinogenic events. Our results show that, in addition to muta-
tions, SCNAs, LOH and WGD increase with age in several can-
cers, in particular low-grade glioma, endometrial and ovarian
cancers. Recent evidence suggests that SCNA burden is a prog-
nostic factor associated with both recurrence and death, thus,
an increased SCNA level with age might relate to poor prognosis
in the elderly.

The negative association between age and mutation in IDHI,
ATRX and TP53 in glioma points towards the difference of
patient age at diagnosis between the IDH-mutant and IDH-WT
subtypes. IDH-mutant tumours are observed in the majority of
low-grade glioma and show favourable prognosis. IDH-W'T low-
grade gliomas, on the other hand, more resemble glioblastomas
and have poorer survival. In glioblastoma, although IDH-mutant
cases are a minority of tumours, they are also associated with
younger age’l. A recent functional study in neural stem cells
(NSCs) showed that the combination of IDHI, ATRX and TP53
alterations blocks NSC differentiation by causing hypermethyla-
tion of CTCF motifs flanking the SOX2 locus, disrupting chro-
matin looping and dysregulation of SOX2, an important
transcription factor in self-renewal and differentiation of NSCs?2.
Impaired differentiation, growth arrest evasion by mutations in
TP53, and alternative lengthening of telomeres by ATRX inacti-
vation thus cooperatively promote gliomas in younger patients.
The present study together with others3®53, therefore indicates
that glioma shows unique age-associated subtypes. However,
more research is needed to understand how age influences the
evolution of glioma subtypes.

Our results highlighted substantial age-associated differences in
the genome of endometrial cancer. Younger endometrial tumours
associate with a POLE and MSI-H subtypes, leading to an
enrichment of hypermutated tumours, while tumours from older
patients tend to harbour more SCNAs and lower mutation load.
Previous studies have classified endometrial cancer into four
subtypes: POLE, MSI-H, copy-number low and copy-number
high subtypes. The POLE subtype and MSI-H subtype are
dominated by POLE and defective mismatch repair mutational
signatures, respectively3¢. Conversely, the copy-number low and
copy-number high subtypes had a dominant ageing-related
mutational signature’*. The POLE and MSI-H subtypes have a
favourable prognosis, while the copy-number high subtype is
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associated with poor survival. Therefore, endometrial cancer from
younger patients is associated with POLE mutations, mismatch
repair defects, high mutation load and better survival outcomes.
Older endometrial cancer, however, is related to extensive SCNAs
and worse prognosis. Importantly, apart from low-grade glioma
and endometrial cancer, we demonstrate that other cancer types
also present an age-associated genomic landscape in cancer-
driver genes and oncogenic signalling pathways. Indeed, some of
these age-related differences might be explained by age-related
subtypes, such as the high prevalence of CDHI mutation in
invasive lobular breast carcinoma and GS stomach cancer, that
are presented more often in older and younger patients, respec-
tively. Further detailed investigation in each cancer type is
required to fully distinguish age-related subtype effects from age-
associated effects, or even to identify a new age-related subtype.
Our perspective is that whether age-associated genomic differ-
ences come from age-related subtypes or from age-related fea-
tures they reflect biological differences between cancers at
different ages, highlighting the impact of age on the molecular
profile of cancer. One limitation, however, of our age-related
genomic analyses is that we did not include in our model infor-
mation on quantitative differences of genomic alterations, such as
homozygous/heterozygous loss and clonal/subclonal mutations,
to not over-complicate the analyses. Furthermore, how and why
age-associated genomic differences and age-related subtypes
occur still remain to be studied.

Having identified age-related differences in the molecular
landscapes of various cancers, the obvious question is: what drives
these differences? Accumulating evidence has underscored the
importance of tissue environment changes with ageing in cancer
initiation and progression”-$4>%% We reason that tissue envir-
onment changes during ageing might provide different selective
advantages for tumours harbouring different molecular altera-
tions, in turn directing tumours to different evolutionary routes.
Therefore, cancers with different genomic alterations might thrive
better in younger or older patients. Gene expression and epige-
netic changes related to ageing have been studied and linked to
cancer3445>:56_ Here, we identified numerous age-associated gene
expression and corresponding DNA methylation changes in a
broad range of cancers. Indeed, age-DMGs-DEGs are those with
the strongest negative correlation between methylation and
expression when comparing with other groups, indicating that
differentially expressed genes with age in cancer are partly
regulated by methylation. Expression and methylation changes
with age link to several biological processes, showing that cancer
from patients with different ages present different phenotypes.
We also noticed that cancer in female reproductive organs
including breast, ovarian and endometrial cancers are among
those with the highest number of age-DEGs and age-DMGs.
These cancers tend to have a higher mass-normalised cancer
incidence, which may reflect evolutionary trade-offs involving
selective pressures related to reproduction®’. Age-associated
hormonal changes could also be responsible for this age-related
expression differences in cancer, as evidenced by studies in breast
cancer®$>9, A limitation of this analysis is that we chose only one
methylation probe per gene to create a one-to-one mapping
between genes and probes. Other probes might also have an
impact on gene expression as well as might cause noise in our
GSEA analysis from methylation data. Next, although we have
already included tumour purity in our linear model, it is not
possible to account for the different tumour-constituent cell
proportions and thus fully exclude the influence of gene expres-
sion in non-cancerous cells such as infiltrating immune cells*°.
Further studies are required to provide mechanistic under-
standing of the impact of an ageing microenvironment in shaping
tumour evolution.

During the preparation of our manuscript, a study based on a
similar concept has been released by Li et al.%, In this work, Li
et al. used TCGA and the recent pan-cancer analysis of whole
genomes data to study age-associated genomic differences in
cancer. Results from the two studies are consistent in several
respects. Firstly, both studies indicate an increase in mutations
and SCNAs as a function of age. In addition, despite using slightly
different statistical cutoffs and models, several age-associated
genomic features are identified by both studies, for example, the
higher frequency of IDHI and ATRX mutations in younger
glioma patients. Li et al. explored mutational timing and sig-
natures, which suggested possible underlying mechanisms for
age-associated genomic differences. Our study, however, has also
featured an age-related genomic profile in endometrial cancer.
We have investigated cancer-specific associations between age
and LOH, WGD and oncogenic signalling. Furthermore, we have
analysed age-related global transcriptomic and DNA methylation
changes. Both complementary studies thus serve as a foundation
for understanding age-related differences and effects on the
cancer molecular landscape and emphasise the importance of age
in cancer genomic research that is particularly valuable in clinical
practice.

Methods

Data acquisition. Publicly available copy-number alteration seg files (nocnv_hg19.
seg), normalised mRNA expression in RSEM (.rsem.genes.normalized_results
TCGA files from the legacy archive, aligned to hgl9), and clinical data (XML files)
from TCGA were downloaded using TCGAbiolinks (version 2.14.1)%1. The muta-
tion annotation format (MAF) file was downloaded from the TCGA MC3 project®?
(https://gdc.cancer.gov/about-data/publications/mc3-2017). The somatic altera-
tions in 10 canonical oncogenic pathways across TCGA samples were obtained
from a previous study by Sanchez-Vega et al.#l. The TCGA Illumina Human-
Methylation450K array data (in P values) was downloaded from Broad GDAC
Firehose (http://gdac.broadinstitute.org/). The allele-specific copy-number, tumour
ploidy, tumour purity that were estimated using ASCAT (version 2.4.2)%3 on hg19
SNP6 arrays with penalty = 70 were obtained from previous studies®4%°, available
at (https://github.com/Crick-CancerGenomics/ascat/tree/master/ReleasedData/
TCGA_SNP6_hgl9). We restricted our subsequent analyses to samples that have
these profiles available. WGD duplication was determined using fraction of genome
with LOH and ploidy information. GI scores have been computed as fraction of
genomic regions that are not in 1 + 1 (for non WGD tumours) or 2 + 2 (for WGD
tumours) statuses. For each data type and each cancer type, the summary of the
numbers of TCGA samples included in the analysis, alongside clinical variable
analysed are presented in the Supplementary Data 1.

Statistical analysis and visualisation. Simple linear regression and multiple
linear regression adjusting for clinical variables were performed using the Im
function in R to access the relationship between age and continuous variables of
interest. Simple logistic regression to investigate the association between age and
binary response (e.g. mutation as 1 and wild-type as 0) and multiple logistic
regression adjusting for covariates were carried out using the glm function in R. In
pan-cancer analyses, gender, race and cancer type were variables included in the
linear model. Clinical variables used in cancer-specific analyses included gender,
race, pathologic stage, neoplasm histologic grade, smoking status, alcohol con-
sumption and cancer-specific variables such as oestrogen receptor (ER) status in
breast cancer. To avoid the potential detrimental effect caused by missing data, we
retained only variables with missing data less than 10% of samples used in the
somatic copy-number alteration analysis (Supplementary Data 1). To account for
the difference in the proportion of cancer cells in each tumour, tumour purity
(cancer cell fraction) estimated from ASCAT was included in the linear model.
When necessary, to avoid the separation problem that might occur due to the
sparse-data bias®®, logistf function from the logistf package (version 1.23)%7 was
used to perform multivariable logistic regression with Firth’s penalisation®. Effect
sizes from logistic regression analyses were reported as odds ratio per year and 95%
confidence intervals. P values from the analyses were accounted for multiple-
hypothesis testing using Benjamini-Hochberg procedure®. Statistical significance
was considered if adj. p value <0.05, unless specifically indicated otherwise.

All statistical analyses were carried out using R (version 3.6.3)70. Plots were
generated using ggplot2 (version 3.3.2)71, ggrepel (version 0.8.2)72, ggpubr (version
0.4.0)73, ComplexHeatmap (version 2.2.0)’%, and VennDiagram (version 1.6.20)7°.

Gl score analysis. GI score was calculated as a genome fraction (percent-based)
that does not fit the estimated tumour ploidy, 2 for normal diploid, and 4 for
tumours that have undergone the WGD process. Simple linear regression was
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performed to identify the association between age and GI score. For pan-cancer
analysis, multiple linear regression was used to adjust for gender, race, and cancer
type. For cancer-specific analysis, multiple linear regression accounting for clinical
variables was conducted on the cancer types that had a significant association
between age and GI score from the simple linear regression analysis (adj. p value <
0.05). The complete set of results is presented in Supplementary Data 2.

Percentage genomic LOH quantification and analysis. To quantify the percent
genomic LOH for each tumour, we used allele-specific copy-number profiles from
ASCAT. X and Y chromosome regions were discarded from the analysis. The LOH
segments were segments that harbour only one allele. The percent genomic LOH
was defined as 100 times the total length of LOH regions/length of the genome.

Simple linear regression and multiple linear regression adjusting for gender,
race, and cancer types were conducted to investigate the relationship between age
and the percent genomic LOH in the pan-cancer analysis. For cancer-specific
analysis, simple linear regression was performed followed by multiple linear
regression accounting for clinical factors for cancers with a significant association
in simple linear regression analysis (adj. p value < 0.05). The complete set of results
is in Supplementary Data 3.

WGD analysis. WGD status for each tumour was obtained from fraction of
genome with LOH and tumour ploidy. To investigate the association between age
and WGD across the pan-cancer dataset, we performed simple logistic regression
and multiple logistic regression correcting for gender, race, and cancer type. For
cancer-specific analysis, simple logistic regression was performed to access the
association between age and WGD on tumours from each cancer type. Cancer
types with a significant association between age and WGD (adj. p value < 0.05)
were further subjected to the multiple logistic regression accounting for the clinical
variables. The complete set of results is in Supplementary Data 4.

List of known cancer-driver genes. We compiled a list of known cancer-driver
genes from (1) the list of 243 COSMIC classic genes from COSMIC database
version 912 (downloaded on 1st July 2020), (2) the list of 260 significantly mutated
genes from Lawrence et al.?” and (3) the list of 299 cancer-driver genes from the
TCGA Pan-Cancer study?°. In total, we obtained 505 cancer genes and focused on
the mutations and focal-level SCNAs on these genes in our study. The full list of
cancer-driver genes is available in Supplementary Data 8.

Recurrent SCNA analysis. Recurrent arm-level and focal-level SCNAs of each
cancer type were identified using GISTIC2.022. Segmented files (nocnv_hgl9.seg)
from TCGA, marker file and CNV file, provided by GISTIC2.0, were used as input
files. The parameters were set as follows: ‘-genegistic 1 -smallmem 1 -qvt 0.25 -ta
0.25 -td 0.25 -broad 1 -brlen 0.7 -conf 0.95 -armpeel 1 -savegene 1’. Based on these
parameters, broad events were defined as the alterations happen in more than 70%
of an arm. The log2 ratio thresholds for copy-number gains and losses were 0.25
and —0.25, respectively. The confidence level was set as 0.95 and the g value

was 0.25.

To investigate the association between age and arm-level SCNAs for each
cancer type, simple logistic regression was performed for each chromosomal arm
that was identified as recurrent SCNA in a cancer type. Only cancer types with
more than 100 samples were included in this analysis (Table 1). Arms with a
significant association (adj. p value <0.05) were further adjusted for clinical
variables using multiple logistic regression. The complete set of results is in
Supplementary Data 6. Similarly, simple and multiple logistic regression was
conducted on the focal-level SCNAs for each cancer type. Regions that are
overlapped with centromeres or telomeres were removed from the analysis. The
complete set of results is in Supplementary Data 7.

To confirm the impact of SCNAs on gene expression, we investigated the
correlation between GISTIC2.0 score and RNA-seq based gene expression (log2
(normalised RSEM + 1)) for tumours that have both types of data using Pearson
correlation. The correlation was considered significant if the p value corrected for
multiple-hypothesis testing using the Benjamini-Hochberg procedure < 0.05. The
complete set of results is in Supplementary Data 7.

SCNA score quantification and analysis. Previous studies have developed the
SCNA score representing the SCNA level of a tumour!>23. We applied the methods
described by Yuan et al.!? to calculate SCNA scores. Using SCNA profiles from
GISTIC2.0 analysis, SCNA scores for each tumour were derived at three different
levels (chromosome-, arm-, and focal-level). For each tumour, each focal-event
log2 copy-number ratio from GISTIC2.0 was classified into the following score: 2 if
the log2 ratio > 1, 1 if the log2 ratio <1 and 20.25, 0 if the log2 ratio < 0.25 and
>-0.25, —1 if the log2 ratio < —0.25 and 2—1, and —2 if the log2 ratio < —1. The |
score| from each focal event in a tumour was then summed into a focal score of a
tumour. Thereafter, the rank-based normalisation (rank/number of tumours in a
cancer type) was applied to focal scores from all tumours within the same cancer
type, resulting in normalised focal-level SCNA scores. Therefore, tumours with
high focal-level SCNAs will have focal-level SCNA scores close to 1, while tumours
with low focal-level SCNAs will have scores close to 0. For the arm- and
chromosome-level SCNA scores, a similar procedure was applied to the broad

event log2 copy-number ratio from GISTIC2.0. An event was considered as a
chromosome-level if both arms have the same log2 ratio, otherwise it was con-
sidered as an arm-level. Similar to the focal-level SCNA score, each arm- and
chromosome-event log2 copy-number ratio was classified into the 2, 1, 0, —1,
—2 scores using the threshold described above. The [score| from all arm-events and
chromosome-events for a tumour were then summed into an arm score and
chromosome score, respectively. For each cancer type, the rank-based normal-
isation was applied to arm scores and chromosome scores from all tumours to
derive normalised arm-level SCNA scores and normalised chromosome-level
SCNA scores, respectively. An overall SCNA score for a tumour was defined as the
sum of focal-level, arm-level, and chromosome-level SCNA scores. A chromosome/
arm-level SCNA score for a tumour was defined as the sum of chromosome-level
and arm-level SCNA scores.

The association between age and overall, chromosome/arm-level, and focal-
level SCNA scores for each cancer type was investigated using simple linear
regression. Cancer types with a significant association (adj. p value < 0.05) were
then subjected to multiple linear regression analysis adjusting for the clinical
variables. The complete set of results is included in Supplementary Data 5.

Analysis of age-associated somatic mutation in cancer genes. We obtained the
mutation data from the MAF file from the recent TCGA Multi-Centre Mutation
Calling in Multiple Cancers (MC3) project®2. In the MC3 effort, variants were
called using seven variant callers. We filtered the variants to keep only non-silent
SNVs and indels located in gene bodies, retaining only ‘Frame_Shift_Del’, ‘Fra-
me_Shift_Ins’, ‘In_Frame_Del’, ‘In_Frame_Ins’, ‘Missense_Mutation’, ‘Non-
sense_Mutation’, ‘Nonstop_Mutation’, ‘Splice_Site’ and Translation_Start_Site in
the “Variant_Classification’ column. We focused only on mutations in the cancer
genes from our compiled list of cancer-driver genes. To prevent the bias that might
cause by hypermutated tumours, we restricted the analysis to tumours with <1000
mutations per exome. For pan-cancer analysis, multiple logistic regression
accounting for gender, race and cancer type was performed to investigate the
association between age and mutations in 20 cancer genes that are mutated in >5%
of samples (Supplementary Data 11). For cancer-specific analysis, simple logistic
regression was used to identify cancer genes that the mutations in these genes are
associated with the patient’s age. Only genes that are mutated in >5% of samples
from each cancer type were included in the analysis. The significant associations
(adj. p value < 0.05) were further investigated using multiple logistic regression
accounting for clinical variables. The complete set of results is in Supplementary
Data 11.

Analysis of mutation burden, substitution classes, MSI-H status, and
POLE/POLD1 mutations. A mutation burden was defined as the total non-silent
mutations in an exome. A package maftools (version 3.3.2) was used to import and
extract information from maf files’®. The mutation burden for each tumour was
log-transformed before using it in the subsequent analysis. To investigate the
relationship between age and mutation burden in pan-cancer, multiple linear
regression adjusting for gender, race and cancer type was conducted. For cancer-
specific analysis, simple linear regression was performed. Cancer types with a
significant association between age and mutation burden in simple linear regres-
sion analysis (adj. p value < 0.05) were further examined using multiple linear
regression accounting for clinical factors. The complete set of results is in Sup-
plementary Data 9. Similarly, multiple linear regression adjusting for gender, race
and cancer type was used to examine the relationship between age and each of the
six substitution classes in pan-cancer. For cancer-specific analysis, simple linear
regression was performed. Cancer types with a significant association between age
and fraction contribution of a substitution class in simple linear regression analysis
(adj. p value < 0.05) were further examined using multiple linear regression
accounting for clinical factors. The complete set of results is in Supplementary
Data 10.

MSI status for COAD, READ, STAD, and UCEC were downloaded from TCGA
using TCGAbiolinks. To study the association between the presence of high
microsatellite instability (MSI-H) and age, tumours were divided into binary
groups: MSI-H = TRUE and MSI-H = FALSE. Multiple logistic regression
adjusting for clinical variables was then performed. Similarly, POLE and POLDI
mutation status were in a binary outcome (mutated and not mutated). Multiple
logistic regression was used to investigate the association between age and
POLE/POLDI mutations in cancer types that contained POLE/POLD1 mutations
in >5% of samples.

Oncogenic signalling pathway analysis. We used the list of pathway-level
alterations in ten oncogenic pathways (cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-
Kinase/Akt, RTK-RAS, TGFp signalling, p53 and B-catenin/Wnt) for TCGA
tumours comprehensively complied by Sanchez-Vega et al.*l. Member genes in the
pathways were accessed for SCNAs, mutations, epigenetic silencing through pro-
moter DNA hypermethylation and gene fusions. We retained only the pathway
alteration data of samples that were presented in our SCNA analysis. For the pan-
cancer analysis, we employed multiple logistic regression adjusting for the patient’s
gender, race and cancer type to demonstrate the relationship between pathway-
level alteration and age. To investigate the association between age and cancer-
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specific pathway alterations, we performed simple logistic regression. Cancer types
with a significant association (adj. p value < 0.05) were further examined by mul-
tiple logistic regression accounting for clinical variables. The complete set of results
is in Supplementary Data 12.

Gene expression and DNA methylation analysis. To render the results from
gene expression and DNA methylation comparable, we limited the analysis to
genes that are presented in both types of data. The lowly expressed genes were
filtered out from the analysis by keeping only genes with RSEM > 0 in more than 50
percent of samples. Only protein coding genes identified using biomaRt’” (version
2.46.0, data based on Ensembl version 100, April 2020) were included in the
analyses. Normalised mRNA expression in RSEM for each TCGA cancer type was
log2-transformed before subjected to the multiple linear regression analysis
adjusting for clinical factors. RNA-seq data for colon cancer and endometrial
cancer consisted of two platforms, Illumina HiSeq and Illumina GA. Thus, a
platform was included as another covariate in the linear regression model for these
two cancer types. Genes with adj. p value <0.05 were considered significantly
differentially expressed genes with age (age-DEGs) (Supplementary Data 13). DNA
methylation data was presented as [ values, which are the ratio of the intensities of
methylated and unmethylated alleles. Because multiple methylation probes can be
mapped to the same gene, we used the one-to-one mapping genes and probes by
selecting the probes that are most negatively correlated with the corresponding
gene expression from the meth.by_min_expr_corr.data.txt files downloaded from
Broad GDAC Firehose. Similar multiple linear regression to the gene expression
analysis was performed on the methylation data. Genes with adj. p value <0.05
were considered significant differentially methylated genes with age (age-DMGs).
The complete set of results is in Supplementary Data 14. To exclude the possibility
that germline predisposition mutations in some patients may cause this high
number of age-DEGs and age-DMGs in female reproductive cancers, we excluded
samples harbouring germline mutations in BRCAI, BRCA2 and TP53 as previously
identified*? from breast, ovarian and endometrial cancer cohorts. In total, we
removed ~13% of patients from breast and endometrial cancer and ~20% of
patients from ovarian cancer. After excluding these samples, we performed a
similar multiple linear regression analysis. The complete set of results is in Sup-
plementary Data 15.

The correlation between gene expression and DNA methylation was
calculated using Pearson correlation. We used the Kruskal-Wallis test to
investigate the differences between correlation coefficients among groups (age-
DMGs-DEGs, age-DMGs, age-DEGs, other genes). The pairwise comparisons were
carried out by two-sided Dunn’s test. The complete set of results is in
Supplementary Data 17.

GSEA was performed to investigate the GO terms that are enriched in tumours
from younger or older patients. The analysis was done using the package
ClusterProfiler (version 3.14.3)78, Briefly, genes or methylation probes were ranked
based on their regression coefficient with age from the most positive regression
coefficient with age (most up-regulated in older patients) to the gene with the
most negative regression coefficient with age (most up-regulated in younger
patients). A ranked gene list consisting of all genes was used in the GSEA to
determine whether genes in a set of interest from GO are randomly distributed
throughout the ranked gene list or are found more often in the top or the bottom of
the list’%. The complete list of enriched GO terms is presented in Supplementary
Data 18.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

TCGA data used in this study are publicly available and can be obtained from NCI’s
Genomic Data Commons portal [https://portal.gdc.cancer.gov/], TCGAbiolinks (version
2.14.1)! and Broad GDAC Firehose [http://gdac.broadinstitute.org/]. The mutation
annotation format (MAF) file was downloaded from the TCGA MC3 project [https://gdc.
cancer.gov/about-data/publications/mc3-2017]. List of known cancer-driver genes were
compiled from COSMIC database?® version 91 [https://cancer.sanger.ac.uk/cosmic],
Lawrence et al.?’. [https://doi.org/10.1038/nature12912] and TCGA Pan-Cancer study?®
[https://doi.org/10.1016/j.cell.2018.02.060]. Oncogenic signalling pathway data was
obtained from Sanchez-Vega et al.%l. [https://doi.org/10.1016/j.cell.2018.03.035]. Allele-
specific copy-number, tumour ploidy, tumour purity, GI scores and WGD status of
TCGA tumours generated by ASCAT (version 2.4.2) were obtained from Martincorena
et al.% available at [https://github.com/Crick-CancerGenomics/ascat/tree/master/
ReleasedData/TCGA_SNP6_hg19]. The remaining data are available within the Article,
Supplementary Information or available from the authors upon request. Source data are
provided with this paper.

Code availability

The custom scripts for data analysis and generate figures are available at https://github.
com/maglab/Age-associated_cancer_genome®” and released at https://doi.org/10.5281/
zenodo.4564690.
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