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A B S T R A C T   

Non-pharmaceutical interventions have been implemented worldwide to curb the spread of COVID-19. However, 
the effectiveness of such governmental measures in reducing the mortality burden remains a key question of 
scientific interest and public debate. In this study, we leverage digital mobility data to assess the effects of 
reduced human mobility on excess mortality, focusing on regional data in England and Wales between February 
and August 2020. We estimate a robust association between mobility reductions and lower excess mortality, after 
adjusting for time trends and regional differences in a mixed-effects regression framework and considering a five- 
week lag between the two measures. We predict that, in the absence of mobility reductions, the number of excess 
deaths could have more than doubled in England and Wales during this period, especially in the London area. 
The study is one of the first attempts to quantify the effects of mobility reductions on excess mortality during the 
COVID-19 pandemic.   

1. Introduction 

After the first cases of COVID-19 were identified in Wuhan City, 
China, in December 2019, the outbreak rapidly spread globally reaching 
pandemic proportions. As of January 31, 2021, over 100 million cases of 
infections and 2.2 million deaths have been reported worldwide (World 
Health Organization, 2021), although these values are likely under
estimated due to cross-country differences in disease monitoring and 
reporting, asymptomatic cases, medically unattended cases, and deaths 
indirectly related to COVID-19 (Havers et al., 2020; Pullano et al., 
2021). 

Local and national governments across the globe implemented 
various non-pharmaceutical interventions (NPIs) aimed at reducing 
human mobility and close contacts in the population and, consequently, 
the probability of transmission of the SARS-CoV-2 virus. These measures 
include travel bans, cancellations of public gatherings, social distancing, 
school closures, recommendations to work from home and stay at home, 
and nationwide lockdowns (Brauner et al., 2020; Hale et al., 2020). In 
Europe, such interventions were introduced in the first half of 2020, 
with considerable cross-country differences in terms of strictness, timing 

and duration. Most of these measures were then lifted during the sum
mer as the number of new infections and deaths declined, but also to 
alleviate their long-term socioeconomic costs on society and citizens. A 
second wave of infections and deaths prompted the re-introduction of 
NPIs after the summer, again with different strategies across Europe 
(Kupferschmidt, 2020). 

A growing body of literature has documented the link between the 
introduction of NPIs and the reduction of the SARS-CoV-2 virus’ trans
mission (Brauner et al., 2020; Davies et al., 2020; Dehning et al., 2020; 
Flaxman et al., 2020; Hsiang et al., 2020) and the human cost - in terms 
of infections and deaths - of letting the virus spread unchecked (Buss 
et al., 2021). However, it still remains unclear how to measure the 
effectiveness of such interventions in alleviating the mortality burden of 
COVID-19. Estimating the impact of NPIs on mortality reductions is 
critical for policy makers to make informed decisions, in the context of 
both current and future pandemics. 

In this article, we study the relationship between human mobility 
and excess mortality at the sub-national level in England and Wales 
during the first wave of the COVID-19 pandemic, specifically from 
February 15 to August 14, 2020. Note that at the time of writing 
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(February 2021), the second wave of infections and deaths is still 
unfolding in the UK and the inclusion of these data could lead to 
misleading findings. Approximately 51,500 COVID-19 deaths were 
registered during this period of time (Office for National Statistics, 
2020b), which includes almost one month before any NPIs were put in 
place. The British government applied various mobility restrictions 
strategies between March 12 and 24, 2020, including encouragement of 
social distancing, closure of schools, ban of public events, and total 
lockdown (Cameron-Blake et al., 2020; Flaxman et al., 2020). The goal 
of this paper is to estimate the impact of these governmental decisions, 
and consequent reduction in human movements, on excess all-cause 
mortality. 

Human mobility plays a key role in the spread of infectious diseases 
(Riley, 2007; Tatem et al., 2006; Wilson, 1995). In our contemporary 
societies, where millions of people travel and commute every day within 
and across cities and regions, infectious diseases have the opportunity to 
spread more rapidly, and on a larger scale, than ever before. Population 
movement can in fact increase the disease prevalence by introducing 
new pathogens into susceptible populations, or by increasing social 
contacts between susceptible and infected individuals (Wesolowski 
et al., 2016). Timely, accurate, and comparative data on human mobility 
are therefore critical for informing public health interventions, but 
generally not available or easily accessible, and the ongoing COVID-19 
pandemic has once again amplified this long-standing issue. Recent 
work has highlighted the potential benefits of harnessing geo-located 
smartphone data to inform policy makers (Oliver et al., 2020) and to 
assess the impact of mobility restrictions on social distancing in near 
real-time (Badr et al., 2020; Davies et al., 2020; Pepe et al., 2020; 
Schlosser et al., 2020). 

In this study, we exploit a publicly available human mobility dataset, 
the Google COVID-19 Mobility Reports (GCMR) (Google LLC, 2021). 
The GCMR reports changes in mobility of Google Maps users across 
different categories (e.g. supermarkets and pharmacies, workplaces, 
residential areas) with respect to the start of 2020. This dataset has been 
leveraged to monitor national mobility in the United Kingdom following 
the implementation of NPIs (Drake et al., 2020), and it has been 
employed (alongside social contacts data) to estimate the effect of tiered 
restrictions in England and the lockdown in Wales implemented in 
October 2020 (Davies et al., 2020). 

We model the association between the reduction in human mobility 
and the excess all-cause mortality during the first wave of the COVID-19 
pandemic. Given the high uncertainty surrounding the number of in
fections and deaths, we choose to estimate excess mortality, which in
dicates the number of deaths above what would be expected in a non- 
crisis period. This measure overcomes potential issues of incorrect 
death classification and registration, and is largely considered the best 
indicator of the pandemic’s impact on mortality (Kontis et al., 2020; 
National Academies of Sciences, Engineering, and Medicine, 2020). 
Given that changes in mobility are not immediately reflected in changes 
in mortality, we analyse different time lags between the two measures to 
calibrate the length of the expected delay in the effect of mobility re
strictions on mortality. We expect reduction in mobility to first decrease 
the number of close social contacts in the population, leading to fewer 
new infections and, eventually, fewer deaths. 

2. Material and methods 

2.1. Data 

We employ two data sources in our study: the UK Office for National 
Statistics (ONS) for mortality and population data, and the Google 
COVID-19 Community Mobility Reports (GCMR) for mobility data. 

The ONS reports the weekly number of deaths registered in England 
and Wales, broken down by age group, sex and region of usual residence 
(Office for National Statistics, 2021). In the ONS classification, weekly 
data do not refer to calendar weeks, but to rolling 7-day periods, from 

Saturday to Friday, and we keep this notation throughout the article. For 
our purposes, we retrieve the weekly number of deaths by region for the 
years 2015–2020. We consider a total of ten regions based on the 
NUTS-1 (Nomenclature of Territorial Units for Statistics) subdivision, 
namely Wales plus nine regions in England (North East, North West, 
Yorkshire and The Humber, East Midlands, West Midlands, East, Lon
don, South East and South West). We focus our analysis on the first wave 
of the COVID-19 pandemic, hence we use data until week 2020–33 (i.e. 
until August 14, 2020). We obtain data on total population in each re
gion for the years 2015–2019 from the ONS (Office for National Sta
tistics, 2020a). 

The GCMR reports daily mobility data in six categories of location: 
residential, workplaces, supermarket and pharmacy (grocery), transit, 
retail, and parks (Google LLC, 2021). Data are provided as percentage 
variations in number of visits or time spent in each category, relative to a 
pre-COVID-19 baseline period, defined from January 3 to February 6, 
2020. The baseline period is defined by Google and cannot be modified. 
The data account for weekly seasonality of movement by estimating a set 
of seven baseline weekdays using the median value for each particular 
weekday during the 5-week baseline period. Daily relative change is 
estimated as the percentage change with respect to the corresponding 
baseline weekday for any given report date. To protect users’ privacy, 
absolute mobility values are not available. 

We obtain mobility data for each category of the GCMR for 108 sub- 
national regions (the GCMR’s sub_region_1 variable), covering a 
geographic area inhabited by 99% of the population of England and 
Wales, from February 15 (the first available date in the dataset) to 
August 14, 2020. We aggregate the GCMR data by week (from Saturday 
to Friday, for consistency with mortality data) and region (taking the 
weighted average across all counties belonging to a given region, with 
weights equal to their population sizes) to make it comparable to the 
mortality data. 

Relying on a fixed baseline period ignores yearly seasonality of 
movement, which may be affected by weather patterns, national holi
days, vacation periods, etc. Important bank holidays, extreme weather 
events, or other major events during the 5-week long baseline period can 
affect the estimates of future relative changes in visits to grocery stores. 
We have no access to the raw mobility data used to produce the GCMR, 
but we find no evidence of any major events in England or Wales that 
could have systematically biased the Google mobility data during the 
baseline period. Furthermore, the baseline week is based on the median 
value, which would be largely unaffected by short-lived temporary 
fluctuations in absolute mobility values. Finally, the baseline period is 
not affected by restrictions on movement, which where first introduced 
on March 12, 2020. 

2.2. Computing excess mortality 

Weekly mortality data generally show strong seasonal behavior. As 
such, we opt for a modulation model that accounts for seasonal patterns 
using week-specific coefficients for the death counts. 

For a given region, let D = (dw,t) denote a matrix containing the 
registered number of deaths in week w = 1,…,53 and year t = 2015,…,

2020, i.e., weekly registered deaths from week 2015–01 to week 
2020–33. In alternative to the conventional Poisson distribution, we 
assume that the dw,t are realisations of a random variable Dw,t that fol
lows a Negative Binomial distribution. We thus allow for the over
dispersion typically displayed in mortality data, i.e., the variance 
associated with the process is expected to be larger than what would be 
implied by the expected value in a Poisson model. One of the main 
sources of overdispersion in the data is likely the unobserved hetero
geneity stemming from the varying strength of the seasonal pattern, 
which is related to the yearly variation of influenza epidemics (Rau, 
2007). 

Let μw,t = E(Dw,t) denote the expected value of the Negative Binomial 
process. We model the expected number of deaths using a Generalized 
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Additive Model (GAM) with logarithmic link, exposures as offset, and 
time-specific covariates: 

ln
(
μw,t

)
= ln

(
ew,t

)
+ f

(
xw,t

)
+ α0 + αw, (1)  

where ew,t denotes the exposure to the risk of death, the function f( ⋅) is a 
smooth function over the time-points xw,t = 1,…,m, where m denotes 
the total number of observations, α0 is an intercept and αw are week- 
specific coefficients. To ensure identifiability of the αw coefficients, the 
first week is taken as the reference group (i.e. α1 = 1). Exposures over 
weeks and years are obtained by linear interpolation of mid-year pop
ulations in years t = 2015, …, 2019. For the year 2020, the mid-year 
population is still not available at the time of writing, therefore we 
keep constant the 2019 mid-year population given the impact of the 
COVID-19 pandemic on fertility, mortality and migration. 

Whereas the coefficients αw capture the typical pattern of mortality 
in registered week w (including seasonal behavior of weekly mortality 
data, periodic bank holidays effects, etc.), the smooth time component 
aims to describe long-term mortality trends. Given that mortality data 
are recorded by registration rather than occurrence, such a specification 
provides a better description of the data than including trigonometric 
functions for the seasonal pattern of deaths. Estimation of the model 
described in Equation (1) is performed in R (R Development Core Team, 
2020) using the mgcv package (Wood, 2019, pp. 8–31). 

For each region independently, we model data for the pre-pandemic 
period (from week 2015–01 to week 2020–06, corresponding to a total 
of m = 267 observations) and predict the expected number of deaths d̂w 
for the COVID-19 period (from week 2020–07 to week 2020–33). We use 
week 2020–06 as last estimated week before prediction for consistency 
with the Google mobility data, for which the baseline period runs from 
week 2020–02 to week 2020–06. Consequently, the effect of the 
pandemic is not captured by the time trend of the model, and d̂w,2020 for 
the predicted weeks could be interpreted as the number of deaths that 
would have occurred in 2020 in the absence of the COVID-19 pandemic. 

This approach allows us to readily evaluate the excess number of 
deaths δ̂w for the weeks 07–33 in 2020 as the difference between the 
observed and the expected ones, i.e. δ̂w = dw − d̂w. In order to account 
for regional differences in population, we then compute the excess 
mortality rate, or per capita excess mortality, yw = δ̂w/ ew, dividing 
excess deaths by the (extrapolated) region-specific exposures in week w 
of 2020. 

In addition to fitting the GAM, we perform a sensitivity analysis on 
the computation of the excess mortality rate. In particular, we derive 
another estimate of yw by computing, for each week, the expected 
number of deaths as the average of the observed deaths between 2015 
and 2019 (see Appendix B). 

2.3. Combining google categories into a single index 

For each region analysed in the paper, we aim to extract the most 
relevant signals from the different categories of the GCMR by merging 
them into a combined “Google mobility index”. Ideally, all three di
mensions of the GCMR (Google categories, regions and time) should be 
considered simultaneously. This rules out region-independent principal 
component analysis (PCA) of the mobility data over time. A solution is 
instead given by a multilinear principal component analysis (MPCA) (Lu 
et al., 2008). In both approaches, the goal is to retain as much as possible 
the variation present in the original data set. However, whereas stan
dard PCA reduces the dimensionality of a two-dimensional data set, 
MPCA allows to extract features of a multidimensional object such as the 
GCMR. 

To do so, we construct a tensor object (a multidimensional array) 
containing the three types of data, and we extract the first component of 
the MPCA for the dimensions time and region. We thus obtain the 
combined Google index for each region over time retaining most of the 

information regarding the mobility during the period analysed. In R, this 
can be achieved by using the rTensor package (Li et al., 2018). 

2.4. Modelling the relationship between excess mortality and mobility 

Given the estimated excess mortality rate for each week and region, 
we intend to assess whether an association with the change in mobility 
exists, and its magnitude. The spread of COVID-19 mainly occurs 
through contacts between infectious and susceptible individuals (Zhang 
et al., 2020). Hence, a reduction in mobility should lead to a reduction in 
social contacts, then in the infection spread and, ultimately, in the 
COVID-related mortality. However, this process requires time, as we 
would expect the reduction in physical mobility observed today to 
possibly have an impact on the infection spread and the related mor
tality in the coming weeks. This calls for the introduction of a time lag of 
x weeks in the mobility data, which corresponds to the amount of time 
necessary for the change in mobility to have an impact on mortality. In 
other words, we analyse the relationship between excess mortality and 
changes in human mobility that occurred x weeks before. We do not 
choose the value of x a priori, but rather we determine its most plausible 
value from the regression analysis of our data (see Section 3.2). 

Moreover, we work with rates that vary over weeks and for different 
regions. While the mortality trend will be assumed to remain constant in 
space, we need to account for the regional heterogeneity in excess 
mortality and response to mobility changes, given that data within each 
region are likely correlated. This setting calls for a mixed-effects 
modelling approach, since we aim to know whether an association be
tween excess mortality and human mobility over time still exists, after 
controlling for the variation across regions. 

Let yr,w denote the excess mortality rate for a given region r in week 
w. We model yr,w as follows: 

yr,w = β0 + ur +(γ0 + γr)gr,w− x +
∑n

s=1
βs Bs(w) + εr,w, (2)  

where β0 is the common intercept and ur are the region-specific random 
intercepts, added to capture average regional differences; γ0 is the 
common mobility coefficient, which can be interpreted as the average 
change in per capita excess mortality for a unit change in the mobility 
indicator (with respect to the baseline period), and γr are the region- 
specific random slopes that modify the effect of mobility change for 
region r during the (lagged) week w − x, i.e., gr,w− x. Random intercepts ur 

and random slopes γr are normally distributed with mean zero and 
variance σ2

u and σ2
γ , respectively, with their dependence captured by the 

covariance term σu,γ, which allows the computation of a model-based 
correlation coefficient. Evidence for σ2

u and σ2
γ being greater than zero 

implies the existence of regional differences in the baseline levels of 
mortality and heterogeneity in the responses to mobility changes, 
respectively. The baseline mortality time trend is modelled in a flexible 
way using a non-parametric approach based on B-spline bases Bs, with βs 
denoting the associated coefficients. Finally, εr,w is the vector of the 
residuals, distributed as εr,w ∼ N(0, σ2) and assumed to be independent 
of the random effects ur and γr. 

To account for uncertainty in the estimates, related to both the 
computation of excess mortality and the mixed-effects regression in our 
estimates, we employ a bootstrap approach to derive 95% pointwise 
confidence intervals for the model results. Specifically, we generate 
1000 simulated death counts from the deviance residuals of the GAM; 
for each simulation, we compute the regression in Equation (2) and 
derive fitted excess mortality rates. We fit the model in R using the lme4 
package (Bates et al., 2015), and we compute B-spline bases using the 
splines package (R Development Core Team, 2020). 

Finally, all data and source codes necessary for the reproducibility of 
our results are available at the following repository: https://osf. 
io/4pfb7/. 
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3. Results 

3.1. Time series of google mobility and excess mortality rate 

We start by computing the combined “Google mobility index” at the 
regional level in England and Wales during weeks 8–33 of 2020. Fig. 1 
shows the six categories of the GCMR – supermarket and pharmacy 
(grocery), parks, residential, retail, transit, and workplaces – and the 
Google mobility index for each region. Strong mobility reductions from 
week 11 onwards – corresponding to the introduction of the NPIs – are 
clearly visible for the grocery, retail, transit and workplaces categories, 
as well as from the increase in time spent at residential locations. 

In order to derive the combined indicator, we employ multilinear 
principal component analysis (MPCA) on five categories of the GCMR. 
We do not include the parks category in the MPCA for several reasons: (i) 
its pattern is different and more volatile than those of other categories, 
(ii) the category is subject to a higher proportion of missing data (see 
Fig. A.9 in Appendix A), and (iii) its inclusion decreases the amount of 
explained Frobenius norm (a measure comparable to the overall vari
ance of the mobility data). The right panel of Fig. 1 shows that the 
Google index captures most of the peculiarities found in the GCMR. For 
example, mobility in the region of London decreased considerably more 
than in the other nine regions, and this is well captured by the Google 
index. The explained Frobenius norm of the MPCA amounts to 86.6%. 

Next, we compute the excess mortality rate at the regional level 
during the same period of time. Fig. 2 shows the time series of the Google 
mobility index and the excess mortality rate in the region of London, 
plus: (i) a forward lag of five weeks for the mobility data, (ii) the time 
period that we will analyse in our regression framework (weeks 13–33, 
highlighted in the grey shaded area), and (iii) the start of NPIs on March 
12 (week 11) and the enforcement of the lockdown on March 24 (week 
13). 

The figure shows the drastic and sustained mobility reduction since 
week 11, resulting from the various NPIs implemented between March 

12 and 24, 2020. The graph also exhibits the dynamics of the excess 
mortality rate, which fluctuated at levels close to zero until the middle of 
March, when it sharply increased reaching a maximum value of about 25 
in the middle of April (week 16) and then started to decrease, returning 
to null values at the beginning of June. Finally, the five-week forward 
shift of the mobility data highlights the correspondence between the 
decrease in (forward) mobility and the reduction in excess mortality 
starting from week 17 onwards. 

Fig. 1. Six categories of the GCMR and their combination into the Google mobility index in England and Wales by region during weeks 8–33 of 2020. Source: 
Authors’ own elaboration based on data from Google LLC (2021). 

Fig. 2. Time series of excess mortality rate per 100,000 individuals (red line) 
and change in Google mobility index at week t (dashed blue line) and with a 
five-week forward shift (solid blue line) in the region of London during weeks 
8–33 of 2020. Solid lines in the grey shaded area correspond to values analysed 
as described in the “Statistical analysis” section. Vertical lines indicate the start 
of NPIs on March 12 (week 11) and the lockdown ordered on March 24 (week 
13), respectively. The Google index was multiplied by 10 for illustration pur
poses. Source: Authors’ own elaboration based on data from Office for National 
Statistics (2021, 2020a) and Google LLC (2021). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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We provide a series of additional graphs related to these two vari
ables in Appendix A. Specifically, the estimation of the excess mortality 
rate using the GAM is exemplified for two regions in Fig. A.1. Moreover, 
Fig. A.2 and A.3 report the same information shown in Fig. 2 for the 
other nine regions under study. 

3.2. Statistical analysis 

We investigate the relationship between excess mortality and 
mobility using a mixed-effects regression approach. To account for the 
delay between the two phenomena, we analyse excess mortality with 
respect to mobility changes that occurred five weeks in the past. We 
found this lag to be the shortest one displaying a positive relationship 
between mortality and mobility (see Table A.1 as well as Fig. A.4 and 
A.5 in Appendix A). We perform sensitivity analysis on the lag selection, 
and find that our results do not change for lags of 6 or 7 weeks (see 
Table A.1 in Appendix A). 

We find a strong and significant association between mobility 
reduction and excess mortality after five weeks, after controlling in the 
regression model for the pandemic time trend and for regional differ
ences. Table 1 reports the results of the mixed-effects regression models, 
considering the combined Google index and the six categories of the 
GCMR independently. The models include a smooth function of time 
(using 5 B-splines), as well as random intercepts and random slopes for 
each region. We standardise the mobility data to aid the interpretation 
and comparison of the estimated coefficients from the various models. 

We estimate that a reduction of one standard deviation in the com
bined Google mobility index is associated with a reduction of 3.77 in the 
excess mortality rate per 100,000 individuals five weeks later. This is a 
strong effect, given that the Google index changed by almost 4 standard 
deviations across all regions following the introduction of the NPIs (see 
Fig. 1). Moreover, five out of six categories of mobility indicators re
ported by Google display a similar robust relationship with excess 
mortality, while the parks category is the only one which does not 
display a significant association. This could be related to the different 
dynamic and greater volatility of the parks mobility time series with 
respect to the other ones. 

These results are robust to a series of sensitivity analysis, which are 
reported in Appendix B. The estimated coefficients are robust to a 
change in the computation of the excess mortality rate. The historical- 
based approach to estimate excess mortality is shown and compared 
to the GAM in Figs. B.1 and B.2, while Table B.1 reports the models’ 
results using this different computation of the excess mortality rate. 
Similarly, the number of B-splines employed to describe the time trend 

of the epidemic does not change the estimated mobility coefficients by a 
great extent. As a matter of fact, our choice of 5 B-splines produces the 
most conservative estimate of the effect of mobility on excess mortality 
(see Table B.2). Finally, the exclusion of the region of London from the 
analysis does not influence the magnitude and significance of the esti
mated coefficients (see Table B.3). 

It is important to analyse cross-sectional differences across regions in 
terms of both excess mortality and response to mobility reductions. The 
regression model can account for such variations by means of region- 
specific random intercepts (corresponding to different levels of excess 
mortality) and random slopes (corresponding to different responses to 
mobility changes). Focusing on the model with the combined Google 
index (here and in the remainder of the section), Fig. 3 shows that the 
intercept and the slope have a positive correlation of 0.77 across the 
regions, so that those with larger intercepts (i.e. higher excess mortality 
levels) also have larger slopes (i.e. larger effects of mobility reductions 
on mortality). The model therefore provides evidence on the degree of 
regional success of the NPIs, which appear to have had a stronger impact 
on reducing excess mortality in the regions of London, North West and 
West Midlands. Differences in the NPIs outcomes may be related to the 
characteristics of the population (such as population age structure, 
density, and degree of susceptible individuals) as well as to the extent of 
behavioural change that occurred within the population. 

Finally, the estimated model allows us to estimate the number of 
deaths averted by mobility reductions. This is achieved by simulating a 
counterfactual worst-case scenario in which mobility is assumed not to 
have dropped with the introduction of the NPIs but rather to have 
remained constant at the levels observed before their implementation. 
The estimated excess mortality rate in the counterfactual scenario is 
derived from evaluating the mixed-effects regression model under the 
scenario of no mobility reductions. A graphical illustration of this 
assumption for the region of London is shown in Fig. A.6 in Appendix A. 
Table 2 reports the results of this analysis, as well as the estimates of 
observed excess mortality during the period analysed. The fit of the 
model and the counterfactual analysis for the region of London are 
shown in Fig. 4, and the graphs for the remaining nine regions are shown 
in Fig. A.7of Appendix A. The baseline scenario estimated from the 
regression model closely follows the observed pattern of the excess 
mortality rate, which displays a positive reversed U-shape in the weeks 
13–20 followed by weeks with values close to zero; the counterfactual 
analysis displays a similar shape of the excess mortality rate over time, 
with a considerably slower decrease of the rate resulting from the 
assumed mobility scenario. The figure shows that the gap between the 
baseline and counterfactual scenarios widens from week 18: mobility 

Table 1 
Estimated coefficients and 95% confidence intervals from the linear mixed-effects regression between excess mortality rate (per 100,000 individuals) and changes in 
mobility occurred five weeks before, measured separately for each model with the combined Google index and the six categories of the GCMR: grocery, workplaces, 
residential, transit, retail and parks. For the parks category, we considered only random intercepts since the model with both random intercepts and slopes did not 
converge. Estimation is performed using restricted maximum likelihood. Source: Authors’ own elaboration based on data from Office for National Statistics (2021, 
2020a) and Google LLC (2021).   

Dependent variable: excess mortality rate (per 100,000)  

Linear mixed-effects regression  

Google index grocery workplaces residential transit retail parks 

Fixed effects 
Mobility changes 5 weeks before 3.77 2.57 3.12 − 3.54 2.94 3.65 0.70 
(95% CI) (2.71, 4.83) (1.78, 3.36) (2.03, 4.22) (-4.63, − 2.45) (1.86, 4.01) (2.47, 4.84) (-0.15, 1.54) 
Random effects (variance) 
Region (intercept) 2.67 1.82 2.31 3.11 3.46 2.47 1.45 
Mobility (slope) 0.67 0.84 0.87 0.63 0.74 1.21 – 
Residual 3.38 3.29 3.59 3.59 3.82 3.51 5.66 
Observations 210 210 210 210 210 210 210 
Groups 10 10 10 10 10 10 10 
Log-Likelihood − 438.36 − 435.49 − 444.62 − 443.98 − 450.55 − 442.56 − 481.39 
AIC 898.72 892.97 911.24 909.96 923.1 907.11 980.77 
BIC 935.54 929.79 948.06 946.78 959.92 943.93 1010.9  
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started to strongly decrease in week 13 following the enforcement of the 
lockdown (see Fig. 2), resulting in a greater difference between observed 
and assumed (forward) mobility patterns - and thus excess mortality 
rate. We estimate that about 62,200 excess deaths occurred in England 
and Wales during the weeks 13–33 of 2020, and that an additional 
94,200 excess deaths (95% confidence intervals 86,000–102,100) would 
have occurred if mobility had not reduced. These absolute estimates 
display expected significant regional variations, ranging from a mini
mum of 3600 excess deaths averted in North East to a maximum of 
22,300 excess deaths averted in London. 

4. Discussion 

Local and national governments around the world have implemented 
a variety of policies aimed at reducing social contacts to curb the 
transmission of and deaths from COVID-19. We investigated the rela
tionship between excess mortality and changes in human mobility to 
assess the effectiveness of non-pharmaceutical interventions. Specif
ically, we leveraged digital data derived from the Google COVID-19 
Community Mobility Reports (Google LLC, 2021) to explore the asso
ciation between mobility and excess mortality at the regional level in 
England and Wales. 

We found a strong positive relationship between the mobility of 

Google Maps users and population-level excess mortality, which is 
considered to be the best indicator of the impact of the pandemic on 
mortality (National Academies of Sciences, Engineering, and Medicine, 
2020). Our analysis determined that a time lag of at least five weeks is 
needed to reveal a positive association between mobility and mortality, 
while smaller lags display a negative relationship. A five-week time 
period is consistent with preliminary estimates of the disease duration 
from infection to death, with the incubation period (i.e., from infection 
to symptom onset) that can last up to two weeks (11.5 days with a 95% 
CI of 8.2–15.6 days (Lauer et al., 2020)), and the course of disease (i.e., 
from symptom onset to death) that can last up to three weeks (17.8 days 
with a 95% CI of 16.9–19.2 days (Verity et al., 2020)). This is also 
consistent with an US-based study, where mobility reductions assessed 
via mobile phone data were found to anticipate the exponential decay of 
COVID-deaths by a median of 3–4 weeks (Kogan et al., 2021). Finally, 
the period of time between infection and death is also related to the 
individual-level Susceptible-Exposed-Infectious-Recovered (SEIR) 
compartmental models that have been proposed to describe the spread 
of COVID-19 (Lin et al., 2020). 

Furthermore, our findings are aligned with the existing evidence that 
mobility restrictions and stay-at-home measures are effective NPIs in the 
context of a global pandemic (Brauner et al., 2020; Davies et al., 2020; 
Dehning et al., 2020; Del Fava et al., 2020; Flaxman et al., 2020; Lai 

Fig. 3. Estimated region-specific intercepts and mobility slopes, as well as their estimated correlation r from the mixed-effects regression in England and Wales by 
region during weeks 13–33 of 2020. Source: Authors’ own elaboration based on data from Office for National Statistics (2021, 2020a) and Google LLC (2021). 

Table 2 
Population size, estimated number of excess deaths, and estimated number of deaths averted by the mobility reductions (counterfactual analysis) with 95% confidence 
intervals by region in England and Wales during weeks 13–33 of 2020. Estimates have been rounded to the nearest hundredth to avoid giving a false sense of precision 
in the presence of uncertainty (as in Kontis et al., 2020); as such, figures for the Total row may differ from the sum of the regions. Source: Authors’ own elaboration 
based on data from Office for National Statistics (2021, 2020a) and Google LLC (2021).  

Region Population 
(2019) 

Estimated 
excess deaths 

Deaths averted 
(counterfactual) 

95% CI 

North East 2,669,941 4100 3600 (3300; 4000) 
North West 7,341,196 9000 12,700 (11,600; 13,600) 
Yorkshire and The Humber 5,502,967 5100 6200 (5600; 7000) 
East Midlands 4,835,928 4400 5900 (5300; 6600) 
West Midlands 5,934,037 7200 10,700 (9800; 11,500) 
East 6,236,072 6300 9600 (8700; 10,400) 
London 8,961,989 11,000 22,300 (21,200; 23,300) 
South East 9,180,135 9300 12,900 (11,700; 14,100) 
South West 5,624,696 3800 6500 (5700; 7300) 
Wales 3,152,879 1900 3800 (3300; 4300) 

Total 59,439,840 62,200 94,200 (86,000; 102,100)  
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et al., 2020). The government’s handling of the COVID-19 pandemic in 
England and Wales has been heavily criticised, particularly given the 
delayed introduction of NPIs as compared to other countries in Europe 
(Hale et al., 2020). Nevertheless, the residents of England and Wales 
appeared to have followed the government guidelines to stay at home 
when they were issued, as evidenced by: (i) the drastic reduction in 
mobility of Google Maps users after mid-March, (ii) the large reduction 
in the daily number of face-to-face contacts per person after the intro
duction of the physical distancing guidelines (Del Fava et al., 2020; 
Jarvis et al., 2020), and (iii) the large adoption of social distancing 
measures and reduction in mobility following the implementation of 
NPIs as reported through online surveys (Perrotta et al., 2021). 

We estimate that about 62,200 excess deaths occurred in England 
and Wales during weeks 13–33 of 2020 with respect to what was ex
pected from previous years, in line with other findings (Aburto et al., 
2021; Office for National Statistics, 2020b). Furthermore, we estimate 
that an additional 94,200 excess deaths were averted by the reduced 
mobility following the introduction of the NPIs. The number of lives that 
could have been saved if earlier and stricter measures had been put in 
place is unknown, but our results suggest that the potential number of 
excess deaths could have been much higher in the absence of these in
terventions. Our results underscore the successful role of NPIs in 
reducing excess all-cause mortality in the period analysed, mediated by 
the decrease in mobility. Note that the introduction of governmental 
measures may have directly or indirectly increased mortality for some 
specific causes - such as deaths from domestic violence or from limited 
access to health care. Data on causes of deaths (still not available at the 
time of writing) will provide insights and comparisons on the effects of 
NPIs on cause-specific mortality. However, the net effect of the 
governmental measures on overall mortality appears to have been 
highly positive. 

A limitation of our analysis is that, given the almost simultaneous 
introduction of different NPIs in March 2020 and the resulting reduction 
in mobility, we cannot disentangle the individual contribution of each 
intervention to the change in mobility and mortality. Moreover, the 
relationship between mobility data and excess mortality is necessarily 
based on location-based measures, and as such it may be prone to 
ecological fallacy. Nonetheless, our methodology allows us to isolate 
and estimate the effect of mobility reductions on excess mortality con
trolling for (i) the time trend of the epidemic and (ii) all other unob
served region-specific factors, which are allowed for through the 

random-effect specification of the model. 
In our work, we exploit the potential of digital-trace data to estimate 

human mobility and explain excess mortality, but we are also aware of 
the shortcomings related to this data source. These are in particular due 
to the lack of detail concerning the collection and processing of the 
mobility data. One limitation is that Google does not share absolute 
numbers in their reports, but only relative changes with respect to the 
beginning of 2020. Back-engineering the underlying absolute measure
ments does not seem possible or desirable, given privacy concerns in 
sparsely populated areas. Moreover, no information is provided on the 
population composition of Google Maps users, such as age-group or sex 
breakdowns, thus limiting our ability to assess the representativeness of 
the data. This lack of detail makes the data less informative than it could 
possibly be, if all raw measures were made available together with the 
description of the algorithms used to produce them. 

Nonetheless, we believe that the Google mobility data provide a first 
and valuable approximation to the changes in human mobility occurred 
during the COVID-19 pandemic. Such data are necessarily affected by 
biases related to population sampling, which depends on the market 
share of the operator providing the data and the different usage across 
socio-demographic groups. However, we are reassured by existing evi
dence on Internet penetration rates and Google Maps coverage in the 
UK, and by the high consistency in mobility estimates provided by 
Google. England and Wales have in fact one of the highest rates of 
Internet penetration in the world and one of the lowest degrees of gender 
inequality in Internet access (Garcia et al., 2018). Furthermore, around 
three quarters of mobile phones worldwide use an Android operating 
system, on which Google Maps is installed by default (StatCounter, 
2020), and survey results indicate that approximately 60% of Android 
users in the UK have Google Location History reporting enabled (Ruk
tanonchai et al., 2018). In addition, existing evidence shows very high 
levels of consistency in mobility estimates obtained from Google and 
from call detail records (Ruktanonchai et al., 2020). Finally, we are 
reassured by the similar general patterns of the Google mobility data as 
compared to other digital sources, such as Apple and Facebook (which 
only report data for England and Wales as a whole and not at the 
sub-national level, see Fig. A.8 in Appendix A). Thus, we are confident 
that this data source approximates well the overall mobility trends at the 
regional level. 

Our study provides evidence on the positive impact of NPIs to miti
gate the mortality burden of COVID-19. We conclude by encouraging 

Fig. 4. Observed and estimated excess mortality rate (per 100,000 individuals) from the mixed-effects model in the baseline and counterfactual scenarios for the 
region of London during weeks 13–33 of 2020. Source: Authors’ own elaboration based on data from Office for National Statistics (2021, 2020a) and Google 
LLC (2021). 
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private companies such as Google to continue sharing data to foster 
academic research in areas of public interest. Further improvements 
include more transparency about the data-generating process and the 
sharing of raw data, keeping as a priority the privacy of users. An 
increasing number of studies are showing the great potential of digital 
data for public health research (Coppersmith et al., 2018; Eichstaedt 
et al., 2018; Oliver et al., 2020; Reece & Danforth, 2017), and the cur
rent COVID-19 pandemic further highlights the need for an open con
versation on how these data can be used ethically to help save lives. 
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Appendix A. Additional Results 

In this Appendix, we report additional results of our analysis. We start by presenting the results of computing the excess mortality rate using the 
GAM. Fig. A1 shows the results of this approach for two specific regions, London and South East. The grey shaded areas in the panels correspond to the 
first wave of the COVID-19 pandemic analysed in the paper, and for which corresponding death counts are not employed in the estimation of the GAM. 
The figure shows that the fitted model captures well the seasonal pattern of the mortality data, as well as the peculiarities of the registration of deaths 
in some specific weeks (i.e. the lower number of registered deaths during holidays, such as bank holidays and the last week of the year). The lower 
panels display the excess mortality rate for the two regions: despite being characterised by different absolute numbers of deaths, the regional excess 
rates have similar values due to different population sizes. Finally, the spike in number of deaths and excess mortality resulting from the COVID-19 
pandemic is clearly visible in the period analysed (grey shaded area). 
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Figure A.1. Observed (dots) and fitted (lines) weekly number of deaths (upper panels) and excess mortality rate (per 100,000 individuals, lower panels) in the 
regions of London and South East for the years 2015–2020. The grey shaded area corresponds to the COVID-19 period analysed in the paper. Source: Authors’ own 
elaboration based on data from Office for National Statistics (2021, 2020a). 

Next, we present the graphs corresponding to Fig. 2 for all the regions analysed in our study. Fig. A.2 shows the time series of the excess mortality 
rate (per 100,000 individuals) and the change in the Google mobility index for the ten regions of England and Wales during the weeks 8–33 of 2020. In 
addition, Fig. A.3 shows the time series of the two variables for each of the ten regions side-by-side. Common patterns and regional variations clearly 
appear from the figure. 
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Figure A.2. Time series of excess mortality rate per 100,000 individuals (red lines) and change in Google mobility index in week t (dashed blue lines) and with a five- 
week forward shift (solid blue lines) in England and Wales by region during weeks 8–33 of 2020. The Google index was multiplied by 10 for illustration purposes. 
Source: Authors’ own elaboration based on data from Office for National Statistics (2021, 2020a) and Google LLC (2021). 

Figure A.3. Time series of excess mortality rate per 100,000 individuals and change in Google mobility index in England and Wales by region during weeks 8–33 of 
2020. Source: Authors’ own elaboration based on data from Office for National Statistics (2021, 2020a) and Google LLC (2021). 

Furthermore, we analyse the relationship between the excess mortality rate and changes in mobility, considering a wide range of possible lags for 
the latter variable. Fig. A.4 and A.5 clearly show that the relationship between excess mortality and mobility varies according to the length of time 
lags. When we consider none or short time lags (between one and three weeks), the relationship between the two variables is negative, i.e., a decrease 
in mobility is associated with a (future) higher excess mortality. However, for longer time lags (greater or equal to five weeks), we can observe a 
positive relationship between the two variables, i.e., a decrease in mobility is associated with a (future) lower excess mortality. This holds true for the 
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combined Google mobility index as well as for four categories of the GCMR: grocery, retial, transit and workplaces. For the residential category, the 
relationship is reversed because time spent at home increased following the implementation of the NPIs (see Fig. 1, main text); for the parks category, 
the relationship is negative for all lags of time.

Figure A.4. Linear relationship (with slope equal to β) between excess mortality rate (per 100,000 individuals) and change in the Google mobility index in ten 
regions of England and Wales during weeks 8–33 of 2020, considering different lags of time for mobility data. Source: Authors’ own elaboration based on data from 
Office for National Statistics (2021, 2020a) and Google LLC (2021). 

Figure A.5. Linear relationship (with slope equal to β) between excess mortality rate (per 100,000 individuals) and (scaled) change in workplace mobility in ten 
regions of England and Wales during weeks 8–33 of 2020, considering different time lags for mobility data. Source: Authors’ own elaboration based on data from 
Office for National Statistics (2021, 2020a) and Google LLC (2021). 

Next, we analyse the role played by different time lags in the relationship between excess mortality and mobility within our regression approach. 
Table A.1 shows the mixed-effects regression models between excess mortality rate and changes in the Google mobility index occurred 3, 4, 5, 6 and 7 
weeks prior. The relationship between excess mortality and mobility changes according to the time lag considered: for shorter time lags (3 and 4 
weeks), the two variables have a negative or null association. For time lags of 5 or more weeks, the relationship becomes positive and significant at the 
95% confidence level, and the magnitude of the estimated coefficient reduces as the lag increases.  
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Table A.1 
Estimated coefficients and 95% confidence intervals of linear mixed-effects regression between excess mortality rate (per 100,000 individuals) and changes in Google 
mobility index occurred x weeks before, using five choices of time lags between the two time series. Note: AIC and BIC values should not be compared here due to 
different number of observations, and they have been reported for completeness only. Source: Authors’ own elaboration based on data from Office for National 
Statistics (2021, 2020a) and Google LLC (2021).   

Dependent variable: excess mortality rate (per 100,000)  

Linear mixed-effects regression  

3-week lag 4-week lag 5-week lag 6-week lag 7-week lag 

Fixed effects 
Mobility changes 

x weeks before 
− 6.47 − 1.27 3.77 2.74 1.26 

(95% CI) (-7.84, − 5.10) (-2.65, 0.12) (2.71, 4.83) (1.53, 3.96) (0.32, 2.21) 
Random effects (variance) 

Region (intercept) 1.96 1.45 2.67 2.44 1.48 
Mobility (slope) 1.06 0.67 0.67 0.96 – 
Residual 7.33 7.65 3.38 3.85 7.62 

Observations 230 220 210 200 190 
Groups 10 10 10 10 10 
Log-Likelihood − 560.87 − 540.14 − 438.36 − 428.90 − 462.86 
AIC 1143.73 1102.27 898.72 879.80 941.71 
BIC 1181.55 1139.60 935.54 916.09 967.69  

Fig. A.6 shows the underlying mobility assumption of the counterfactual analysis for the region of London. In particular, we assume that mobility 
did not reduce with the introduction of the NPIs, but that it remained constant at the levels observed before their implementation, i.e. mobility did not 
change after week 10.

Figure A.6. Changes in the Google mobility index in the baseline and counterfactual scenarios for the region of London during weeks 8–33 of 2020. Source: Authors’ 
own elaboration based on data from Google LLC (2021). 

Fig. A.7 shows, for each region analysed, the fit of the estimated mixed-effects regression model as well as the counterfactual analysis which 
assumes that mobility did not reduce after the introduction of the NPIs. 
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Figure A.7. Observed and estimated excess mortality rate (per 100,000 individuals) from the mixed-effects model in the baseline and counterfactual scenarios for 
the ten regions in England and Wales during weeks 13–33 of 2020. Source: Authors’ own elaboration based on data from Office for National Statistics (2021, 2020a) 
and Google LLC (2021). 

Fig. A.8 compares the GCMR with the mobility data provided by Apple (2020) and Facebook (2020). For the latter two, only country-level data are 
available for England and Wales (i.e. not at the sub-national level). The figure shows that the six Google categories of mobility indicators are aligned 
with those of other providers, hence capturing the general mobility patterns throughout England and Wales.

Figure A.8. Comparison of mobility indicators provided by Apple (categories driving, transit and walking), Facebook (category mobility) and Google (categories 
residential, workplaces, grocery, transit, retail and parks) for England and Wales in weeks 1–33 of 2020. Note: the sign of the residential category of Google is reversed for 
illustrative purposes. Source: Authors’ own elaboration based on data from Apple (2020), Google LLC (2021) and Facebook (2020). 
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Finally, Fig. A.9 shows the share of the missing data, computed as percentage of the regional population, for the six categories of the Google 
mobility data by region and week. For most weeks, regions and categories, missing data are relatively low. Only the parks and residential categories, 
particularly in the Welsh territory, are characterised by some degree of missing data.

Figure A.9. Share of missing population in the GCMR by region, week and category (residential, workplaces, grocery, transit, retail and parks) for ten regions in England 
and Wales in weeks 8–33 of 2020. Source: Authors’ own elaboration based on data from Google LLC (2021). 

Apeendix B. Sensitivity Analysis 

In this Appendix, we perform a sensitivity analysis of the results shown in the paper. 

B.1 Different estimation of excess mortality 

The results shown in our paper are robust to the computation of expected deaths d̂t derived from the GAM. Specifically, we re-run all our analysis 
using a different estimate of the excess mortality rate. Instead of using the d̂t predicted from the GAM, we computed d̂t for each week in 2020 as the 
average number of deaths observed in the corresponding weeks between the years 2015–2019. Fig. B.1 shows the estimated numbers of expected 
deaths and excess mortality rate using the GAM and the historical weekly means of the observed death counts. The excess mortality rates estimated 
with the two approaches are very similar. In both cases, the decreasing time trend estimated by the GAM predicts a lower number of deaths in the 
period under study (grey area) as compared to the historical average, resulting in slightly higher excess mortality. Fig. B.2 shows the excess mortality 
rate obtained with the two approaches for all ten regions of England and Wales during the period analysed. 
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Figure B.1. Observed (dots) and fitted (lines) weekly number of deaths (upper panels) and excess mortality rate (per 100,000 individuals, lower panels) using two 
different approaches (GAM in orange, weekly historical mean in blue) in the regions of London and South East for the years 2015–2020. Source: Authors’ own 
elaboration based on data from Office for National Statistics (2021, 2020a). 

Figure B.2. Excess mortality rate (per 100,000 individuals) computed with two different approaches (GAM in orange, weekly historical mean in blue) in the ten 
regions of England and Wales during the weeks 8–33 of 2020. Source: Authors’ own elaboration based on data from Office for National Statistics (2021, 2020a). 

Furthermore, Table B.1 reports the corresponding results of the mixed-effect regression models obtained from using this different computation of 
the excess mortality rate. Given that the estimates of the excess mortality rates are very similar to those of the GAM, it is not surprising that the results 
do not change by a great extent when using this alternative computation of excess mortality. 

U. Basellini et al.                                                                                                                                                                                                                                



SSM - Population Health 14 (2021) 100799

16

Table B.1 
Estimated coefficients and 95% confidence intervals of linear mixed-effects regression between excess mortality rate (per 100,000 individuals) and changes in mobility 
occurred five weeks before, measured separately for each model with the combined Google index and the six categories of the GCMR: grocery, workplaces, residential, 
transit, retail and parks. Note: the excess mortality rate (per 100,000 individuals) is computed from the historical average of weekly deaths instead of the GAM 
employed in Table 1. Source: Authors’ own elaboration based on data from Office for National Statistics (2021, 2020a) and Google LLC (2021).   

Dependent variable: excess mortality rate (per 100,000)  

Linear mixed-effects regression  

Google index grocery workplaces residential Transit Retail parks 

Fixed effects 
Mobility changes 

5 weeks before 
3.55 2.57 3.01 − 3.24 2.63 3.65 0.63 

(95% CI) (2.54, 4.56) (1.94, 3.19) (1.98, 4.03) (-4.25, − 2.23) (1.64, 3.62) (2.48, 4.81) (-0.21, 1.46) 
Random effects (variance)        

Region (intercept) 1.49 0.50 1.17 1.85 2.11 1.35 0.53 
Mobility (slope) 0.66 – 0.85 0.61 0.73 1.22 – 
Residual 3.43 4.35 3.64 3.65 3.89 3.55 5.71 

Observations 210 210 210 210 210 210 210 
Groups 10 10 10 10 10 10 10 
Log-Likelihood − 435.42 − 452.05 − 440.32 − 441.53 − 448.42 − 438.21 − 478.91 
AIC 892.84 922.09 902.64 905.05 918.85 898.42 975.82 
BIC 929.66 952.22 939.46 941.87 955.67 935.23 1005.95  

B.2 Other sensitivity analyses 

The results shown in our paper are further robust with respect to the number of B-splines employed to describe the time trend of the epidemic. 
Table B.2 shows the mixed-effects regression models between excess mortality rate and changes in the Google mobility index occurred 5 weeks prior 
for five different choice of B-spline bases. From the table, it emerges that the estimated mobility coefficient does not change to a great extent, taking 
values between 3.75 and 5.77 according to different number of bases. Moreover, the estimated coefficient is always statistically significant at the 95% 
confidence level.  

Table B.2 
Estimated coefficients and 95% confidence intervals of linear mixed-effects regression between excess mortality rate (per 100,000 individuals) and changes in Google 
mobility index occurred five weeks before, using five different choices of B-spline bases for describing the time series of the epidemic. Source: Authors’ own elaboration 
based on data from Office for National Statistics (2021, 2020a) and Google LLC (2021).   

Dependent variable: excess mortality rate (per 100,000)  

Linear mixed-effects regression  

3 B-splines 4 B-splines 5 B-splines 6 B-splines 7 B-splines 

Fixed effects 
Mobility changes 

5 weeks before 
5.80 4.24 3.77 5.48 4.81 

(95% CI) (5.05, 6.55) (3.49, 4.99) (2.71, 4.83) (4.38, 6.58) (3.79, 5.82) 
Random effects (variance)      

Region (intercept) 3.19 2.81 2.67 3.20 2.99 
Mobility (slope) 0.49 0.65 0.67 0.61 0.64 
Residual 5.18 3.20 3.38 3.01 2.95 

Observations 210 210 210 210 210 
Groups 10 10 10 10 10 
Log-Likelihood − 481.97 − 434.91 − 438.36 − 427.2 − 423.63 
AIC 981.94 889.82 898.72 878.4 873.27 
BIC 1012.07 923.29 935.54 918.56 916.78  

Finally, our results are also robust to the exclusion of the region of London from the analysis. Analysing Fig. A3, London appears as an outlier 
compared to the other regions since its level of excess mortality and mobility decreased considerably more than in other regions. For this reason, we re- 
run all our analysis excluding London from the observations employed in our study. Table B.3 shows that the estimated mobility coefficients vary 
marginally with respect to those estimated in the presence of London, remaining significant at the 95% confidence level. Finally, Fig. B.3 shows that 
the positive correlation between random slopes and random intercepts in the mixed-effects model reduces only slightly when excluding London from 
the analysis.  

Table B.3 
Estimated coefficients and 95% confidence intervals of linear mixed-effects regression between excess mortality rate (per 100,000 individuals) and changes in mobility 
occurred five weeks before, measured separately for each model with the combined Google index and the six categories of the GCMR: grocery, workplaces, residential, 
transit, retail and parks. Note: the region of London was removed from the analysis. Source: Authors’ own elaboration based on data from Office for National Statistics 
(2021, 2020a) and Google LLC (2021).  

(continued on next page) 
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Table B.3 (continued )  

Dependent variable: excess mortality rate (per 100,000)  

Linear mixed-effects regression  

Google index grocery workplaces residential Transit retail parks  

Dependent variable: excess mortality rate (per 100,000)  

Linear mixed-effects regression  

Google index grocery workplaces residential Transit retail parks 

Fixed effects 
Mobility changes 

5 weeks before 
3.82 2.66 3.07 − 3.69 3.10 3.53 0.83 

(95% CI) (2.65, 4.99) (1.92, 3.39) (1.91, 4.22) (-4.94, − 2.45) (1.94, 4.27) (2.37, 4.68) (-0.01, 1.67) 
Random effects (variance)        

Region (intercept) 1.66 1.46 1.48 1.51 1.79 1.70 1.55 
Mobility (slope) 0.52 0.51 0.52 0.48 0.38 0.56 – 
Residual 3.56 3.11 3.82 3.79 3.94 3.64 4.97 

Observations 189 189 189 189 189 189 189 
Groups 9 9 9 9 9 9 9 
Log-Likelihood − 396.24 − 384.79 − 402.24 − 400.56 − 404.75 − 398.25 − 420.92 
AIC 814.48 791.57 826.48 823.12 831.5 818.51 859.83 
BIC 850.14 827.23 862.14 858.78 867.16 854.17 889.01  

Fig. B.3. Estimated region-specific intercepts and mobility coefficients, as well as their estimated correlation r from the mixed-effects regression in nine regions of 
England and Wales (excluding London) during weeks 13–33 of 2020. Source: Authors’ own elaboration based on data from Office for National Statistics (2021, 
2020a) and Google LLC (2021). 
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