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Abstract

Deep learning (DL) based auto-segmentation has the potential for accurate organ delineation 

in radiotherapy applications but requires large amounts of clean labeled data to train a robust 

model. However, annotating medical images is extremely time-consuming and requires clinical 

expertise, especially for segmentation that demands voxel-wise labels. On the other hand, medical 

images without annotations are abundant and highly accessible. To alleviate the influence of the 

limited number of clean labels, we propose a weakly-supervised DL training approach using 

deformable image registration (DIR)-based annotations, leveraging the abundance of unlabeled 

data. We generate pseudo-contours by utilizing DIR to propagate atlas contours onto abundant 

unlabeled images and train a robust DL-based segmentation model. With 10 labeled TCIA dataset 

and 50 unlabeled CT scans from our institution, our model achieved Dice similarity coefficient 

of 87.9%, 73.4%, 73.4%, 63.2% and 61.0% on mandible, left & right parotid glands and left & 

right submandibular glands of TCIA test set and competitive performance on our institutional 

clinical dataset and a third party (PDDCA) dataset. Experimental results demonstrated the 

proposed method outperformed traditional multi-atlas DIR methods and fully-supervised limited 

data training and is promising for DL-based medical image segmentation application with limited 

annotated data.

1. Introduction

Deep neural networks (DNNs), which have gained great interest in recent years, have the 

ability of learning and summarizing the knowledge automatically from the training datasets 

and the ability of rapid and efficient inference (LeCun et al., 2015). Lots of deep learning 

(DL) studies accomplished promising performance in many specific tasks, such as image 

classification (He et al., 2016; Huang et al., 2017), object detection (Ren et al., 2015), 

instance segmentation (He et al., 2017), natural language processing (Radford et al., 2019), 

etc. The applications of DL in medical fields have gradually attracted researchers’ attention 

and made significant progress (Litjens et al., 2017; Hosny et al., 2018).
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In radiation oncology, accurate image segmentation is crucial for treatment planning 

and treatment plan adaptation (Gu et al., 2010). Recently, DL-based segmentations have 

achieved great success in medical fields. U-Net (Ronneberger et al., 2015), which used 

convolution layers to take the full context of images into account in an end-to-end 

manner, made a breakthrough in this domain. The down-sampling and up-sampling layers 

as encoder-decoder extract the high-level and low-level features while skip connections 

concatenate these extracted features. Furthermore, numerous network structures similar 

to U-Net were developed and used for medical image segmentation (Çiçek et al., 2016; 

Milletari et al., 2016). Chen et al. (2019) combined clinical prior knowledge to localize 

small-volume organs with the coordinates of surrounding organs and segmented head 

and neck (H&N) organs in a coarse-to-fine manner. Xu and Niethammer (2019) jointly 

optimized their convolution networks for registration and segmentation and achieved 

improvements for both tasks compared with separate training. Zhou et al. (2019) proposed 

a semi-supervised method to fine-tune their pre-trained lesion segmentation network by 

semi-supervised learning from large quantities of lesion grading data with an attention 

mechanism. FocusNet (Kaul et al., 2019) solved the imbalance of the large and small H&N 

organs by concentrating on patches of small organs with a subnetwork.

To a certain extent, the great achievements of these DL methods in medical fields can be 

attributed to their large scale of training data (Sun et al., 2017). ChestXNet detected 14 

pathologies on ChestXray-14, which contains over 100,000 frontal view X-ray images, and 

outperformed the practicing radiologists on F1 score (Rajpurkar et al., 2017). However, 

it is usually very time-consuming and costly to annotate such an enormous medical 

image dataset. For most daily life applications, where it is easy to obtain annotations like 

objects’ category or their bounding boxes, crowdsourcing would be a wise choice. However, 

annotating medical images requires clinical expertise from practicing doctors or radiologists 

to ensure the validity and reliability of the annotations, which restricts the size of labeled 

medical datasets for deep learning. Image-level or volume-wise labels for disease diagnosis 

may be extracted from medical reports using natural language processing (Rajpurkar et al., 
2017), while voxel-wise labels for medical segmentation is very scarce. Therefore, it is 

challenging to obtain a large dataset to train robust segmentation models. In medical image 

segmentation fields, the problem of training deep neural networks with limited labeled data 

still needs to be addressed.

In this paper, we proposed a weakly-supervised DL algorithm for medical image 

segmentation with very limited labels. We innovatively used our in-house developed 

Demons based free-form deformable image registration (DIR) algorithm to transfer the 

contours of organs from labeled moving images to unlabeled fixed images to generate a 

large database and then trained the recursive ensemble organ segmentation (REOS) model 

(Lu et al., 2004; Lu et al., 2006; Gu et al., 2010; Chen et al., 2019). Though the contours 

generated with a DIR approach are not as accurate as manual delineated ground truth (Thor 

et al., 2011; Guy et al., 2019), DL models can learn and summarize the potential ground-

truth from multiple noisy contours. We collected The Cancer Imaging Archive (TCIA) 

dataset, our clinical dataset from the University of Texas Southwestern Medical Center 

(UTSW), and the Public Domain Database for Computational Anatomy (PDDCA) dataset 

for training and evaluation. Ablation studies were conducted to explore how the number 
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of training data and quality of the generated contours affect the segmentation performance. 

Finally, we compared the qualitative and quantitative performance between the proposed 

method and baselines that employ conventional multi-atlas DIR method or fully-supervised 

DNN.

2. Methods and materials

2.1 Weakly-supervised Framework

Due to lack of adequate clean annotations in organ segmentation, it is difficult to train a 

robust DL model for clinical applications. Therefore, we propose a weakly-supervised DL 

algorithm to alleviate the dependency of the segmentation model on such enormous clean 

labels. Consider a small labeled dataset Dl = Ii, Y i i = 1
N  with images Il and segmentation 

annotations Yl, and a large unlabeled dataset Du = Ij j = 1
M  with only images Iu. It is 

common in medical applications that rare clean medical annotations are available (i.e. N ≪ 
M).

Our weakly-supervised method is illustrated in figure 1. The entire approach consists of 

two steps: 1) DIR propagates contours from the atlases to unlabeled images to generate 

pseudo-contours. 2) A 3D segmentation network is trained with generated pseudo-contours 

supervision.

2.1.1 Pseudo-contour Generation—In general, image registration is to find a 

transformation ϕ that maximizes the similarity between the moving image Im and fixed 

images If, which is defined as follows:

ϕ* = argmax
ϕ

ℒS Im ∘ ϕ, If

where ℒs ⋅  is the similarity measure function and Im ∘ϕ is the warped moving image by the 

transformation ϕ. Besides translation and rotation in rigid registration, DIR warps moving 

images with deformation vector fields (DVF) to maximize the similarity between the warped 

moving image and the fixed image.

Since the voxel in the image and its corresponding segmentation mask represent 

homologous biological locations, they will remain homologous after applying the same 

DVF. If DIR can perfectly deform the moving image into the fixed image, the warped 

segmentation mask of the moving image should match the manual segmentation annotation 

of the fixed image. However, at present, DIR algorithms often cause certain errors between 

the warped image and fixed image, consequently inducing noise in the warped masks. In our 

approach, these warped segmentation masks from registration are regarded as pseudo-labels 

that deviate from ground-truth labels.

Our method exploits the Demons algorithm (Gu et al., 2010) to accomplish free-form 

DIR for generating pseudo-labels as shown in figure 2. Basically, the Demons algorithm 

associates each voxel in the fixed image with a Demon’s local force to deform the moving 

image. It iterates between the estimation of the local force and the transformation of 
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the moving image with the force. We use labeled images Il from Dl as moving images 

and unlabeled images Iu from Du as fixed images. In each iteration, the demon force is 

calculated as follows:

dϕ n =
Il

n − 1 − Iu ∇Iu

Il
n − 1 − Iu

2
+ ∇Iu2

where Il
n  is the warped moving image in the nth iteration and Il

0  is the original moving 

image.

For each unlabeled image Iu, we performed DIR using each of the N labeled image Il as the 

moving image and generated N pseudo contours from the ground truth atlas, one for each of 

the N labeled images. There were M*N pseudo contours generated in total and used to train 

the segmentation neural network. Each DIR segmentation result transformed from different 

ground truth contours can be regarded as the actual contour plus random noise. With the N 
pseudo-labels for each unlabeled image, the DL model becomes robust to random noise and 

learns the ground truth through their common grounds (Vandat, 2017; Rolnick et al., 2017; 

Yu et al., 2020).

2.1.2 Segmentation model—We devised a deep neural network based on the REOS 

framework (Chen et al., 2019). Briefly, the REOS framework assigns different organs to 

different levels with their own regions of interest because neighbor organs can share location 

information for better delineation. Organs at low levels will facilitate localizations of the 

organs at high levels via their predicted segmentation mask. In this study, we focused on 

studying the segmentation of organs, including the mandible, left & right parotid glands, and 

left & right submandibular glands. According to their volume size and contrast, we assigned 

the mandible to level 1 and others to level 2, as shown in table 1. The intact volume of 

training data passes through the DNN of large organs in level 1. And the input of small 

organs in level 2 is cropped based on the location of organs segmented in level 1, discarding 

redundant information for better feature extraction.

Further, segmentation in each level has three modules: 1) A localization module segments 

target organs roughly to localize their positions and extract global features. 2) A refinement 

module focuses on local details to refine the segmentation mask. In this step, we take the 

image and its corresponding feature map from the localization module as the input of the 

refinement module. 3) An ensemble module concatenates the feature maps from the above 

modules to yield final precise contours.

Both the localization and contour modules use a 3D U-Net structure with two symmetric 

paths. The contracting path contains four convolutional blocks, each followed by a max-

pooling layer as a down-sampling operation. In the expanding path, we up-sample feature 

maps to the same size as the contracting path. Skip connections are applied to concatenate 

the feature maps of the same depth in the two paths before each convolutional block 

to integrate high-level and low-level information. After the expanding path, we add an 
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additional convolutional block to predict the contours. Moreover, the ensemble module is 

comprised of three consecutive convolutional layers. Details of the REOS algorithm can be 

found in the reference (Chen et al., 2019).

Since organs usually occupy a small region compared with the whole image, we choose the 

Dice loss for training to avoid the network bias towards the background. The Dice loss is 

defined as follows:

ℒD = 1 −
2∑i

K YiPYiG

∑i
K YiP

2 + ∑i
K YiG

2

where YP and YG are the predictive and manual segmentation with K voxels, respectively.

2.2 Experimental Data

We demonstrate the proposed method for head and neck CT scans from public labeled 

datasets TCIA (Nikolov et al., 2018), PDDCA (Raudaschl et al., 2017), and an in-house 

UTSW dataset.

The TCIA dataset contains 31 annotated H&N CT scans from The Cancer Imaging Archive 

(Clark et al., 2013). Twenty-one organs at risk (OARs, normal organs) were delineated by a 

radiographer and arbitrated by another radiographer and a radiation oncologist, according to 

the consensus guideline Brouwer atlas (Brouwer et al., 2015). The in-plane pixel resolution 

of CT scans varies between 0.94 to 1.27 mm, and their slice thickness is 2.5 mm. The TCIA 

dataset is randomly split into three subsets: training (10), validation (10), and test set (11).

The PDDCA dataset contains 48 H&N CT images, 15 of which were used only for 

testing to exhibit the generalization ability of our model in this study. Nine OARs were 

manually delineated for each scan, including mandible, parotid glands, submandibular 

glands, brainstem, optic chiasm and optic nerves. Because PDDCA and TCIA datasets both 

contain CT images from the Radiation Therapy Oncology Group (RTOG) 0522 study, three 

common cases were excluded from both PDDCA test set and TCIA training/validation set.

The UTSW dataset contains 230 planning CT scans from different H&N cancer patients. 

The in-plane voxel resolution of CT scans varies between 1.17 to 1.37 mm and their slice 

thickness is 3 mm. The majority of UTSW images are unlabeled. Thus, they are used 

for generating pseudo contours from DIR and consequently for model training. Only six 

scans from the UTSW dataset were used as test images. For these 6 scans, a radiographer 

examined the original clinically-used contours and manually corrected five OAR contours, 

which were then defined as the ground truth labels for evaluation. One and two cases were 

excluded for right parotid gland and right submandibular gland, respectively, since these 

cases underwent surgical resection.

The total numbers of each organ for testing are shown in table 2. The size of training set in 

each experiment is determined by the number of the moving images from TCIA dataset and 

the fixed images from UTSW dataset. For a fair comparison, the test sets were only accessed 
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during the final evaluation of segmentation model performance, and the validation set was 

used for model selection.

2.3 Experiment Design and Evaluation Metric

For all experiments, we sampled moving images from the TCIA training set and fixed 

images from the UTSW dataset to generate the pseudo labels via DIR. The UTSW images 

with pseudo labels were then used to train our segmentation model for H&N organs at 

risk. We experimented on five OARs: mandible, left & right parotid glands (Parotid-L 

and Parotid-R), and left & right submandibular glands (Submand-L and Submand-R). The 

Dice similarity coefficient (DSC), 95 percentile Hausdorff distance (95% HD) and average 

symmetric surface distance (ASD) were applied to evaluate the segmentation performances 

of our method and the baselines.

Our DL model was compared to the performance of multi-atlas DIR (Rohlfing et al., 2004; 

Iglesias and Sabuncu, 2015). Since multiple contours were generated for each test image 

via registration with several moving images, both DIR-average and DIR-majority-vote 

were taken into consideration. DIR-average calculates the mean DSC of the N generated 

contours, while DIR-majority-vote evaluates the mask that is the aggregate of voxels from N 
pseudo contours based on majority votes. Specifically, the mask of DIR-majority-vote can be 

described as follows:

YK
mv = ∑i = 1

N YK
i /N

where Y K
i  is the mask of voxel K of pseudo contours and [∙] is the rounding operation.

Since our method depends on the labels generated by registration, we conducted the 

experiment about the influence of the number of moving/fixed images and registration 

algorithms on the segmentation model. We also compared the proposed method and fully-

supervised method.

1. To explore the effect of the number of moving images, 1/2/5/10 TCIA scans with 

contours were used for registration while keeping the number of UTSW scans M 
= 100 and other settings fixed.

2. To explore the effect of the number of fixed images, 10/50 unlabeled UTSW 

scans were used for registration while keeping the number of labeled TCIA scans 

N = 10 and other settings fixed.

3. Deep neural networks are susceptible to the quality of training data. The 

pseudo labels generated by registration are primarily affected by the registration 

algorithm. A rigid-body registration can be described with translations and 

rotations while DIR exploits complicated deformation vector fields to match 

two images after rigid registration. Therefore, DIR is more accurate than 

rigid body registration. Here, we explore the effect of quality of training 

data on segmentation performance by comparing models trained with contours 

transformed from rigid registration vs DIR warped contours. In this experiment, 
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10 TCIA scans and 50 UTSW scans were used as moving images and fixed 

images for registration, respectively.

4. To further demonstrate the performance of our method, we trained our 

segmentation model with only 10 labeled TCIA scans (fully-supervised model) 

for comparison. Our weakly-supervised segmentation method used 10 TCIA 

scans and 50 unlabeled UTSW scans for training.

2.4 Implementation

The CT images and their segmentation masks were pre-processed as follows. To make the 

spatial resolution consistent among all training data, both images and corresponding masks 

were resampled to the CT voxel size of 1.17mm × 1.17mm × 3mm. Before conducting 

deformable registration for generating pseudo contours, all the images and their masks were 

aligned to a standard CT atlas and cropped to the volume size of 256 × 256 × 128. To avoid 

gradient explosion during DNN training, the Hounsfield Units V of the CT images were 

normalized via V ′ = V + 1000
1000 .

Experiments were performed on the platform with an NVIDIA GeForce 2080 Ti GPU with 

12 GB memory, and our segmentation model was implemented with the deep learning 

library Keras (version 2.2.4) using the backend of Tensorflow (version 1.13.1) in Python 

(version 3.7.3). We trained our neural networks with the Adam optimizer and learning rate 

of 10−4 until convergence. The best models on validation were saved for the final evaluation 

on the test sets. Due to the limited GPU memory, the input size of the model was 128 × 128 

× 64, and the batch size was 2.

3. Results

3.1 Quantitative Results

We conducted experiments to explore the influence of different factors on the proposed 

weakly-supervised segmentation model.

The comparison of DIR-average and DIR-majority-vote using different numbers of moving 

images for registration is shown in table 3. When using only one moving image, DIR-

majority-vote is the same as DIR-average, and their results are omitted in the table. When 

using two moving images, DIR-majority-vote predicts a voxel belonging to the OAR using 

one of the two warped labels, while DIR-average used the average DSC of the two warped 

labels. Thus, in the case of two moving images, the performance of DIR-majority-vote is 

slightly worse than DIR-average. However, as a result of its ability to exclude outliers, 

DIR-majority-vote outperforms DIR-average by 4.4% and 5.7% on average while using 5 

and 10 TCIA scans as moving images, respectively. Therefore, for brevity, we will primarily 

compare our proposed method with the DIR-majority-vote in the following experiments.

Figure 3 and figure 4 compare the mean DSC of our segmentation algorithm and those 

of DIR-majority-vote on the TCIA test set and UTSW test set, respectively, for different 

numbers of moving images. When using 10 moving images, the Dice scores of our model 

on Mandible, Parotid-R, Parotid-L, Submand-R and Submand-L of TCIA test set were 
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85.9%, 73.0%, 71.7%, 58.9%, 62.6%, respectively. And the Dice scores were 87.2%, 67.8%, 

69.1%, 49.9%, 54.0%, respectively, for DIR-majority-vote. Overall, our segmentation model 

achieved better performance than DIR-majority-vote on 5 target OARs for both test sets, 

except the case on mandible when using 10 moving images. Our method improved 

segmentation capability with the DSC above 80%, 65%, and 50% on mandible, parotid 

glands and submandibular glands, respectively, throughout experiments with different 

numbers of moving images on the TCIA test set. In addition, more labeled moving images 

further facilitated the segmentation of our model, especially for small-volume OARs like 

submandibular glands. Similar conclusions can be observed on the UTSW test set.

Figure 5 illustrates the comparison between the proposed method with 10 or 50 fixed 

images, DIR-majority-vote and DIR-average on the TCIA test set. Compared with DIR-

majority-vote and DIR-average, our weakly-supervised segmentation model improved the 

performance significantly for most cases, except for the DSC of mandible when using 

10 fixed images. Moreover, the model of 50 fixed images ameliorated the segmentation 

performance on mandible, Parotid-L and Submand-R, remaining on a par with the model of 

10 fixed images for Parotid-R and Submand-L. Exploiting more fixed images can promote 

the DL-assisted delineation of OARs without additional labeled moving images. And the 

model with 50 fixed images also decreased the standard deviation of DSC, especially for 

L&R submandibular glands.

We further explored the effect of registration algorithms on our weakly-supervised method. 

Table 4 indicates the mean DSC of our method with rigid registration and DIR on TCIA 

and UTSW test sets. Compared with rigid registration, DIR notably increased the DSC 

of mandible, Parotid-R, Parotid-L, Submand-R, Submand-L by 36.4%, 14.3%, 15.1%, 

6.2% and 10.4%, respectively, on the TCIA test set. More significant improvements were 

accomplished on the UTSW test set. Since the rigid registration with limited parameters 

could not match two images precisely and generate plausible labels for training, it will 

inevitably degenerate the generalization of deep neural networks.

To demonstrate the efficacy of the proposed method, a fully-supervised segmentation model 

was trained with manually labeled contours while our method only used the warped contours 

from registration. The comparisons of the proposed method, DIR-majority-vote and fully-

supervised model in DSC, 95% HD and ASD are shown in table 5, 6 and 7, respectively. 

With 10 labeled and 50 unlabeled CT scans, our model achieved DSC of 87.9%, 73.4%, 

73.4%, 63.2% and 61.0% for mandible, left & right parotid glands and left & right 

submandibular glands, respectively, on the TCIA test set. The mean DSC of our model on 

the TCIA test set was improved by 4.1%, 2.8%, 1.9% on Parotid-R, Parotid-L, Submand-R, 

while comparable on mandible and Submand-L, compared to the fully-supervised model. On 

the other two test sets, our model outperformed or was comparable to the fully-supervised 

model for all OARs except Submand-R of PDDCA dataset.

Our model shows promising performances of 95% HD and ASD, which aligns with the 

results given by the DSC. Our DL model obtained average 95% HD of 6.72 mm, 9.13 mm 

and 6.24 mm on TCIA, UTSW and PDDCA test set, respectively, while the fully-supervised 

model obtained 7.38 mm, 9.62 mm and 6.26 mm, respectively. The proposed method had 
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10 lowest average surface distances out of 15 cases (5 OARs for each of three test sets). 

Moreover, the proposed method shows better performance of DSC, 95% HD and ASD than 

DIR-majority-vote on all three test sets.

Compared with conventional DIR and the fully-supervised model on three test sets, our 

approach manifests the superiority on the segmentation of medical images with limited 

annotations. The performances on the PDDCA test set show the generalization of our model 

to external datasets without overfitting the training data. It indicates the feasibility of our 

weakly-supervised segmentation method in the case where only a handful of images with 

manual annotations are available for DL.

3.2 Qualitative Results

Figure 6 shows the visualization comparison among the proposed method (trained with 10 

moving images and 50 fixed images), DIR-majority-vote and fully-supervised model on the 

TCIA test set. In most cases, our model can accurately delineate the contour of mandible. 

However, the fully-supervised model failed to predict marginal parts of mandible and 

parotids as pointed by the red arrows. In addition, most of the pseudo contours mistakenly 

classified the teeth into mandible, resulting in the false delineation with DIR-majority-vote. 

For small-volume OARs, our segmentation model generated rough contours around the 

ground truth and performed better than the others.

4. Discussion

In this paper, we proposed a DL-based algorithm weakly-supervised with DIR to 

automatically delineate OARs for radiotherapy treatment planning.

Because the pseudo-labels for training are generated from image registration, the number 

of moving images and fixed images will definitely affect our neural network. As seen in 

figure 3 and figure 4, our model achieved higher DSC of five organs when more labeled 

TCIA scans were exploited. Nevertheless, the improvement from 5 to 10 moving images 

was smaller than that from 1 to 2 moving images, except for left & right parotid glands, 

suggesting the slowing-down in the rate of improvement. After arriving at the bottleneck, the 

model does not substantially benefit from more moving images. Due to the limited labeled 

TCIA scans, we have not explored the optimal number of moving images. Generating 

pseudo-contours with more fixed images also increases the segmentation capacity of our DL 

model according to the experimental results. Nevertheless, the mean DSC with 100 fixed 

images is approximately similar to that with only 50 fixed images, which means that adding 

endless fixed images is not conducive to further improvement.

Table 8 shows the results on the TCIA and UTSW test sets when the training had the 

same number of pseudo contours but different combinations of the numbers of moving/fixed 

images. The model with 10/50 moving/fixed images increased the DSC of 5 OARs by 2.9% 

on average on the TCIA test set, which demonstrates the importance of moving images over 

fixed images. It is mainly because the pseudo contours propagated from the same moving 

image remain in a certain relation to the original contour of the moving image and thus lack 
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diversity for training. In spite of this, the model with only one moving image performed 

delineation better than DIR-average and DIR-majority-vote (Figure 3 and 4).

Image registration was applied to align the interpatient CT images in our experiments, and 

its precision affected the quality of the contours for training. Even if DNNs can converge 

and overfit the noisy training data, its capacity will inevitably decline due to the noise 

(Zhang et al., 2016; Yu et al., 2020). Since the organ shapes of different patients are of 

great discrepancy, rigid registration could not handle these cases well with the operation 

of translation and rotation. On the other hand, DIR generated more plausible labels to 

teach the segmentation model and resulted in substantial improvement even over 40% on 

the mandible. In addition, our method can further benefit from state-of-the-art registration 

algorithms.

Because of the ability to learn from the feedback iteratively, our weakly-supervised 

method for OARs segmentation manifests its superior performance over DIR-average, 

DIR-majority-vote and the fully-supervised model. The majority vote seeks intra-patient 

consensus among different observers, while the fully supervised model finds the interpatient 

relations. Our weakly-supervised method, in a sense, explores interpatient and intra-patient 

information simultaneously, leveraging the abundance of unlabeled data. Instead of using 

a fixed threshold (50%) in DIR-majority-vote, the deep neural networks can automatically 

trade off the accuracy and reliability of noisy contours and learn the best segmentation 

standard according to the training set. And our model is less prone to overfitting the training 

data due to multiple coarse contours for the same image, while the fully-supervised model 

might overfit these 10 training samples and degenerate its generalizability. Moreover, the 

fully-supervised model with limited ground truth dataset was inferior to the proposed model 

trained with the dataset composed of the synthetic data, which indicates that the model 

enhancement is due to the addition of synthetic data.

The proposed method can be applied for automatic contouring in adaptive radiotherapy 

(ART) application. For example, in a CBCT-driven ART, each study usually comprises CT 

scans with manual delineation (ground truth labels) for treatment planning and cone-beam 

CT (CBCT) scans acquired before each treatment for image guidance. The labeled CT 

images and unlabeled CBCT images can be used as moving images and fixed images of 

DIR, respectively, to generate pseudo labels for CBCT images. Once training the DL model 

with CBCT images and corresponding pseudo labels is finished, the model can predict the 

contours efficiently for the new coming CBCT images, which is essential for CBCT based 

adaptive planning.

However, there are some limitations in this study. 1) The results of the proposed method, 

DIR-average and DIR-majority-vote on the UTSW test set were worse than on the TCIA 

test set, except for mandible. This is because of the different procedures and standards for 

delineating the ground truth contours of these two test sets. In general, it is a challenging 

obstacle that most deep neural networks that perform well on the benchmarked datasets 

may fail on realistic images outside the training set (Yuille and Liu, 2018). 2) Due to the 

limited labeled CT images, our method is not competitive with state-of-the-art methods. 

Nikolov et al. (2018) trained a 3D U-Net network with 663 manually annotated CT scans 
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from 389 patients and achieved mean DSC of 93.8%, 84.0%, 83.2%, 76.0% and 80.3% 

for mandible, Parotid-R, Parotid-L, Submand-R and Submand-L, respectively, on their test 

set. However, it is unfair to directly compare our results with these state-of-the-art DNN 

methods. These methods are fully-supervised and trained on large amounts of labeled data, 

and the performances of DNNs can easily benefit from large amounts of training data. We 

will dedicate to resolve the above limitations in the future.

5. Conclusion

In this study, we purpose a novel weakly-supervised training method for image segmentation 

to address the label-starving issue in the medical image fields. Experimental results 

demonstrated its superior performance for fast segmentation of head and neck anatomy. 

This training method can be easily generalized to other OARs and modalities like MRI.
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Figure 1. 
Illustration of the proposed method: a) pseudo-contour generation; b) auto-segmentation 

model trained with pseudo-contours.
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Figure 2. 
The procedure of generating pseudo contours with Demons DIR algorithm.
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Figure 3. 
Mean DSC (%) of the proposed method (Ours(N#M100)-, solid lines) and DIR-Majority-

vote (DIR-, dashed lines) on the TCIA test set while using different numbers of moving 

images and 100 fixed images for generating pseudo-labels. Here, the notation ‘N#M100’ 

refers to the number of labeled (moving) images N and the number of unlabeled (fixed) 

images M. Contours of mandible, left & right parotid glands (Parotid-L and Parotid-R), 

and left & right submandibular glands (Submand-L, Submand-R) are measured in this 

experiment.
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Figure 4. 
Mean DSC (%) of the proposed method (Ours(N#M100)-, solid lines) and DIR-Majority-

vote (DIR-, dashed lines) on the UTSW test set while using different numbers of moving 

images and 100 fixed images for generating pseudo-labels.
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Figure 5. 
Comparison among the proposed method with 10 (Ours(N10M10)) and 50 fixed images 

(Ours(N10M50)), DIR-average, and DIR-majority-vote on the TCIA test set in box plots. 

The box shows the interquartile range (IQR) and the whiskers are 1.5× IQR. The horizontal 

line represents the median, the cross the mean Dice score, and the circle the outlier. All the 

experiments exploited 10 TCIA scans as moving images.
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Figure 6. 
Qualitative comparison among the proposed method, DIR-majority-vote and fully-

supervised model (FS-model) on a patient of the TCIA test set. The first and third rows are 

the predictive contours of each method while the second and fourth rows are the comparison 

between predictive contours and gold standards.
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Table 1.

The organ-at risk (OARs) to be studied and their mean volume (mm3) in the TCIA dataset. In our 

segmentation model, the mandible is segmented in level 1 and others in level 2.

OARs Mandible Parotid-R Parotid-L Submand-R Submand-L

Volume (mm3) 61093.46 30289.71 29345.19 9059.90 8846.28
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Table 2.

The numbers of CT images on TCIA, PDDCA and UTSW test sets.

Dataset Mandible Parotid-R Parotid-L Submand-R Submand-L

TCIA 11 11 11 11 11

PDDCA 12 12 12 12 12

UTSW 6 5 6 4 6
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Table 3.

Mean DSC (%) and standard deviation (in parentheses) of DIR-average and DIR-majority-vote with different 

numbers of moving images on the TCIA test set.

Method Moving images Mandible Parotid-R Parotid-L Submand-R Submand-L

DIR-average

2 81.1 (±7.4) 65.0 (±9.2) 64.4 (±8.1) 50.5 (±14.0) 51.8 (±11.3)

5 80.4 (±6.9) 62.7 (±8.6) 62.6 (±8.2) 49.4 (±12.7) 50.6 (±11.8)

10 78.7 (±8.0) 61.9 (±9.3) 63.6 (±8.6) 46.5 (±14.1) 48.7 (±11.9)

DIR-majority-vote

2 79.9 (±8.0) 61.8 (±8.9) 60.8 (±6.3) 45.4 (±14.4) 50.0 (±10.4)

5 86.7 (±3.7) 66.0 (±8.4) 66.1 (±7.7) 54.2 (±10.3) 54.7 (±11.4)

10 87.2 (±2.7) 67.8 (±7.3) 69.1 (±7.1) 49.9 (±12.2) 54.0 (±9.4)
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Table 4.

Mean DSC (%) and standard deviation (in parentheses) of the proposed method with different registration 

algorithms for generating pseudo-labels. All the experiments employ 10 TCIA scans as moving images and 50 

UTSW scans as fixed images.

Test set Registration algorithm Mandible Parotid-R Parotid-L Submand-R Submand-L

TCIA
Rigid registration 51.5 (±11.7) 59.1 (±11.3) 58.3 (±12.5) 54.8 (±10.9) 52.8 (±8.9)

DIR 87.9 (±2.5) 73.4 (±6.9) 73.4 (±6.9) 61.0 (±7.6) 63.2 (±8.8)

UTSW
Rigid registration 41.5 (±13.2) 43.7 (±12.2) 50.9 (±12.0) 29.4 (±19.4) 31.5 (±16.5)

DIR 84.5 (±3.9) 62.1 (±11.4) 68.1 (±10.9) 42.0 (±29.1) 54.4 (±19.1)
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Table 5.

Mean DSC (%) and standard deviation (in parentheses) of the proposed method and the fully-supervised 

method (FS-model) trained with ground truth labels. Our segmentation model was trained with pseudo-labels 

registered from 10 TCIA scans to 50 UTSW scans, while the fully-supervised method was trained with 10 

labeled TCIA scans.

Test set Method Mandible Parotid-R Parotid-L Submand-R Submand-L

TCIA

DIR-majority-vote 87.2 (±2.7) 67.8 (±7.3) 69.1 (±7.1) 49.9 (±12.2) 54.0 (±9.4)

FS-model 88.2 (±1.6) 69.3 (±11.7) 70.6 (±9.0) 59.1 (±9.6) 65.4 (±6.8)

Ours(N10M50) 87.9 (±2.5) 73.4 (±6.9) 73.4 (±6.9) 61.0 (±7.6) 63.2 (±8.8)

UTSW

DIR-majority-vote 83.9 (±2.5) 52.8 (±10.2) 60.1 (±8.0) 34.2 (±23.3) 46.6 (±14.5)

FS-model 84.3 (±3.9) 61.8 (±9.7) 68.3 (±7.9) 41.4 (±27.7) 49.6 (±19.1)

Ours(N10M50) 84.5 (±3.9) 62.1 (±11.4) 68.1 (±10.9) 42.0 (±29.1) 54.4 (±19.1)

PDDCA

DIR-majority-vote 87.6 (±3.3) 73.9 (±8.5) 73.5 (±5.6) 54.7 (±14.5) 59.4 (±11.1)

FS-model 88.1 (±1.6) 76.2 (±8.7) 75.8 (±4.7) 61.8 (±9.3) 63.4 (±8.6)

Ours(N10M50) 88.1 (±2.2) 77.2 (±8.1) 76.6 (±4.4) 61.0 (±10.5) 63.9 (±10.1)
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Table 6.

Ninety-five percentile Hausdorff distance (mm) and standard deviation (in parentheses) of the proposed 

method and the fully-supervised method (FS-model) trained with ground truth labels.

Test set Method Mandible Parotid-R Parotid-L Submand-R Submand-L

TCIA

DIR-majority-vote 2.8 (±0.8) 9.2 (±3.9) 9.3 (±2.8) 8.2 (±1.8) 9.2 (±4.0)

FS-model 2.6 (±0.7) 10.3 (±5.5) 10.5 (±5.3) 7.7 (±3.5) 5.8 (±1.7)

Ours(N10M50) 2.7 (±1.3) 8.2 (±3.4) 8.2 (±2.4) 7.1 (±1.7) 7.4 (±3.6)

UTSW

DIR-majority-vote 4.2 (±2.3) 12.1 (±4.2) 21.8 (±25.8) 16.33 (±13.5) 10.3 (±2.4)

FS-model 3.5 (±1.5) 11.9 (±5.0) 8.2 (±1.7) 16.09 (±15.6) 8.4 (±3.4)

Ours(N10M50) 3.6 (±2.2) 10.5 (±4.3) 9.4 (±3.0) 14.65 (±12.9) 7.5 (±2.7)

PDDCA

DIR-majority-vote 2.6 (±1.0) 7.8 (±2.9) 8.3 (±3.2) 7.2 (±2.9) 7.3 (±2.0)

FS-model 2.5 (±0.7) 7.6 (±3.0) 8.1 (±2.1) 6.5 (±1.7) 6.6 (±2.1)

Ours(N10M50) 2.2 (±0.7) 7.3 (±2.7) 7.8 (±2.6) 6.8 (±2.5) 7.1 (±2.5)
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Table 7.

Average symmetric surface distance (mm) and standard deviation (in parentheses) of the proposed method and 

the fully-supervised method (FS-model) trained with ground truth labels.

Test set Method Mandible Parotid-R Parotid-L Submand-R Submand-L

TCIA

DIR-majority-vote 0.43 (±0.15) 2.45 (±0.90) 2.34 (±0.82) 2.85 (±0.89) 2.71 (±1.13)

FS-model 0.40 (±0.08) 2.56 (±1.33) 2.49 (±1.21) 2.39 (±0.78) 1.86 (±0.61)

Ours(N10M50) 0.40 (±0.14) 2.11 (±0.77) 2.15 (±0.82) 2.30 (±0.59) 2.20 (±1.04)

UTSW

DIR-majority-vote 0.83 (±0.23) 3.33 (±0.86) 3.48 (±1.35) 7.71 (±8.49) 3.10 (±0.93)

FS-model 0.77 (±0.32) 2.79 (±0.97) 2.25 (±0.44) 7.85 (±9.52) 2.91 (±1.25)

Ours(N10M50) 0.74 (±0.26) 2.77 (±0.95) 2.47 (±0.75) 6.76 (±7.57) 2.63 (±1.12)

PDDCA

DIR-majority-vote 0.44 (±0.15) 2.03 (±0.97) 2.05 (±0.60) 2.38 (±1.06) 2.14 (±0.74)

FS-model 0.45 (±0.10) 1.99 (±1.01) 1.95 (±0.53) 2.01 (±0.58) 1.98 (±0.56)

Ours(N10M50) 0.44 (±0.13) 1.87 (±0.85) 1.92 (±0.46) 2.14 (±0.74) 2.03 (±0.72)
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Table 8.

Mean DSC (%) and standard deviation (in parentheses) of the proposed method trained with 500 pseudo 

contours, which are generated by 5/10 moving images and 100/50 fixed images.

Test set Method Mandible Parotid-R Parotid-L Submand-R Submand-L

TCIA
Ours(N5M100) 86.7 (±2.8) 69.5 (±8.5) 68.4 (±8.6) 58.6 (±7.7) 61.0 (±7.5)

Ours(N10M50) 87.9 (±2.5) 73.4 (±6.9) 73.4 (±6.9) 61.0 (±7.6) 63.2 (±8.8)

UTSW
Ours(N5M100) 85.4 (±2.9) 58.3 (±10.4) 66.0 (±11.5) 38.1 (±26.1) 53.1 (±20.1)

Ours(N10M50) 84.5 (±3.9) 62.1 (±11.4) 68.1 (±10.9) 42.0 (±29.1) 54.4 (±19.1)
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