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Abstract

Purpose: Online adaptive radiotherapy would greatly benefit from the development of reliable 

autosegmentation algorithms for organs-at-risk and radiation targets. Current practice of manual 

segmentation is subjective and time-consuming. While deep learning-based algorithms offer ample 

opportunities to solve this problem, they typically require large datasets. However, medical 

imaging data are generally sparse, in particular annotated MR images for radiotherapy. In this 

study, we developed a method to exploit the wealth of publicly available, annotated CT images to 

generate synthetic MR images, which could then be used to train a convolutional neural network 

(CNN) to segment the parotid glands on MR images of head and neck cancer patients.

Methods: Imaging data comprised 202 annotated CT and 27 annotated MR images. The unpaired 

CT and MR images were fed into a 2D CycleGAN network to generate synthetic MR images from 

the CT images. Annotations of axial slices of the synthetic images were generated by propagating 

the CT contours. These were then used to train a 2D CNN. We assessed the segmentation accuracy 

using the real MR images as test dataset. The accuracy was quantified with the 3D Dice similarity 
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coefficient (DSC), Hausdorff distance (HD), and mean surface distance (MSD) between manual 

and auto-generated contours. We benchmarked the approach by a comparison to the interobserver 

variation determined for the real MR images, as well as to the accuracy when training the 2D CNN 

to segment the CT images.

Results: The determined accuracy (DSC: 0.77±0.07, HD: 18.04±12.59mm, MSD: 

2.51±1.47mm) was close to the interobserver variation (DSC: 0.84±0.06, HD: 10.85±5.74mm, 

MSD: 1.50 ±0.77mm), as well as to the accuracy when training the 2D CNN to segment the CT 

images (DSC: 0.81 ±0.07, HD: 13.00±7.61mm, MSD: 1.87±0.84mm).

Conclusions: The introduced cross-modality learning technique can be of great value for 

segmentation problems with sparse training data. We anticipate using this method with any 

nonannotated MRI dataset to generate annotated synthetic MR images of the same type via image 

style transfer from annotated CT images. Furthermore, as this technique allows for fast adaptation 

of annotated datasets from one imaging modality to another, it could prove useful for translating 

between large varieties of MRI contrasts due to differences in imaging protocols within and 

between institutions.

Keywords
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1. INTRODUCTION

Radiotherapy (RT) requires accurate segmentation of irradiation targets and organs at risk 

(OARs) to be able to plan and deliver a sufficient dose to the targets while minimizing side 

effects to the OARs. Current practice of manual segmentation is subjective and time-

consuming,1,2 in particular for the treatment of head and neck cancer (HNC) patients due to 

the complex anatomy, including many OARs and irradiation targets associated with HNC. 

Automating the outlining of regions of interest (ROIs) would allow to alleviate the enormous 

workload of manual segmentation and reduce inter- and intraobserver variabilities.3

New methodologies based on deep learning offer ample opportunities to solve this problem, 

of which deep convolutional neural networks (CNNs)4 are particularly promising. CNNs are 

supervised approaches that require annotated training images. Recently, CNNs have 

successfully been implemented to contour OARs on HNC CT images.5–9 The success of 

CNNs on CT images can strongly be attributed to the large amounts of available annotated 

data, as CT is being used on daily base in most RT clinics throughout the world. While it is 

still unclear how many training examples deep learning-based algorithms need, it is evident 

that the generalizability increases with an increasing diversity in the training data.

However, for less common imaging techniques that are only starting to be used in clinical 

routine for radiotherapy, such as ultrasound,10 positron emission tomography (PET),11,12 

and magnetic resonance imaging (MRI),13–16 annotated data are rare. Furthermore, MRI 

contrast varies a lot depending on sequence settings, causing limited transfer-ability onto a 

new dataset with new MRI settings. Despite the limited ground truth data, these novel 

techniques can greatly gain from automatic contouring, particularly when these imaging 
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techniques are to be applied daily.17–22 In this study, we exploited the large amount of 

annotated CT datasets to enrich the MRI datasets which have limited or no annotated data.

A common approach to tackle the lack of training data is to augment them with random 

rotations, translations, geometric scaling, mirroring, contrast stretching, or elastic 

deformations.23,24 While these methods try to increase the diversity in the training data, they 

are generally not able to mimic the large variabilities existing in the full population of 

patients’ anatomies. Another approach is to use pretrained networks on related problems via 

transfer learning.25 Instead of training a model from scratch, weights from a model, which 

was trained for another, typically much larger dataset and task, can be used to improve 

generalization and robustness. Most published studies use transfer learning by starting from 

pretrained classification models on natural images.26,27 However, data augmentation and 

transfer learning require that the ground truth segmentation needs to be repeated for every 

novel MR contrast setting. Moreover, these methods face the challenge to be able to reflect a 

broad range of patients’ anatomies.

Recently, deep learning has been used for synthetic image generation.28 Especially 

promising are generative adversarial networks (GANs) which can learn to mimic any data 

distribution and have been applied to image-to-image translation problems, such as 

reconstructing objects from edge maps.29 In the field of medical image segmentation, GANs 

were lately employed for data augmentation purposes.30,31 Conventional GANs require 

paired datasets as their input, which in practice may be hard to obtain for medical imaging 

and would limit the dataset to patients who were imaged with multiple imaging modalities. 

An extension of GANs to unpaired datasets is the CycleGAN.32 Such a network was, for 

example, used to generate paintings from photographs, which would be infeasible if matched 

images were required. In a radiotherapy context, the CycleGAN was used to generate 

synthetic CT images from unmatched brain MR data33 for MR-only treatment planning 

purposes.

In this study, we used a CycleGAN to generate synthetic MR images from CT images of a 

different patient cohort. Instead of using the synthetic images for data augmentation, we 

took one step further and trained a 2D CNN solely based on the synthetic images to segment 

the parotid glands. This resembled the situation where one would like to employ annotated 

data from a different imaging domain (here CT images) for a new imaging domain (here MR 

images) to avoid the need for the time-consuming and expensive manual segmentation 

process. Furthermore, the CycleGAN method allows for the datasets to be unpaired. To the 

best of our knowledge, this was the first study to generate synthetic MR images from CT 

images for the purpose of training a network to segment MR images.

2. MATERIALS AND METHODS

All data processing was done in Python (version 3.6). Neural networks were trained using 

Pytorch (version 0.4.1), Tensorflow (version 1.10.0), and Keras (version 2.2.2).
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2.A. Data acquisition and preparation

The imaging database comprised 202 annotated CT images and 27 annotated MR images of 

two different patient cohorts. The MR library contained baseline T2-weighted MR scans of 

27 patients, all with a tumor at the base of the tongue and treated with RT at the MD 

Anderson Cancer Center (Houston, Texas, USA). One clinician at the Royal Marsden 

Hospital (London, UK) manually delineated the left and right parotid glands using the 

treatment planning system Raystation (Raysearch, Stockholm, Sweden). The CT images 

from the publicly available database of the Cancer Imaging Archive,34 as well as the 

MICCAI HNC segmentation challenge35 served as additional input data for the image 

synthesis method. Figure 1 demonstrates exemplary axial, sagittal and coronal views of all 

imaging modalities, together with the manually segmented ROIs. Table I lists the relevant 

image acquisition parameters for each imaging modality of the original database.

As the resolution and field of view of the MR and CT images were different from each other, 

we developed an automated pipeline to ensure that CT and MR images had a similar 

resolution and field of view. Both CT and MR images were resampled to a 1×1 mm2 in-

plane resolution. The CT images were cropped to a window of 256×256 pixels in-plane, 

centered around the head, which was obtained by detecting the skull outline. In the cranial-

caudal direction, the range of the CT images was manually restricted to be similar to that of 

the MR images. Resampling along the cranial-caudal direction was not necessary as the 

applied method was a 2D method and input was unpaired for the CycleGAN.

As image intensities can vary between MR images, we standardized the contrast with an 

intensity histogram-based thresholding technique, before feeding them into the network. We 

rescaled the intensities in the CT images to the recommended soft-tissue window (level 40, 

window 350 HU)36 to increase visibility of the parotid glands. Additionally, intensities of 

both imaging modalities were mapped to an intensity range between 0 and 255.

2.B. Overview of employed method

Figure 2 provides an overview of the method employed in this study. It consisted of three 

steps:

1. For each axial slice of the CT images, a corresponding* synthetic MR axial slice 

was generated using the 2D CycleGAN (see Section 2.C.).

2. A 2D U-Net was trained using the synthetic MR images and corresponding 

manual contours from CT images as input (see Section 2.E.).

3. The trained 2D U-Net was used to propose contours on unseen real MR images 

(see Section 2.G).

2.C. Synthetic MR generation

Step (1) of the workflow illustrated in Fig. 2 comprised the synthetic MR generation. The 

unpaired 2D slices from the CT and MR images were fed into a 2D CycleGAN network to 

generate synthetic MR images for each of the 202 CT images. We used the PyTorch37 

*As there was no one-to-one mapping for this case, the aim was to map to a “plausible” MR image.
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implementation provided by Zhu et al.32 on Github.† In the following paragraphs, we shortly 

describe the CycleGAN and the adjustments we made to the PyTorch implementation. For 

further details, we refer to the original implementation and publication.32

2.C.1. General workflow and objectives—The CycleGAN consists of two basic 

networks: a generator and a discriminator network. In our case, the generator’s task was to 

generate realistic examples of MR images from a given CT image, while the discriminator’s 

task was to classify presented examples as real or fake. These two networks compete in an 

adversarial game of which the aim is to improve each other’s performance. While this 

method can generate images which appear to be realistic, nothing ensures a corresponding 

anatomy between the input CT image and the generated synthetic MR image.

To reduce the space of possible mappings, CycleGANs employ a cycle-consistency strategy.
32 This is achieved by introducing two additional networks, a generator that is trained to 

generate CT images from MR images and a discriminator that learns to distinguish real from 

fake CT images. Cycle-consistency loss functions then guarantee that reconstructed CT 

images which have gone through the full cycle (CT->MR->CT) are similar to the original 

CT images and vice versa for MR images. Figure 3 illustrates these forward 

(CT→MR→CT) and backward cycles (MR→CT→MR).

To further constrain the generated synthetic MR images to ones that geometrically match the 

source CT images, we introduced a geometric consistency loss as additional contribution to 

the objective function. For this purpose, we determined the skull mask of the source CT and 

the synthetic MR and calculated the binary cross-entropy between these masks. We 

introduced the same loss for the mapping in the opposite direction (source MR to synthetic 

CT). With M(ICT) denoting the skull mask of a CT image ICT and GMR representing the 

generator which generates MR images from CT images, the geometric loss term ℒgeo,CT for 

the forward cycle yields

ℒgeo,CT GMR, ICT = M GMR ICT ⋅ log M ICT
+ 1 − M GMR ICT ⋅ log 1 − M ICT . (1)

The geometric loss term for the backward cycle can be obtained by replacing the MR by the 

CT and vice versa. This loss function was an addition to the default network. The full 

network architectures of both, generator and discriminator, are illustrated in Fig. 4.

2.C.2. Training parameters—We employed the recommended training settings, as 

described in the original publication32 (Adam optimizer38 with batch size 1, initial learning 

rate 2 × 10−4 fixed for 100 epochs and linearly decaying to zero over another 100 epochs, 

where in each epoch, the algorithm iterates over all training images.). For the respective 

contributions to the full objective function, which is composed of the weighted sum of the 

individual terms, we set the weights to λadversarial = 1 for the adversarial loss term, λcycle = 

10 for the cycle-consistency terms, and λgeo = 10 for the geometric consistency terms.

†https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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2.D. Data cleaning as input for segmentation network

Since not all synthetic MR images perfectly matched the input CT, we performed a data 

cleaning where we only selected slices that were suitable for the segmentation of the parotid 

glands. The selection was done based on the Dice overlap of the external outline of the head 

between the synthetic and real image where we discarded all images that had an overlap of 

less than 80%. Furthermore, we explored constraints on the external outline of the head and 

decided to perform a refinement 2D registration to map synthetic MR images to the original 

CT. We performed the registration using the Elastix toolkit39 (rigid registration followed by 

deformable registration, CPP grid spacing: 8 mm, similarity measure: mutual information, 

optimizer: gradient descent). As the synthetic MR images were already generated in the 

same geometrical space as the CT, the segmentation of the CT formed the gold standard MR 

segmentation for the segmentation network.

2.E. Segmentation network

After data cleaning, we fed all remaining 2D synthetic MR images (approximately 1500) 

into a 2D U-Net as training data (step (2) of the workflow in Fig. 2). The U-net was trained 

to generate contours for the input MR images. Figure 5 illustrates the network’s architecture 

(5 resolution levels, starting at 64 features and ending at 1024 features at the lowest 

resolution in the bottleneck).

We split the data into 80% training and 20% validation to choose suitable hyperparameters. 

The inference was performed on the 27 real MR images, which comprised the testing data. 

We trained the segmentation network for 100 epochs with an initial learning rate of 5 × 10−5 

We used the Adam optimizer38 and a Dice similarity loss function. We gradually reduced the 

learning rate by monitoring the validation loss, down to a minimum of 10−7 and employed 

early stopping when the validation loss did not decrease by more than 1% after a patience of 

10 epochs.

2.F. Computation time

The run times were determined for program execution on a single Tesla V100 with 16 GB 

VRAM. Inference times are stated per patient, where we calculated the average over all 27 

patients, as well as the standard deviation.

2.G. Geometric evaluation

We evaluated the performance of the segmentation network by calculating the Dice 

similarity coefficient (DSC), Hausdorff distance (HD), and mean surface distance (MSD) 

between manual and auto-generated contours. We compared the determined accuracy to 

training the segmentation network with the CT data (CT only) as a benchmark. It is a known 

problem that the evaluation of auto-segmentation suffers from the lack of the ground truth. 

Interobserver variability can provide an estimate of the upper bound on the desired auto-

segmentation accuracy. We compared our results to the interobserver variability which we 

had determined in a previous study.40 That interobserver study was performed on a subset of 

the patients from this current study. In the referenced study, three observers including the 

one in our current study contoured the parotid glands. To determine the interobserver 

variability between two observers we first calculated the DSC, HD, and MSD between the 
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respective observers’ contours for each patient and defined the variability as the average and 

SD over all patients. The overall interobserver variability was then calculated as the average 

of the three individual interobserver variabilities, with the SD being the root mean square of 

the three individual SDs.

3. RESULTS

3.A. Synthetic MR generation

Figure 6 illustrates selected (green box) and rejected (red box) example cases of synthetic 

MR images together with their corresponding source CT images. In most rejected cases, the 

synthetic MR images appeared as if they could be real MR images, however, they did not 

reflect the anatomy visible in the source CT images.

3.B. Computation time

Training of the CycleGAN took approximately 72 h. The training of the 2D U-Net took 

approximately 150 min, whereas inference was done within 0.86±0.02s per patient.

3.C. Qualitative segmentation results

Figure 7 illustrates four typical example cases for autogenerated contours using the cross-

modality approach, compared to the manual contours. We selected an axial, sagittal, and 

coronal view for each of the patients. The auto-generated contours followed the manual ones 

closely.

3.D. Geometric evaluation

Figure 8 illustrates boxplots, comparing our developed method, cross-modality learning, to 

the CT-trained network. Table II lists mean and standard deviations for the DSC, HD, and 

MSD for all methods. The cross-modality learning accuracy (DSC: 0.77±0.07, HD: 

18.32±10.12mm, MSD: 2.51±1.47mm) stayed below, but was close to the interobserver 

variability (0.84±0.04, 10.76±4.35mm, 1.40±0.45mm), as well as the CT-trained (DSC: 

0.82±0.09, HD: 13.01 ±5.61mm, MSD: 1.81±0.99mm) network.

4. DISCUSSION

In this study, we employed a new technique, cross-modality learning, to transfer knowledge 

gained from one application (annotated CT images) to a new application (nonannotated MR 

images). This technique tackles the general problem of data scarcity in medical imaging. To 

the best of our knowledge, we were the first to generate synthetic MR images from 

annotated CT images to train an MR segmentation network. We found that it was possible to 

obtain decent quality annotations of MR images from annotated CT data.

We anticipate that cross-modality learning could be used to generally adapt a trained 

network of one imaging modality to another imaging modality. Auto-segmentation methods 

are usually trained on a very particular subset of imaging data. These might work well when 

the target images are similar to the ones that have been used in the development phase. 

However, in clinical routine, there are frequent changes, especially in MR image settings. 
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While in a conventional approach this could mean that a new database with annotations of 

the new images would need to be created, the cross-modality learning would be able to reuse 

the already existing annotations on existing data and transfer it to the new data.

In this study we investigated the extreme case where no annotated MR data are available. In 

future work, one could combine real and synthetic MR data, for example by using the 

synthetic MR images as augmentation data, or by training the network with the synthetic 

data as initialization and fine-tune using the real MR data.

4.A. Synthetic MR generation

The CycleGAN was generally able to generate synthetic MR image from the input CT 

images. In the cases where it failed, the synthetic MR image often still looked like a real MR 

image, albeit not corresponding to the anatomy of the source CT image. Depending on the 

application, such images still could be useful. However, for our purpose, where we 

propagate the contours, one requires a satisfactory agreement between the represented 

anatomies. The failed generation could stem from the fact that we only had a small number 

of real MR images from which the CycleGAN could perform a style transfer. As the 

CycleGAN learns to map features from the source data (here: CT) to the target data (here: 

MR), it might focus on irrelevant features, such as smaller heads in the target data. Failure to 

generate an MR that corresponded well to the input CT especially happened at the superior 

and inferior boundary slices. Due to the limited field of view of the training MR images in 

that direction, there were not a lot of samples available for the CycleGAN to learn.

We furthermore detected a systematically narrower external outline of the head for the 

synthetic MR images compared to the source CT. In theory, no penalty in the CycleGAN 

prevents it from learning this narrowing function, as it could learn to generate more 

“narrow” MR images in the forward generator and go back to “broader” CT images in the 

backwards generator. This issue could be related to the skin outline being visible in the CT 

images but not in the MR images. While we tried to enforce a better overlay between these 

outlines by incorporating a geometric consistency penalty in the loss function, we were not 

able to entirely remove this issue. Wolterink et al.33 did not report on any similar issues. 

However, they trained the CycleGAN using CT and corresponding MR images stemming 

from the same patients, whereas our study was aiming at datasets where there were no 

matched data available and the CT and MR images therefore originated from different 

patients, subject to a large variability within the dataset itself. A recent study has reported 

similar findings and introduced an additional shape-consistency loss to mitigate this 

problem.41

Recent research has shown that GANs are generally challenging to train and face problems 

with nonconvergence, mode collapse (producing limited varieties of samples) and 

diminishing gradients of the generator when the discriminator becomes too powerful.42 As 

they have been shown to be highly susceptible to hyperparameter selections,42 we expect 

that one could improve the synthetic MR generation further by tuning more 

hyperparameters. However, this would require more training data than what was available 

for this proof-of-concept study. Once more data become available, one could further 

optimize these parameters in future studies. In this study, we performed a 2D registration 
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between the CT and the corresponding synthetic MR image to mitigate these detected 

“narrowing” transformations.

4.B. Geometric evaluation

The accuracy of the cross-modality method stayed below the interobserver variability, as 

well as the CT-trained network. We believe that there are several reasons for the 

crossmodality method to be inferior in segmentation quality compared to networks trained 

on real data and we believe that the accuracy of the network can be further improved if these 

issues are addressed adequately. The quality of the ground truth contours for the CT images 

was not as high as for the MR images. Three typical examples demonstrating the inferior 

quality of the CT contours are illustrated in Fig. 9.

This was also evident from the accuracy of the CT-trained network. The MR images in this 

study were contoured by the observers specifically for the purpose of creating accurate 

contours, hence leading to a generally larger agreement. The CT data, on the other hand, 

were contoured in clinics for RT and not for a contouring study. The CT contours hence 

represent a typical clinical dataset. The MR contours used to evaluate the cross-modality 

method were done by a single observer, whereas the CT contours used as a reference for the 

CT-only training were done by multiple observers, introducing further uncertainty. We 

expect that the true agreement between observers in the CT dataset would be lower than 

what the interobserver variability from the MR data suggests. However, it was not possible 

to obtain this value for our study.

The cross-modality method was trained using the suboptimal contours of the CT dataset but 

was evaluated on the accurate contours of the MR dataset. The CT-only method, on the other 

hand, was compared to the suboptimal contours of the CT dataset. These reasons led to a 

worse performance for the cross-modality method per definition, when compared to the 

interobserver variability and the CT-only method. We believe that the cross-modality 

approach best represents the true performance, as in a commercial setting, the end user (e.g., 

clinician 1) will use a product that was trained on data from other clinicians (clinicians 2-N) 

and the end user will always compare the performance of the product to what he or she 

would have normally contoured. The CT-only method was only added as an optimal 

reference. The fact that the cross-modality method scored only marginally worse (the CT-

only compared to cross-modality difference was included in the confidence intervals of 1 

SD) is very encouraging.

We found two challenges in the synthetic MR generation. First, the synthetic MR images did 

not always represent the corresponding anatomy of the CT images and second, a registration 

between source CT and synthetic MR images was necessary. These challenges may have 

introduced a further inaccuracy in the segmentation network, hence resulting in a lower 

segmentation quality of the cross-modality learning method compared to training the 

network with the CT images.

In comparison to a transfer learning approach, we could directly incorporate the varieties 

found in a larger patient database to the small subset of MR images. Unlike in typical 

transfer learning applications, we did not merely want to transfer the ability to detect edges 
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and simple shapes. Instead, we aimed to transfer the gained knowledge about the variety of 

shapes and locations of the parotid glands from the network trained on CT images. 

Additional experiments (not shown in this paper) have shown that it is challenging to 

determine where the desired information is stored in the networks and hence it is not 

straightforward to transfer that information to a new application. Furthermore, unlike the 

transfer learning approach, no additional manual segmentation was necessary with the cross-

modality learning method.

4.C. Limitations of this study

A limitation of the introduced cross-modality learning was that 2D slices were predicted 

instead of directly generating 3D volumes. This led to inconsistencies between some slices 

and only allowed for a 2D segmentation network. Employing a fully 3D approach may 

reduce the number of falsely predicted synthetic MR images. However, current state of the 

art GPUs, including ours, are typically not able to train such a 3D CycleGAN due to 

insufficient memory.

In this proof-of-principle study, 2D image registration between the CT and synthetic MR 

slices was necessary. We are confident that in future work, when larger CT and MR 

databases become available, this need will be removed. Such databases would enable the 

CycleGAN to capture the important features in both imaging modalities and lead to better-

quality synthetic MR images.

5. CONCLUSION

We employed cross-modality learning, to transform annotated CT images into synthetic 

annotated MR images. These synthetic MR images were of sufficient quality to train a 

network for automated contouring. This technique of crossmodality learning can be of great 

value for segmentation problems where annotated training data are sparse. We anticipate 

using this method with any MR training dataset to generate synthetic MR images of the 

same type via image style transfer from CT images. Furthermore, as this technique allows 

for fast adaptation of annotated datasets from one imaging modality to another, it could 

prove to be useful for translating between large varieties of MRI contrasts due to differences 

in imaging protocols within and between institutions.
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Fig 1. 
Examples of images used in this study: Axial, coronal and sagittal views of the T2w MR 

(top row) and the CT images (bottom row). The colored regions represent the manually 

segmented regions of interest of the left (red) and right (green) parotids. The CT images 

were downloaded from the publicly available database of the Cancer Imaging Archive,34 as 

well as the MICCAI head and neck cancer segmentation challenge.35
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Fig 2. 
Overview of the proposed cross-modality learning method: in the first step (top row), 

synthetic MR images are generated through the CycleGAN network. The synthetic MR 

images are then fed into a 2D U-Net, together with the annotations from the CT images 

(second row). In a third step, the trained network is applied to unseen real MR images 

(bottom row)
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Fig 3. 
Illustration of the CycleGAN method: two cycles are introduced such that the generated 

synthetic images resemble the input images (Cycle for synthetic MR images on the left and 

for synthetic CT images on the right). The different networks are illustrated in detail in Fig. 

4.
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Fig 4. 
Generator and discriminator networks: This figure illustrates the generator network (top 

row) and the discriminator network (bottom row). The generator consists of three 

convolutional layers (conv) with a rectified linear activation function (ReLU), followed by 

nine residual blocks, two transpose convolutional layers, and a final convolutional layer with 

a tanh activation function. The discriminator consists of five convolutional layers and 

classifies images into two categories: real or fake. The black numbers on top of the layers 

represent the number of feature channels. Below each array, the colored numbers denote the 

convolutional kernel size (#x#), the size of the stride s and the size of potential zero-padding 

zp.
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Fig 5. 
Network architecture: This figure illustrates the architecture of the segmentation network 

(2D U-Net with five resolution levels, starting at 64 features and ending at 1024 features at 

the lowest resolution in the bottleneck). Each rectangle corresponds to a feature map. The 

feature channels are denoted at the top of the rectangles. Striped boxes represent copied 

feature maps. The colored arrows denote the different operations as indicated in the legend. 

The output for all three approaches is a 2D segmentation map.
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Fig 6. 
Typical examples of synthetic MRs and their corresponding source CTs: The green boxes 

highlight example cases that were selected for further learning. The red boxes highlight 

cases where the CycleGAN failed to produce anatomically corresponding MR images for 

the respective CT images and hence were rejected for further analysis.
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Fig 7. 
Qualitative results for cross-modality method: In each column a typical example case of the 

cross-modality learning approach (in red) is shown. The manual contours are shown in blue. 

The rows correspond to an axial, sagittal, and coronal cross-section, respectively. Each 

example originates from a different patient image.
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Fig 8. 
Boxplots of the Dice similarity coefficient, the Hausdorff distance and the mean surface 

distance (from top to bottom), averaged for both parotid glands. The introduced method (in 

red) is compared to the CT-trained network (in green). The gray bar represents the 

interobserver variability.40
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Fig 9. 
Quality of CT contours: This figure illustrates three typical example of poor quality CT 

contours, where the contours do not enclose the full parotids (left and right parotid in the 

first column, right parotid in the second column) or are fully missing (left parotid in the last 

column).
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Table I.

Imaging parameters of the main, unprocessed database (T2-weighted MR and CT images).

Parameter T2w MR CT

FOV [#pixels] 512×512 512×512

#slices 30 [165, 235]

Voxel size [mm3] 0.5×0.5×4 0.98×0.98×2.5

TE [ms] [96.72, 107.30] n.a.

TR [ms] [3198, 4000] n.a.

Flip angle [°] 90 n.a.

Sequence type 2D T2w spin echo n.a.

Field strength/tube voltage 3 T 120 keV
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Table II.

Evaluation of the geometric accuracy of auto-segmenting the left and right parotid gland of the cross-modality 

learning approach (highlighted in bold). As a benchmark, we also include the geometric accuracy of the CT-

trained network.

ROI Method DSC─ HD─
 (mm) MSD─

 (mm)

Right Cross-modality learning 0.76 ± 0.06 18.32 ± 10.12 2.66 ± 1.26

Parotid CT only 0.81 ± 0.07 13.01 ± 5.61 1.87 ± 0.84

Interobserver variability 0.84 ± 0.04 10.76 ± 4.35 1.40 ± 0.45

Left Cross-modality learning 0.77 ± 0.04 17.75 ± 7.49 2.36 ± 0.75

Parotid CT only 0.82 ± 0.05 12.98 ± 5.15 1.74 ± 0.53

Interobserver variability 0.83 ± 0.04 10.94 ± 3.75 1.59 ± 0.63
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