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Abstract

With the advancement of next-generation sequencing and mass spectrometry, there is a growing 

need for the ability to merge biological features in order to study a system as a whole. Features 

such as the transcriptome, methylome, proteome, histone post-translational modifications and the 

microbiome all influence the host response to various diseases and cancers. Each of these 

platforms have technological limitations due to sample preparation steps, amount of material 

needed for sequencing, and sequencing depth requirements. These features provide a snapshot of 

one level of regulation in a system. The obvious next step is to integrate this information and learn 

how genes, proteins, and/or epigenetic factors influence the phenotype of a disease in context of 

the system.

In recent years, there has been a push for the development of data integration methods. Each 

method specifically integrates a subset of omics data using approaches such as conceptual 

integration, statistical integration, model-based integration, networks, and pathway data 

integration. In this review, we discuss considerations of the study design for each data feature, the 

limitations in gene and protein abundance and their rate of expression, the current data integration 

methods, and microbiome influences on gene and protein expression. The considerations 

discussed in this review should be regarded when developing new algorithms for integrating multi-

omics data.
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Introduction

The biological system is complex with many regulatory features such as DNA, mRNA, 

proteins, metabolites, and epigenetic features such as DNA methylation and histone post-

translational modifications (PTMs). Each of these features can be influenced by a disease 

and cause changes in cell signaling cascades and phenotypes. In addition to the host 

regulatory mechanisms response to disease, the microbiome can make changes to the 

expression of the host features such as their genes, proteins, and/or PTMs. In order to gain 

insight into mechanisms of disease, we need to investigate each of these features and their 

interplay. For instance, cancers such as melanoma, lung, and thyroid cancers are driven by 

the BRAF oncogene [1]. However, when patients are treated with therapies that inhibit 

BRAF, they often develop resistance. Recent multi-omics studies have revealed the 

heterogeneity and complexity of tumor features such as their genetic mutations, 

transcriptome, proteins, and signaling pathways. It is now appreciated that tumors can 

bypass the therapy and give rise to resistance programs [1, 2].

Proper integration of multi-omics approaches has allowed deeper insights into disease 

etiology, such as unveiling the myriad ways in which the microbiome may play a part in 

mitigating or enhancing disease risk. This case can be exemplified in regard to incomplete 

breakdown of bisphenol A (BPA), a mass-produced chemical that is widely used in food 

packaging, plastics, and resins. BPA has become a growing public health concern as BPA is 

an endocrine disruptor (as reviewed in Yu 2019 [3]). Thus, research into the fast and 

complete degradation of BPA, and other compounds via microbial means is of great interest. 

Yu and colleagues (2019) [3] were able to effectively combine multi-omics data to analyze a 

microbial community’s ability to break down bisphenol A (BPA) products. Though prior 

research had already discovered the microbes’ ability to break down BPA, the interactions 
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that allowed this reaction were yet unknown. Through a clever multi-omics design, the 

authors were able to use three major types of integrated analyses to identify differences in 

encoded and expressed microbial functions that were involved in the BPA-degrading 

microbial community [3].

Another example, Poore et al. (2020) leveraged multi-omics and machine learning tools, to 

detect microbial biomarkers from blood and tissues, serving as a great example of 

microbiome-informed oncology [4]. Here the research team was able to discriminate among 

healthy and cancer-free individuals as well as between multiple cancer types using plasma-

derived, cell-free microbial nucleic acids. Finally, we refer the reader to other reviews about 

the importance of integrating microbes into multi-omics studies [5–10].

There is a growing appreciation for multi-omics studies in context of therapeutic treatments. 

However, the methodologies are challenging for a variety of reasons. Each biological 

regulatory feature has technical hurdles to overcome due to sample preparation, sequencing 

platforms and depth, limits in instrumentation, and dynamic range [7, 11]. New data 

integration algorithms are being developed at a rapid pace. In this review, we discuss the 

background of cellular processes, current data integration methodologies, the considerations 

for multi-omics study design, and future directions.

Understanding cellular processes in context of ‘omics’

Biological systems are complex organisms with many various regulatory features. For 

instance, the human genome is composed of approximately 3.2 billion nucleotides that give 

rise to 20,000 to 25,000 protein coding genes, and through alternative splicing events lead to 

over 1 million proteins (Figure 1). Epigenetic modifications, as well as the microbiome, can 

influence the expression of both genes and proteins within the biological system under 

various conditions. In addition to varying numbers of genes and proteins within the 

biological system, there is also a large dynamic range of high and low abundant molecules 

within each feature. On top of biological complexity, there are limitations in each of the 

omic sequencing platforms. These factors should be considered when developing novel data 

integration methods and are discussed below.

Different organisms have varying numbers of genes and proteins. For instance, there are 

approximately 4,300, 6,000, and 25,000 genes in the E. coli, S. cerevisiae, and H. sapiens 
genomes, respectively [12]. This leads to approximately 2400 to 7800, 15,000, and 300,000 

mRNA molecules per cell for E. coli [13], S. cerevisiae [14], and H. sapiens [15], 

respectively. Mitochondrial transcripts can account for approximately 20% of 

polyadenylated RNA. Other high abundant transcripts include those that encode for 

ribosomal proteins and proteins involved in energy metabolism [16]. It is important to note 

in sequencing platforms that only a fraction of all transcripts in a sample are actually 

sequenced and the potentially large number of transcript isoforms generated by alternative 

splicing events presents another challenge when integrating gene and protein level 

expression [17]. The transcript isoforms may also change across biological conditions [18]. 

An overview of the complexity of DNA, DNA methylation, histone post-translational 

modifications, mRNA, and proteins in humans is depicted in Figure 1.
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The estimated number of proteins in a cell is around 2.36×106, in E.coli and about 2.3×109 

in H. sapiens HeLa cells [19]. Within the vast number of total proteins in a cell, the most 

abundant proteins can make up 5–10% of protein content and consist of ribosomal proteins, 

acyl carrier protein (ACP) (functions in fatty acid biosynthesis), chaperones and folding 

catalysts, proteins of glycolysis (backbone of energy and carbon metabolism), and structural 

proteins such as actin. Transcription factors are low abundant proteins and range from 1–103 

copies per cell in bacteria and 103 −106 in mammalian cells. The most abundant proteins 

usually have many thousands of copies in bacteria and many millions in mammalian cells. 

The number of genes regulated by a transcription factor depends on its concentration [19]. 

The protein content depends on the growth conditions and gene induction. Finally, this can 

become more complicated given the ratio of microbial-to-host cell count, which can depend 

on host cell type, and other factors [20].

Sequencing technologies for various omics platforms only capture a snapshot of what is 

happening in a population of cells at one point in time due to limitations in instrument 

detection, dynamic range, and the lifetime expression of the molecules. For instance, the 

lifetime expression of mRNA transcripts and proteins are vastly different. The median 

lifetime of an mRNA in E. coli is 5 min, 20 min in budding yeast, and 600 min for H. 

sapiens [19]. However, the lifetime of proteins is approximately 1–2 days. The rate of 

transcription and translation varies among organisms (E. coli: 10–100 nucleotides (nt) per 

second (s) and 10–20 amino acids (aa)/s. H. sapiens: 6–70 nt/s and 2 aa/s; rate of 

transcription and translation, respectively) (Figure 1). For E. coli a single mRNA transcript 

can give rise to 10–100 proteins before being degraded. Given this information we can see 

that there will be an increased chance of detection of proteins with a longer life span, 

conflating our choice of omics platforms and the resultant interpretations of cellular 

processes.

It is important to recognize the biological complexity of organisms, dynamic range of 

molecules, sequencing limitations, as well as the lifetime of expression of those molecules 

when considering a data integration study design, developing a new algorithm, and when 

interpreting the results.

Microbiome influences on genes and proteins

In recent years, the importance of the microbiome in host health has been recognized. The 

idea of the holobiont and the hologenome has had profound implications in how we view the 

microbiome [21, 22], especially in regard to therapeutics. The idea is that the interactions of 

the host’s own genome and its “second genome” [23], collectively called the hologenome, 

work together to provide an “insurance policy” against a variety of perturbations [24, 25] 

that affect host health. This close relationship of microbe-host interactions can be more 

explicitly termed the “microbiota-nutrient metabolism-host epigenetic-axis” [26].

Microbiota and their metabolites can affect the host epigenetic landscape, by directly 

modifying histones, altering DNA methylation profiles, and influencing the nature of 

noncoding RNAs (Figure 1). For example, histones can be modified by microbiota by 
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altering the activity of histone modification enzymes, and the levels of the enzymes 

substrates [27–29].

Microbiota can also affect the therapeutic nature of drugs. Many prodrugs, i.e. a drug that 

must metabolically converted in order to become pharmacologically useful, may remain 

inactive (i.e. the microbiota that mediate the conversion of the prodrug to its active form are 

not present), or the drug / prodrug, may not become bioavailable to the host, as a result of 

degradation by the hosts microbiota [30]. Moreover, patients taking NSAIDs (non-steroidal 

anti-inflammatory drugs), may promote the preponderance of antibiotic resistant bacteria as 

24% of tested over-the-counter NSAIDs inhibited the growth of at least one microbe in vitro 

[31]. These metabolomic effects, raises concerns about potential side-effects of therapeutic 

drugs, or other diet and treatment regimens, intended to be used on humans and agricultural 

systems. For example, antibiotics can eliminate histone deacetylase (HDAC) inhibitor-

producing microbes. These microbes, when present, can augment regulatory T (Treg) cells, 

which aids in anti-inflammatory processes [32].

This means that the diversity of microbial metabolic pathways, and their impact on drug 

pharmacokinetics and pharmacodynamics [33, 34], may partly explain the variation to drug 

responses between individuals and populations. Therefore, therapeutic treatments that 

involve the microbiome, may have to be regionally tailored [30, 35, 36].

Histones can undergo both variant replacement and post-translational modification (PTM), 

together these form the “histone code”. These local arrangements can affect chromatin 

structure in such a way that leads to the activation or repression of transcriptional activity 

[37, 38]. Thus microbes, through diet, have the ability to modify methylation and PTM 

profiles of the host, and can also affect the generation of short-chain fatty acids (SFCAs) 

through the fermentation of dietary carbohydrates. SFCAs, such as butyrate and acetate, can 

inhibit deacetylase levels. Meaning that chromatin structure becomes increasingly relaxed 

due to acetylation driving increased transcriptional activity [26]. In fact, it has been shown 

that microbes can affect host tissue acetylated and methylated chromatin states in a site-

specific and combinatorial fashion and even impact host developmental and metabolic 

phenotypes [37–39].

Modelling the development of the microbiome and its commensurate ontogenetic changes of 

the host, are increasingly being considered when trying to interrogate host health and 

therapeutics [40]. Many microbial ecological principles such as community assembly are 

being brought to bear to investigate these processes [41, 42]. These changes can be 

exemplified through host immune maturation, considering that the host immune system must 

not only be able to recognize “self” antigens, but also those of symbiotic microbes. How 

microbes influence the expression of the major histocompatibility complex (MHC), or how 

host heterozygosity in turn affects the diversity of the microbiota through MHC, is largely 

unknown and is an active area of study [26, 43]. Finally, the role of microbes as they relate 

to cancer and immune treatments are increasingly becoming targets for the development of 

therapeutic strategies [44, 45].

Graw et al. Page 5

Mol Omics. Author manuscript; available in PMC 2022 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Proteomics, in combination with other omics strategies have been used to interrogate disease 

processes. However, if we do not take into account the effects of microbiota (i.e. the entirety 

of the holobiont), then we may miss meaningful insights to develop potentially therapeutic 

treatments. Particularly those related to metabolic disorders (e.g. obesity), or the systemic 

effect of metabolites (e.g. bile acids) on organ systems [46]. There is far more variation of 

our “second genome” that can be leveraged for human benefit compared to our own [47].

Advances in Microbial Ecology

With heavy emphasis on understanding the effect of the microbiome it has become common 

practice for biomedical researchers to include methods to investigate the diversity of bacteria 

and archaea in their samples. The history of microbial ecology centers around the 

sequencing and alignment of appropriate phylogenetic marker genes. The 16S rRNA gene, 

first purposed as a marker by Woese and Fox (1977) [48], is by far the most commonly used 

marker gene with massive databases of full length gene isolate from environmental and 

culture-derived sources (e.g SILVA, RDP, Greengenes [49–51]. (Table 1). New microbial 

taxonomy databases, such as the Genome Taxonomy Database (GTDB), not only curate a 

16S rRNA gene reference database, but are also leveraging phylogenomic information [52, 

53] to provide a consistent framework for determining the phylogenetic context partial or 

complete genomes derived from metagenomes [54].

Apart from selecting a marker gene and appropriate database, researchers also have a choice 

between sequencing methods and platforms. Due to limitations of short-read platforms such 

as Illumina and Ion Torrent, researchers must select between variable regions of the ~1500 

bp 16S rRNA gene. Each variable region provides a different level of sensitivity and 

specificity depending on microbial community composition. This is why preliminary 

amplicon surveys often compare a collection of primer sets and variable regions. The 

combination of the primer set and the amplicon region that best differentiates among the 

common taxa in the study, is then chosen. Alternative long-read platforms have recently 

been adapted to deliver high-throughput full-length 16S rRNA for researchers that need 

taxonomic resolution beyond the genus to family level typically provided by short-read 

technologies [55].

Current metagenomic analysis techniques have allowed researchers to obtain partial and 

complete draft genomes from environmental/host-derived samples given sufficient sequence 

coverage. This coverage factor is highly dependent on the species evenness and richness. 

Researchers using these techniques can investigate potential functional differences of a 

collection of metagenome assembled (draft) genomes. However, often they have to use 

concentrated universal proteins to place these genomes in a phylogenetic context because of 

the difficulty of assembling and correctly binning highly conserved genes like the ribosomal 

subunit genes. Combined universal marker genes are used to construct the phylogeny from 

genomes assembled from environmental and host-derived sequences along with a minority 

of familiar microbial genomes from culture collections. The sudden rush of sequencing 

microbial genomes has necessitated the construction of easy-to-use wrappers and pipelines 

to aid biologists in learning how to approach the analysis of their metagenome data, either in 

whole or in part. Some great examples of such tools are, QIIME 2 [56], metaWRAP [57], 
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Sunbeam [58], SqueezeMeta [59], metAMOS [60], mg-RAST [61], IMG/M [62], Anvi’o 

[63], MicrobiomeAnalyst [64], and the variety of tools within the biobakery [65] collection 

(e.g. MetaPhlan2 [66], PhyloPhlan [67], HUMAnN [68], LEfSe [69]), among others (see 

[70] for a review these and many other meta’omics tools). Biomedical researchers wading 

into the depths of microbial ecology looking to integrate disease metrics, host proteomics, 

and microbial diversity should be aware of the various databases, curatorial rigor, and the 

limitations of the sequencing platform they choose.

Sequencing technologies

Depending on the biological question, there are many types of omics technologies targeting 

DNA, total RNA, mRNA, miRNA, DNA methylation, proteins, protein modifications, 

histone post-translational modifications, metagenomics, metaproteomics, etc. Sequencing 

platforms have improved over the years and now allow for the sequencing of large complex 

human samples within a few days from small amounts of material (Table 2). Several 

workflows have been developed to sequence the whole genome, the whole exome (protein-

coding portion of DNA), and transcriptome (mRNA), and arrays for specific cancer or 

immune-related genes. In addition, we can profile modifications, such as DNA methylation 

using either whole genome bisulfite sequencing or Illumina’s MethylationEPIC BeadChip 

arrays. The detection of such modifications can also be determined through the direct 

sequencing of long read DNA and RNA via the Oxford Nanopore Technologies (ONT) 

MinION platform [71–74], and PacBio instrumentation.

Error rates and read lengths vary between DNA sequencing technologies. Illumina short read 

sequencing (i.e. Hiseq, Miniseq, etc.) typically have very low error rates, at about .25% per 

base, but are sensitive to low diversity libraries, as is the case with applications such as 16S 

metagenomics and targeted gene approaches. Long read technologies have higher error rates, 

ranging from 13–15% for PacBio and 5–20% for Oxford Nanopore instruments [75, 76]. 

Read length for Illumina platforms have a maximum length of 600 bases but long read 

technologies commonly achieve 10–30kb for a single read [77]. Optimal read length is also 

dependent on the application. Where most sequencing experiments can collect suitable 

information with 150 – 300 base pair read lengths, there are exceptions. Illumina’s 16S 

Metagenomics protocol requires 2× 300 base pairs. For whole genome sequencing (WGS), 

the longest read possible is optimal but with long read technologies, the error rate increases 

with the length. Many researchers have combined long read and short read sequencing to 

“fill gaps” with WGS. Due to the fairly recent advent of long read sequencing technology, 

information on optimal long read lengths for applications other than WGS is sorely lacking 

but Illumina short read sequencing is rich in optimal read length recommendations [78].

Long read sequencing technologies such as ONT and PacBio have already ushered in 

significant improvements in both the amplicon and metagenomic sequencing space. From 

high resolution analysis of the full length 16S gene [55], the entire rRNA operon, [79], to 

improving the ability to close entire microbial genomes [80]. For an in-depth overview on 

these long-read sequencing technologies, see Amarasinghe et al. [77].
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Mass spectrometers have also improved by increasing sequencing depth capabilities over the 

past 5–10 years. The technology has advanced from sequencing roughly 3,000 proteins in a 

cell line experiment using older LTQ mass spectrometers to routinely sequencing 

8,00010,000 proteins using newer Orbitrap Lumos and Orbitrap Eclipse mass spectrometers. 

Most proteomics experiments are performed using data dependent acquisition (DDA) mode. 

In this method, the top 20 most abundant peptides in the MS1 scan that are eluted from a 

liquid chromatography (LC) column are selected for fragmentation in the orbitrap in order to 

generate the peptide sequence MS2 scan. The complexity of the sample mixture highly 

influences the sequencing depth and how many proteins will be identified. Understanding 

the protein abundance and make-up of the samples is critical. If transcription factors are the 

target molecules, then some method of removing highly abundant proteins prior to mass 

spectrometry may be necessary. This is especially critical for serum and plasma samples that 

have high abundant molecules, such as albumin and hemoglobin. Otherwise, the mass 

spectrometer will sequence thousands of molecules of albumin and miss the most interesting 

low abundant proteins [81].

The latest mass spectrometry technology utilizes data independent acquisition (DIA) to 

sequence all of the peptides from the MS1 scan as they elute from the LC column as 

opposed to DDA methods that only sequence the top most abundant peaks. DIA methods are 

beneficial over DDA for complex mixtures, such as in the serum example above. This 

method helps to overcome complex mixtures that are highly influenced by high abundant 

proteins [82–84].

In addition to shotgun sequencing for the host genes and/or proteins, we can also utilize 

shotgun sequencing for the microbiome. Shotgun metagenomics/metaproteomics may only 

sample the dominant microbiota when the sequencing depth is very shallow. A major 

challenge of shotgun sequencing the microbiome is the difficulty in assembling genome 

fragments due to under sampling, it is also just as difficult to piece together peptides for 

robust protein and taxa identification.

Despite these potential issues, it is possible to sample the microbial proteome in depth from 

a variety of human body sites and diseases, such as saliva, gut / feces, cervicovaginal, or 

chronic kidney disease [40, 85–87]. However, the study / sampling design and analytical 

approaches one must consider can differ greatly between each study. Several sampling 

preparation approaches have been shown to enrich microbial biomass ranging from 

differential centrifugation through double-filtering differential separation. These approaches 

are often followed by a variety of optimized microbial lysis protocols, typically involving 

mechanical disruption (e.g. bead beating, sonications), complemented with enzymes (e.g. 

trypsin) and detergents. Upon successful lysis, it is just as important that remaining 

enzymes, detergents and salts be removed. For more details see the review by Issa Isaac et 

al. and Lin et al. [7, 40] and the references therein.

Another complication for metaproteomics experiments is due to the fact that proteins within 

the same organism have shared peptide sequences. In order to have confidence in the protein 

identification, a unique peptide match for the protein should be identified with high 

confidence. This is made even more complicated when mapping peptide sequences to 
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hundreds of different species that have conserved protein sequences. Mass spectrometry 

does not sequence proteins, but rather measures the mass-to-charge of peptides and relies on 

mass spectra matches to a database of protein sequences for protein identification. However, 

there is hope to make sense of these (Table 1 and Table 2) [7, 40].

Curated databases are critical to properly analyze nucleotide and protein sequencing data 

generated from these various sequencing platforms. The ability to align reads to a reference 

genome is only as good as the sequence and annotation information present in the reference 

genome. There are several resources that continually curate and update nucleotide sequence 

information and annotation including University of California Santa Cruz (UCSC) 

Genomics Institute genomes, National Center for Biotechnology Information (NCBI) 

GenBank and RefSeq, Encyclopedia of DNA Elements (ENCODE), and Ensembl to name a 

few. The Universal Protein Resource (UniProt) contains both Swiss-Prot (manually 

annotated and reviewed) and TrEMBL (automatically annotated and not reviewed) databases 

for protein sequence information (Table 1).

Data Integration and current methodologies

Several data integration methodologies have been developed to integrate certain types of 

omics data. In addition, large data repositories have been created to house data from 

sequencing experiments for various diseases. These resources provide valuable building 

blocks and large amounts of biological samples that can be utilized to push data integration 

methods forward. Currently, data integration tools implement a variety of methods but 

generally fall under two categories: multi-staged analysis and meta-dimensional analysis 

[88]. Multi-staged integration models are constructed using only two numerical or 

categorical features of the data. For example, gene counts from an RNA-seq experiment are 

combined with protein information from a mass spectrophotometry run. Meta-dimensional 

analysis attempts to incorporate all the types of data of interest by concatenation or 

transformation into a simultaneous matrix or “metadata” set that can be analyzed 

simultaneously. The latter method has more statistical power but can be challenging when 

attempting to combine data from different types of datasets. Yet, how does a researcher 

decide which tool or method is most appropriate? As stated above, the biological question is 

the driving force in the type of analysis method chosen and factors such as sampling, the 

type of platform, and quality of the data are important. How were the samples collected and 

prepared? Can the data be effectively analyzed if sequencing depth or quality is low? Are the 

data types compatible? How much signal is lost after normalization and filtering? These are 

all questions that should be considered before choosing the appropriate tools.

Unfortunately, data integration and analysis are very complicated and there currently do not 

exist many user-friendly tools for researchers with limited bioinformatics backgrounds. 

Many tools utilize the statistical language R, which requires programming expertise in 

addition to strong biostatistical knowledge. For example, the R package integrOmics, which 

combines proteomics, transcriptomics, and pathway analysis on two data sets uses 

correlation analysis and partial least squares regression [89]. The R package mixOmics uses 

multivariate analysis for data exploration, dimension reduction and visualization [90]. 

Micrographite integrates miRNA and gene expression with pathway analysis [91] and 
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iClusterplus [92] and LRACluster [93] use clustering to integrate methylation and gene 

expression data (Table 3).

For both multi-state and meta-dimensional methods, many different algorithms are used, but 

the most common ones are clustering, network analysis, data reduction (PCA), and Bayesian 

analysis [94]. Ray et al (2014) used Bayesian analysis to analyze gene expression and 

methylation data in ovarian cancer using data collected from the Cancer Genome Atlas 

Project and detected a gene, SPON1, which appears to be regulated by methylation of its 

CpG site [95]. Correlation based analysis can be useful when prior knowledge of 

biochemical interactions is lacking [96]. Regardless of the methodology, appropriate 

normalization and data filtering is very important as data is being incorporated from multiple 

sources.

There also exist some web-based tools such as Paintomics [97] that attempt to make the data 

analysis easier but can still be difficult for the inexperienced user and the researcher must 

have a good working knowledge of their data [98]. Further, there are databases that are 

commonly used in integrated omics analysis, such as the Cancer Cell Line Encyclopedia 

(CCLE), The Cancer Genome Atlas Program (TCGA), Tumor Alterations Relevant for 

Genomics-driven Therapy (TARGET), and Omics Discovery Index (OmicsDI) [94] (Table 

1). CCLE and TCGA have characterized thousands of cancer data sets and can be used for 

data mining and visualization. TARGET utilizes clinical information and has resources for 

analytical tools on their websites. OmicsDI provides a platform for searching public and 

protected data for a large variety of organisms.

Considerations for study design and power evaluation

As for any high-quality study, conducting a multi-omics study should always begin with 

identifying the scope and restrictions of a study. Careful planning and execution will 

improve a study’s robustness and reproducibility and are especially crucial in multi-omics 

studies, as they involve a large number of comparisons, tailored statistical analysis, 

substantial financial and timely investments [10, 98]. Involving a statistician from the very 

beginning of a study is critically important to assist the researcher to identify the research 

question, define clear a priori hypotheses, proper experimental design, study analysis and 

interpretation, drawing conclusions and much more [99, 100].

Once research hypotheses are clearly defined, a suitable study design is selected that 

addresses the research hypotheses best. Therefore, several questions need to be evaluated, 

such as: Are one or more intervention groups compared to a control (or themselves), or is an 

effect evaluated in the same samples before and after intervention? Is an intervention effect 

over one period of time or will samples be measured at several different time points? Will 

biological samples be pooled or analyzed individually and what is the scientific justification 

for it [101]? Which types of omic platforms will provide the most value [101] and how are 

the multi-omics data going to be integrated? Are samples from the same biological source 

available for all multi-omics platforms of interest? Ideally, samples for all omic platforms 

would be collected from the same source. However, this is not always possible due to 

sample-specific limitations or accessibility and amount of the material [101]. For instance, 
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generating multi-omics data from formalin-fixed paraffin-embedded (FFPE) tissue might not 

be possible for certain omic platforms [101]. While there are many questions to be 

considered during the selection of the experimental design, the deciding factor for the choice 

of a study design is usually its feasibility and financial limitations [10, 102].

Following the selection of a study design, available resources need to be allocated between 

the individual omic platforms [101]. This allocation should be guided by the cost and 

contribution of each individual omic platforms to the multi-omics study as well as the 

statistical power of each individual omic platforms. Omic platforms with a substantial 

signal-to-background noise ratio will require less samples and allow for an allocation of 

more resources to omic platforms with a small(er) signal-to-background noise ratio, as these 

platforms require more samples to achieve (similar) adequate statistical power. In addition, 

some omic platforms will also require some internal distribution of resources. For example, 

when designing an RNA-Seq study the trade-off between the number of samples and 

sequencing depth will need to be balanced [10].

The sample and data collection should be guided by the data analysis to reduce confounding 

and technical artifacts, such as batch effects [10]. These effects can be introduced during 

steps of the sample collection, preparation and storing (e.g. multiplexing) [10, 101]. While 

some ad hoc methods attempt to reduce such biases introduced by technical artifacts, they 

are inferior to a randomized design [98]. However, some technical artifacts cannot be 

avoided, and in these cases it is important to identify and understand such limitations early 

in experimental design to mitigate and recognize their impact on the results and conclusions 

[10, 101].

Due to the complexity and large volume of data associated with multi-omics studies it is 

crucially important to tailor the statistical analysis to a specific research project [10]. A 

variety of methods for integrating multi-omics data have been proposed and categorized as 

either supervised, semi-supervised, or unsupervised [103]; as well as, conceptual, statistical, 

correlation, network, and model-based integration [102]. The integration and statistical 

analysis of a multi-omics study depend on the selection of omic platforms and their 

associated types of data (e.g. count values, percentages). Nevertheless, each analysis and 

method have its underlying assumptions that need to be verified [98].

As in any well-designed study, an initial power calculation is increasingly crucial to evaluate 

and estimate a sufficient number of samples and avoid a potential waste of resources, 

especially in such large-scale studies [10]. Power is defined as the probability of correctly 

rejecting the null hypothesis, which is the likelihood of detecting a true signal or effect. A 

mathematical power calculation is usually impossible due to the complex nature of the study 

design and data; however, estimating statistical power using simulation is a valuable 

alternative. The evaluation of statistical power involves four major steps. First, data needs to 

be simulated and a pilot study, prior knowledge, literature or experts can be beneficial for the 

generation of realistic data. Next, a true signal needs to be introduced and should be guided 

by the expected effect size. The data can then be analyzed, and the statistical power can be 

estimated empirically. In the context of a case-control study, the statistical power is the 

percentage of correctly identified features out of all features with an introduced effect size.
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The statistical power of a study depends on several factors (Figure 2) of which some can be 

controlled, while others are fixed due to the study and its design. First, the choice of 

statistical method used for the analysis. While some tests are more powerful than others, it is 

important that their assumptions are verified and met. Another factor that influences the 

statistical power of study is the number of variables measured by the individual omic 

platform, which is usually dictated by the omic platform [101]. For example, genomics 

typically measures millions of variants [104, 105], transcriptomics quantifies tens of 

thousands of molecules [106], and proteomics [107] and metabolomics [108, 109] profile 

thousands of molecules. Further, statistical power is affected by the magnitude and 

prevalence of the effect of the phenotype or exposure (effect size). How distinct is the effect? 

How substantial is the signal difference between groups? And how many measured variables 

are affected? Information about the effect size might be available from previous literature or 

expert knowledge but is often unknown [101]. In such cases, a pilot study can assist with 

estimating the effect size, but these estimates need to be handled with caution due to 

instability [101, 110]. Yet another power influencing factor is the homogeneity of the 

measured values, describing the natural variance of the sample, the precision of the 

measurement instrument and detection limits. With an increasing variance the statistical 

power will be reduced. The variance of the samples can be the result of many aspects, such 

as the sample population selection, choice of tissue type or confounding factors [111]. In 

addition to sample variance inflation, confounding factors can also introduce biases in the 

data, and therefore it is important to collect sample meta-data to mitigate some effects of 

confounding [101]. Because most of the factors affecting the statistical power of a study are 

fixed or dictated by the study design, the factor that is most commonly used to adjust the 

statistical power of a study is the sample size.

Applying power analyses for microbiome data is still a burgeoning field of inquiry and is 

replete with difficulties [112–115]. The types of power analyses, like those outlined above, 

differ based on the questions being asked of microbiome data. Typically, power analyses of 

microbiome data center on measures of alpha and beta diversity, and differences in 

compositional abundances of taxa [114, 116, 117]. Which of these measures to use will 

depend on the question at hand. How to integrate these into a multi-omics study is still 

underdeveloped [115].

Power and sample size evaluation is a valuable technique during the experimental design of 

a study to ensure adequate power and sample size. While under- and overpower studies 

unnecessarily deplete resources, the risk of failure of a study is especially prevalent in 

underpowered studies. Underpowered studies and studies with improper experimental design 

are more likely to miss true signals, produce bias results, false positive (type I error) and 

false negative (type II error) results, which will lead to misinterpretations [10, 101, 111]. 

Such incorrect inferences will impact the reproducibility, scientific progress and the cost of 

science [98, 118].

Conclusion and Future Directions

It is important to consider the context of the disease or research question that is under 

investigation and what types of data will provide valuable insight when integrated together. 
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Depending on the biological question, type of material (fresh tissue, FFPE tissue, serum/

plasma, and cell lines), amount of DNA/RNA/protein, number of biological replicates, and 

the number of confounding effects in a study, these factors will determine the best sample 

preparation and sequencing methods needed for data acquisition. Sample preparation 

methods including the day each sample is prepared, the type of DNA, RNA, and/or protein 

that is extracted, library generation for genomics, protein digestion and peptide labeling 

methods for mass spectrometry, and the sequencing platform/instrumentation are all key 

factors in the study design and the interpretation of the final results. If one sample is 

prepared on a different day than the other biological replicates, this will introduce variance 

and/or bias and reduce the statistical power of the analysis. If proteomics samples are 

multiplexed using multiple TMT-10plex batches, this will introduce a batch effect across 

sequencing runs. These factors should be discussed prior to sample preparation.

It is also critical to know what population of regulatory features were captured for 

sequencing and can be integrated. For example, membrane bound proteins cannot be 

integrated with gene expression data if membrane proteins were not solubilized during 

sample preparation prior to performing mass spectrometry. A caveat with mass spectrometry 

data is the fact that a missing value does not necessarily mean a protein is not expressed, but 

only that the protein is below the detection limits of the mass spectrometer. The biological 

questions should be a driving force in the methodology used for multi-omics data 

integration.

Though multi-omics datasets can provide an individual with a greater depth of 

understanding in certain scenarios, this is not without cost. Omics studies often rely on large 

numbers of comparisons, the correct data type, appropriate statistical analyses, and a 

considerable investment of time, skilled personnel, and money. When constructing an 

experiment one must be weary of what types of omics data can and should be integrated to 

achieve the greatest understanding of the system being studied [98]. High throughput omics 

platforms are not always necessary to answer the research question. Traditional techniques, 

such as enzyme-linked immunosorbent assay (ELISA) assays, immunohistochemistry 

(IHC), and quantitative polymerase chain reaction (qPCR), may be all that is necessary to 

validate a particular biological mechanism. In fact, these techniques are often required to 

validate the findings from a larger omics study in order to verify the significant molecule 

identified from omics data is a true positive result.

For the most part, current tools utilize clustering, networking, data reduction and Bayesian 

analysis. Because of ever increasing acquisition of data, resulting in large datasets and 

increasing numbers of them, machine learning will become more and more necessary for 

effective analysis and data mining. There is a need for accessible and well documented 

methods, tools and algorithms [96]. As with all scientific endeavors, the easy questions will 

be answered first and “low hanging fruit” will be become less prevalent. Thus, there is a 

need for more effective algorithms and computing resources [88]. Because of the variety of 

platforms used to generate multi-omics data, standardization of data formats would make 

integration easier [94].
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Future multi-omics data integration algorithms should take advantage of the “big data” 

resources (Table 1) and the advent of machine learning and artificial intelligence algorithms 

[10, 119, 120]. Machine Learning has played an increasingly important role in allowing 

scientists to integrate multi-omics datasets. By utilizing a machines ability to compare and 

identify patterns in large quantities of biological data, we allow for far more accurate and 

efficient methods of elucidating complex cellular mechanisms and in some cases providing 

predictions to clinical outcomes. This is achieved through the computer’s unique ability to 

observe multiple layers of omics data simultaneously providing a more holistic view of the 

systems at play, rather than observing each omic system individually and drawing simple 

conclusions based on visible correlations [4, 120].

New data integration methods should include variables related to each omic platform’s 

weaknesses and limitations. Each method is limited by its statistical power, sample size, 

technical variables, batch effects, sequencing depths, sample preparation, and a multitude of 

other factors. These factors are important to keep in mind when designing, conducting and 

analyzing a study and interpreting the results. Therefore, it is highly recommended to 

involve a biostatistician/bioinformatician from the very beginning of any study. Their expert 

knowledge can be valuable at any stage of a study to prevent errors, wasting resources and 

optimize the study. The need for trainings program in this rapidly evolving field has been 

recognized by many institutes, such as Jackson Laboratory, Bioinformatics.org, UC Davis 

and Johns Hopkins, and many bioinformatics training programs are available online for free 

or with costs. Lastly, researchers should always remember to validate significant findings 

using other traditional wet lab techniques to unmask false positive results.
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Figure 1. Overview of chromatin structure and gene/protein regulation.
DNA access is regulated by DNA methylation and histone post-translational modifications 

(PTMs). There are approximately 3.2 billion nucleotides in the human genome transcribed 

to approximately 20,000–25,000 protein coding genes, which are translated to over 1 million 

proteins due to alternative splicing events. Each layer of regulation can also be modified by 

microbes that are present in the environment and host organism. Each level of biological 

regulation can be sequenced by using various nucleotide and protein/peptide sequencing 

technologies.
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Figure 2. Factors that influence the statistical power in multi-omics studies.
The statistical power of a multi-omics study can be effected by several factors including and 

must be considered at the beginning of the study. Such factors include, but are not limited to 

(the effect of the following factors on power are under the assumption that the remaining 

factors remain constant): (1) The type of the study. While randomized controlled studies are 

generally more powerful than observational studies due to controlling unwanted effects, 

limitations can prohibit this application of a randomized controlled study. (2) The sample 

allocation. In general, a balanced study, where samples are equally distributed among group, 

is more powerful unbalanced study. (3) Sample size. As the number of samples in a study 

increases the statistical power improves. (4) Effect size. The greater the true differences 

between groups, the greater the statistical power of a study. (5) Hypothesis test. While 

parametric tests are in general more powerful than nonparametric test, parametric tests are 

not applicable if there assumptions are not met. (6) Significance level α. The significant 

level represents the probability of type I errors, the probability of rejecting the null 

hypothesis given that the null hypothesis is true. As the numerical value of α increases, the 

probability of type I errors increases as well as the statistical power (probability of rejecting 

the null hypothesis given that the null hypothesis is true). (7) Number of tests. Testing 

multiple hypotheses requires a correction and reduces the statistical power. (8) Background 

noise and sample variation increase the variance and complicate the detection of a true 

signal and therefore decrease the statistical power. (9) Confounders can increase variance 

and/or introduce a bias, which decreases the statistical power.
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Table 1.
Available resources for big data sets.

The table list resources available to download data sets from various omics platforms as well as sequence and 

annotation information.

Resource Data type Link Reference

SILVA is a resource of databases of aligned 
ribosomal RNA (rRNA) gene sequences from the 
Bacteria, Archaea and Eukaryota domains.

gene sequences of 16S for 
prokaryotes and 18S for 
Eukarya

https://www.arb-silva.de/ [121]

Ribosomal Database Project: aligned and 
annotated rRNA gene sequence data

16S rRNA sequences http://rdp.cme.msu.edu/ [122]

Greengenes is a dedicated full-length 16S rRNA 
gene database that provides users with a curated 
taxonomy based on de novo tree inference.

Taxonomy based on the 16S 
rRNA gene

https://
greengenes.secondgenome.com/

[123]

Genome Taxonomy Database is an initiative to 
establish a standardized microbial taxonomy based 
on genome phylogeny. The genomes used to 
construct the phylogeny are obtained from RefSeq 
and Genbank.

a comprehensive and 
phylogenomic-based taxonomy 
for bacterial and archaeal taxa

https://gtdb.ecogenomic.org/ [52, 53]

Universal Protein Resource (UniProt) is a 
comprehensive resource for protein sequence and 
annotation data

protein sequence and 
annotation database

https://www.uniprot.org/ [124]

NIH National Center for Biotechnology 
Information (NCBI) GenBank is an annotated 
collection of all publically available DNA 
sequences. Complete bimonthly release updates are 
available. Data is exchanged daily with the DNA 
DataBank of Japan and the European Nucleotide 
Archive.

genomic sequence and 
annotation

https://www.ncbi.nlm.nih.gov/
genbank/

[125]

NIH/NCBI Reference Sequence (RefSeq) collection 
provides a comprehensive, integrated, non-
redundant, well-annotated set of sequences, 
including genomic DNA, transcripts, and proteins

genomic, transcriptomics, and 
proteomic sequence and 
annotation

https://www.ncbi.nlm.nih.gov/
refseq/

[126]

University of California Santa Cruz (UCSC) 
Genome Browser for exploring genome sequences 
and annotation. GenBank updates for mRNA, 
RefSeq, and EST data occur on a semi-quarterly 
basis.

genome sequence and 
annotation database

http://genome.ucsc.edu/ [127]

NIH National Human Genome Research Institute 
Encyclopedia of DNA Elements (ENCODE) 
Consortium project uses Reference Genomes from 
NCBI or UCSC

DNA methylation, and 
immunoprecipitation (IP) of 
proteins that interact with DNA 
and RNA, modified histones, 
transcription factors, chromatin 
regulators, and RNA-binding 
proteins. Genome sequence 
and annotation database.

https://www.encodeproject.org/ [128]

Ensembl is a genome browser for vertebrate 
genomes that supports research in comparative 
genomics, evolution, sequence variation and 
transcriptional regulation. Updates are released 
every 2–3 months.

genome sequence and 
annotation, gene models, 
transcriptional data, genetic 
variation and comparative 
analysis

http://ensembl.org/ [129]

The Cancer Genome Atlas (TCGA) is a landmark 
cancer genomics program that molecularly 
characterized over 20,000 primary cancer and 
matched normal samples spanning 33 cancer types. 
This a joint effort between the National Cancer 
Institute and the National Human Genome Research 
Institute.

Individual patient tumor 
samples: DNA, RNA, Protein, 
epigenetic changes

https://www.cancer.gov/about-nci/
organization/ccg/research/
structural-genomics/tcga

[130]

Cancer Cell Line Encyclopedia (CCLE) is a 
collaboration between the Broad Institute, and the 
Novartis Institutes for Biomedical Research and its 

Copy Number, mRNA 
expression (Affy), RPPA, 

https://portals.broadinstitute.org/
ccle

[131]
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Resource Data type Link Reference

Genomics Institute of the Novartis Research 
Foundation to conduct a detailed genetic and 
pharmacologic characterization of a large panel of 
human cancer models. CCLE contains genomics 
data and visualization for over 1400 cell lines.

RRBS, and mRNA expression 
(RNAseq)

Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET) is a community 
resource project. TARGET is organized into a 
collaborative network of disease-specific project 
teams with the goal of identifying molecular 
changes that drive childhood cancers.

clinical information, gene 
expression, miRNA expression, 
copy number, sequencing data 
for cancers

https://ocg.cancer.gov/programs/
target

Initiative 
phs000218

Omics Discovery Index (OmicsDI) an open-source 
platform that enables access, discovery and 
dissemination of omics data sets.

genomics, transcriptomics, 
proteomics, metabolomics

https://www.omicsdi.org/ [132]

Multi-Omics Profiling Expression Database 
(MOPED) is a repository for multi-omics data of 
human and model organisms.

transcriptomics and proteomics 
data and visualization

https://omictools.com/moped-tool [133]

ProteomeXchange (PX) Consortium consists of 
PRIDE, PeptideAtlas, PASSEL, MassIVE and 
jPOST. Devoted to mass spectrometry (MS)-based 
proteomics data.

proteomics data sets http://www.proteomexchange.org/ [134, 135]
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Table 2.
Coverage and Read Recommendations by Application.

Each genomics platform has a recommended sequencing depth depending on the biological question and focus 

[136].

Application Recommended Coverage (x) or Reads (millions) Reference

Illumina PacBio Nanopore

Whole Genome Sequencing > 15x > 35x > 40x [75, 137]

Whole Exome Sequencing > 15x > 35x > 40x [75, 137]

Transcriptome Sequencing 
(mRNA; differential expression 
analysis) 10– 30M >30M >30M [138, 139]

Transcriptome Sequencing 
(Alternative Splicing; Allele 
specific expression) 50–100M 50–100M 50–100M [139]

miRNA Sequencing > 30M >30M >30M [138]

16S Metagenomics >100x >100x >100x

Shotgun Metagenomics > 80M > 80M > 80M [140]

Histone ChIP-seq
> 20M for Narrow Peak, > 
45M for Broadpeak

> 20M for Narrow Peak, > 
45M for Broadpeak

> 20M for Narrow Peak, > 
45M for Broadpeak [141]

Transcription Factor ChIP-seq
> 20M for Narrow Peak, > 
45M for Broadpeak

> 20M for Narrow Peak, > 
45M for Broadpeak

> 20M for Narrow Peak, > 
45M for Broadpeak [141]

ATAC-seq > 25M > 25M > 25M [141]

DNA Methylation Sequencing 
(RRBS per strand) > 15x > 15x > 15x [142]
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Table 3.
Data integration tools for multi-omics.

Algorithms and bioinformatics tools for data integration across multiple omics platforms.

Types of Omics Data

Tool Purpose Metabolomics Proteomics Transcriptomics Pathway 
Analysis miRNA SNP 

Analysis Microbiome DNA 
Methylation

Copy 
Number 
Variants 
(CNV)

Genomics Visualization Pros Cons Reference

MetaboAnalyst 
4.0

Metabolomics 
data analysis, 
interpretation, 
and integration 
with other 
omics data

x x x x

Relatively 
easy to use. 
Has a web 
interface. 
Basic 
computer 
skills.

File size limit 
(50 Mb), 
Installed 
version requires 
Linux and 
programming 
experience.

[143]

Paintomics 3.0 
(web based)

Joint 
visualization 
of 
transcriptomics 
and 
metabolomics 
data

x X x x

Relatively 
easy to use. 
Automatic 
feature name 
conversion. 
Has a web 
interface. 
Basic 
computer 
skills.

Most web 
applications 
have a file size 
limit.

[97]

integrOmics 
(R package)

Integrative 
analysis of two 
types of omics 
datasets

X x x x Customizable
Requires 
programming 
skills in R

[89]

Omics 
Integrator

Maps Protein 
data to other 
data sets

X x x X X X

Easy to use 
web interface. 
Basic 
computer 
skills.

Most web 
applications 
have a file size 
limit. Local 
installation 
requires 
advanced 
computer skills

[144]

mixOmics (R 
package)

Data 
exploration, 
dimension 
reduction, and 
visualization

X x x x x Customizable

Requires 
advanced 
programming 
skills, 
programming in 
R

[90]

PARADIGM

Extraction of 
disease-
perturbed sub 
pathways 
within 
pathway 
networks x x x X

Uses a 
combination 
of algorithms 
to improve 
accuracy

Requires 
advanced 
programming 
skills, 
command line 
interface, 
programming in 
R. Pathways are 
measured 
independently, 
and interactions 
among 
pathways are 
not considered.

[145]

Micrographite 
(R Package)

Pathway 
analysis of 
miRNA and 
gene 
expression 
profiles

x x x

Customizable, 
integrates 
pathway 
information 
with predicted 
and validated 
miRNA–

Requires 
advanced 
computer skills, 
Programming 
in R.

[91]
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Types of Omics Data

Tool Purpose Metabolomics Proteomics Transcriptomics Pathway 
Analysis miRNA SNP 

Analysis Microbiome DNA 
Methylation

Copy 
Number 
Variants 
(CNV)

Genomics Visualization Pros Cons Reference

target 
interactions.

iCIusterplus

Integrative 
clustering of 
multiple data 
sets

x x x X

Customizable. 
Incorporates 
flexible 
modeling of 
the 
associations 
between 
different data 
types

Requires 
advanced 
computer skills, 
computationally 
intensive, 
limitations in 
statistical 
inference, 
programming 
skills in R

[92]

LRAcluster

Integrative 
clustering of 
multiple data 
sets

x x x x

Fast and 
efficient 
unsupervised 
clustering

Command line 
interface, 
requires 
advanced 
computer skills.

[93]

GENEASE

disease 
ontology 
exploration, 
analysis, and 
visualization 
of multiple 
databases

x x x x X x X

Web based 
interface. 
Uses multiple 
databases in 
real time.

Most web 
applications 
have a file size 
limit.

[146]

ProteoClade

Annotate taxa 
to proteomics 
data

x x x

Customizable. 
Can work 
with large 
data sets. 
Targeted and 
De Novo 
database 
searches. 
Good 
tutorials.

Requires 
advanced 
computer skills, 
Programming 
in Python.

[147]

Qiime2 (q2-
micom)

Metabolic 
modeling

x x

Customizable, 
Highly 
versatile. 
Good 
tutorials.

Steep learning 
curve. Requires 
advanced 
computer skills

[148]

Qiime2 
(q2mmvev)

Learning 
microbiome/
metabolic 
interactions

x x

Customizable, 
Highly 
versatile. 
Good 
tutorials.

Steep learning 
curve. Requires 
advanced 
computer skills

[149]

Qiime2 (q2-
metabolomics)

Tool to import 
metabolomic 
data into 
Qiime2

x x

Customizable, 
Highly 
versatile. 
Good 
tutorials.

Steep learning 
curve. Requires 
advanced 
computer skills

[150]
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