Skip to main content
. Author manuscript; available in PMC: 2022 Apr 1.
Published in final edited form as: Med Phys. 2021 Jan 20:10.1002/mp.14728. doi: 10.1002/mp.14728

Table 1.

Performance comparison between our models and state-of-the-art autocontouring tools.

Segmentation Method Dataset Right Parotid Left Parotid Submandibular
Dice±SD Dice±SD Dice±SD
CNN (Rhee et al.39) ~1000 (real) 82.3±6.5 82.4±4.8 NA
V-Net ~1000 (real) 81.4±5.9 81.3±5.5 NA
MACS (Yang et al37)/MACS-AS (Yang et al42) 12 (real)/20 (real) 84.5±9.2 84.1±7.9 74.0±7.6
PCA 10 2000 (synthetic) 82.8±6.8 82.0±6.9 74.2±6.8
PCA 20 2000 (synthetic) 82.9±7.1 82.5±7.2 75.5±6.3
PCA 30 2000 (synthetic) 83.1±6.1 82.9±6.7 76.3±7.7

The best Dice results of PCA 10, 20, and 30 were chosen for comparison. MACS, multi-atlas contouring service; MACS-AS multi-atlas contouring service with atlas selection; V-Net means our V-Net model trained with the same training dataset of Rhee et al39. PCA, principal component analysis. PCA 10 means that 10 PCA models were used to create synthetic CT scans; SD: standard deviation.