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Abstract

Purpose: We previously proposed an intelligent automatic treatment planning framework for 

radiotherapy, in which a virtual treatment planner network (VTPN) is built using deep 

reinforcement learning (DRL) to operate a treatment planning system (TPS) by adjusting 

treatment planning parameters in it to generate high-quality plans. We demonstrated the potential 

feasibility of this idea in prostate cancer intensity-modulated radiation therapy (IMRT). Despite 

the success, the process to train a VTPN via the standard DRL approach with an ϵ-greedy 

algorithm was time consuming. The required training time was expected to grow with the 

complexity of the treatment planning problem, preventing the development of VTPN for more 

complicated but clinically relevant scenarios. In this study, we proposed a novel knowledge-guided 

DRL (KgDRL) approach that incorporated knowledge from human planners to guide the training 

process to improve the efficiency of training a VTPN.

Method: Using prostate cancer IMRT as a testbed, we first summarized a number of rules in the 

actions of adjusting treatment planning parameters of our in-house TPS. During the training 

process of VTPN, in addition to randomly navigating the large state-action space, as in the 

standard DRL approach using the ϵ-greedy algorithm, we also sampled actions defined by the 

rules. The priority of sampling actions from rules decreased over the training process to encourage 

VTPN to explore new policy on parameter adjustment that were not covered by the rules. To test 

this idea, we trained a VTPN using KgDRL and compared its performance with another VTPN 

trained using the standard DRL approach. Both networks were trained using 10 training patient 

cases and 5 additional cases for validation, while another 59 cases were employed for the 

evaluation purpose.

Results: It was found that both VTPNs trained via KgDRL and standard DRL spontaneously 

learned how to operate the in-house TPS to generate high-quality plans, achieving plan quality 

scores of 8.82 (±0.29) and 8.43 (±0.48), respectively. Both VTPNs outperformed treatment 

planning purely based on the rules, which had a plan score of 7.81 (±1.59). VTPN trained with 
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eight episodes using KgDRL was able to perform similarly to that trained using DRL with 100 

epochs. The training time was reduced from more than a week to ~13 hours.

Conclusion: The proposed KgDRL framework was effective in accelerating the training process 

of a VTPN by incorporating human knowledge, which will facilitate the development of VTPN for 

more complicated treatment planning scenarios.

1. Introduction

Inverse treatment planning of modern radiation therapy modalities, such as Intensity 

Modulated Radiation Therapy (IMRT) or Volumetric Modulated Arc Therapy (VMAT), is 

often achieved by solving an optimization problem. Objective functions of these 

optimization problems typically have multiple terms and constraints designed for various 

considerations, as well as a set of treatment planning parameters (TPPs) such as weighting 

factors, dose limits, and volume constraints. The values of these TPPs critically affect the 

resulting plan quality. While a treatment planning system (TPS) can solve the optimization 

problem for a given set of TPP values, human planners are still needed in the treatment 

planning process to determine the values of TPPs to achieve plans with clinically acceptable 

quality. The whole process with extensive interactions between a human planner and the 

TPS is time consuming and labor intensive. The resulting plan quality is affected by a 

number of human factors, such as the experience of the planner and the available planning 

time 1, 2.

To solve this problem and fully automate the treatment planning process, a number of 

methods have been successfully developed, including greedy approaches 3–6, heuristic 

approaches 7–9, fuzzy inference 10–13, and statistics-based methods 14–16. More recently, 

deep learning based methods 17 have shown their great promise in the context of automatic 

treatment planning 18–23. In particular, deep reinforcement learning (DRL) has been 

employed to develop an intelligent automatic treatment planning framework. Within this 

framework, a virtual treatment planner network (VTPN) was built to model the intelligent 

behaviors of human planners in the treatment planning process. Trained via an end-to-end 

DRL process, the VTPN was able to operate a TPS by adjusting the TPPs in it to generate 

high-quality plans. Specifically, similar to the human planner’s role in treatment planning, 

the VTPN repeatedly took a state of the optimization problem as input, e.g. the dose-to-

volume histogram (DVH) of a plan generated by the optimization engine under a given set of 

TPPs, and determined an action to adjust the TPPs to improve the resulting plan quality. The 

feasibility of this approach has been demonstrated in preliminary studies in exemplary 

problems of high-dose-rate (HDR) brachytherapy for cervical cancer 20 and IMRT for 

prostate cancer 23.

Despite the initial success, a major concern was low efficiency of training a VTPN. Training 

a VTPN requires a large number of training data in the form of state-action pairs, i.e. the 

combinations of plan DVHs and corresponding actions of adjusting TPPs. The standard 

DRL approaches employ an ϵ-greedy algorithm to navigate the state-action space and 

generate the training data 20, 23–28. Specifically, at each training step, it selects the optimal 

action predicted by the current VTPN for the plan state with a probably of (1 - ϵ), and a 
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random action among all possible actions with a probably of ϵ. The parameter ϵ is usually 

set to be close to unity in the early stage of training and is gradually reduced over the 

training process. The purpose of this strategy is to allow a random exploration of the state-

action space initially, and to progressively focus on those actions made by the trained VTPN. 

Generally speaking, it is necessary for the VTPN to observe both appropriate actions, i.e. 

those able to improve the plan quality, as well as inappropriate ones, so that the VTPN can 

conclude proper behaviors and be trained to learn the desired ones. However, as can be 

imagined, it is quite challenging for the ϵ-greedy algorithm to collect a sufficient amount of 

data with appropriate actions by the random exploration of the state-action space due to the 

scarceness of those appropriate actions as compared to those inappropriate ones. As a 

consequence, it often requires a large number of training steps for the ϵ-greedy algorithm to 

collect sufficient samples to successfully train the VTPN.

The second hurdle substantially reducing computational efficiency was related to solving the 

optimization problem. Different from other DRL applications, such as playing Atari games 

or the game of Go 24–26, where the response to an action, e.g. score of a move in the Atari 

games, can be obtain in almost real-time, it takes much longer time to evaluate the influence 

in plan quality caused by an adjustment on the TPPs. The change in plan quality can only be 

computed by comparing two plans prior to and after the TPP adjustment, for which plan 

optimization using the adjusted TPPs has to be performed. Given the fact that DRL usually 

requires a huge number of steps to navigate and sample the state-action space, the training 

time of VTPN can be days or even weeks in previous proof-of-principle studies using in-

house TPSs 20, 23, in which only a small number of possible actions existed. It is expected 

that the efficiency would become a much more severe concern, when extending the DRL-

based VTPN methods to more sophisticated but clinically relevant scenarios, e.g. having the 

VTPN to adjust TPPs of a clinically realistic TPS. In these scenarios, the much larger state-

action space due to the significantly larger number of adjustable TPPs, as well as the much 

longer time required to solve the treatment planning optimization problems would 

considerably prolong the training process, potentially rendering the DRL-based VTPN 

method impractical.

In this paper, we propose a knowledge-guided DRL (KgDRL) scheme that integrates general 

experience in TPP adjustment from human planners with the standard ϵ-greedy algorithm to 

guide the navigation process in the state-action space, and hence improve the training 

efficiency of VTPN. Given rules of TPPs adjustment summarized based on human 

experience, training of VTPN will have a large chance to sample proper actions for states, 

making KgDRL more efficient and effective than that of the original DRL which purely 

relies on the ϵ-greedy search. Meanwhile, the ϵ-greedy search mechanism is still preserved 

in KgDRL, allowing VPTN to explore new policy of TPP adjustment that is not covered by 

the input human knowledge. Similar to 23, we will use the prostate cancer IMRT treatment 

planning problem as a testbed to study the KgDRL framework. We will analyze the 

performance of KgDRL and make comprehensive comparisons with the standard DRL to 

demonstrate its effectiveness in training the VTPN for intelligent automatic treatment 

planning.
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2. Methods and Materials

2.1 Optimization engine and adjustable treatment planning parameters

Similar to 23, our goal in this study was to train a VTPN to operate an in-house developed 

TPS by adjusting TPPs in the optimization engine to produce high-quality plans. The inverse 

plan optimization engine in the TPS solved the following fluence map optimization problem:

min
x

1
2 ║ Mx − dp ║ −

2 + λ
2 ║ Mx − dp ║ +

2

+ λbla
2 ║ Mblax − τbladp ║ +

2 + λrec
2 ║ Mrecx − τrecdp ║ +

2 ,
s . t . x ≥ 0, D95%(Mx) = dp .

(1)

║ ⋅ ║ − and ║ ⋅ ║ + are l2 norms computed for only negative and positive elements, 

respectively. x ≥ 0 gives the beam fluence map to be determined, while M, Mbla, and Mrec 

indicate the dose deposition matrices for planning target volume (PTV), bladder, and rectum, 

respectively. dp denotes prescription dose. The hard constraint D95%(Mx) = dp required that 

95% of the PTV received dose no lower than the prescription dose. dp = 79.2 Gy in this 

study.

There were five adjustable TPPs in this model, including the weighting factors λ, λbla, and 

λrec to penalize overdose to PTV, bladder, and rectum, and the dose limits τbla and τrec to 

adjust dose to bladder and rectum. With a given set of TPPs, this optimization problem was 

solved using alternating direction method of multipliers (ADMM) 29, 30.

2.2 Virtual treatment planner network

We used a VTPN to automate the treatment planning process. Similar to the behavior of a 

human planner in treatment planning, given a plan, the VTPN decided a TPP adjustment 

action to modify the TPPs. The optimization engine was then launched using the updated 

TPPs to generate a new plan. This process continued, until a satisfactory plan was achieved 

or the maximal number of TPP adjustment steps was reached (Fig. 1(a)).

Specifically, in our formulation, the VTPN observed the DVH as the representation of a plan 

generated by solving the optimization problem in Eq. (1) under a given set of TPPs. The 

output of the VTPN were values of predicted quality of the plan for each action. Once the 

VTPN was determined, it can be used to decide an action for an input plan by selecting the 

action with the highest output value. VTPN was essentially an approximation of the optimal 

action-value function in the Q-learning framework 31. In many real applications including 

ours, the general form of such an optimal action-value function is unknown, and hence it is 

commonly parametrized via a DNN architecture possessing high flexibility and capacity to 

approximate complicate functions 24, 32.

The detailed architecture of VTPN in this study is displayed in Fig. 1(b)-(c). We chose the 

DVH of a plan as the input to the VTPN, as it is usually the starting point that a human 

planner uses to evaluate the plan quality. The input had three columns corresponding to the 

DVHs of PTV and two organs at risk (OARs). Considering that there were five TPPs to 
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adjust, VTPN was constructed to contain five subnetworks, each designed for one TPP. For 

each one, we considered three possible adjustment actions: changing the TPP by a factor of 

α α > 1 , 1/α, or keeping it unchanged. We chose α = e0.5 in this study emprically, as we 

expect the choice of this value would not critically affect the parameter-adjustment 

performance, but only the speed to reach convergence.

2.3 Plan quality evaluation metric

A plan quality evaluation metric Φ ⋅  was needed, so that the reward function in DRL can 

be defined to quantitatively assess the plan quality change caused by TPP adjustments. The 

VTPN can then learn a policy to maximize Φ ⋅ . Similar to 23, we employed the PlanIQ 

score (ProKnow Systems, Sanford, FL, USA) for prostate IMRT as the evaluation metric. 

The scoring system consisted of a set of criteria to evaluate plan quality based on target 

coverage and dose conformity, as well as sparing of OARs. For each criterion, a score was 

defined as a piecewise linear function ranging between 0 and 1. The final plan score was 

computed as the summation of the scores for all the criteria. A higher score indicated a 

better plan quality. In this study, we removed the score evaluating PTV underdosage, since 

such a requirement was enforced by the optimization model (1) as a hard constraint, and 

therefore held for all the plans. The rest of the criteria we considered included one for PTV 

overdosage, four criteria for bladder, and another four criteria for rectum, see Table 1. As a 

consequence, the score for PTV was within the range of [0, 1] (PlanIQPTV(s)∈ 0,1 ), while 

the scores for bladder and rectum were each within [0, 4] (PlanIQBLA(s)∈ 0,4 , and 

PlanIQREC(s)∈ 0,4 ), where s denotes the DVH of a plan. The highest achievable score for a 

plan was 9.

2.4 Training the virtual treatment planner network

2.4.1 Standard deep reinforcement learning process—Before introducing the 

proposed KgDRL, we will first briefly review the standard DRL framework. The end-to-end 

DRL training process is derived based on the Bellman equation 33. Let Q s, a; θ  denotes the 

VTPN. θ indicates the network parameters to be determined via the training process. s and a 
are the DVH of an optimized plan under a given set of TPPs and a TPP adjustment action, 

respectively. The Bellman equation is:

Q(s, a; θ) = r + γ max
aʹ

Q sʹ, aʹ; θ .
(2)

sʹ indicates the DVH of the plan obtained after solving the optimization problem with the 

TPPs updated by applying the action a. r is the reward function for the action a acting on the 

state s to generate the state sʹ. It was computed as the change in plan quality score 

comparing s and sʹ. Under such a formulation, Q s, a; θ  predicts the gain in plan quality 

associated with the action a for the input DVH of the plan. Bellman equation describes a 

necessary condition for optimality of Q s, a; θ , hence the training process can be simply 

formulated as the following optimization problem:
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min
θ

r + γ max
aʹ

Q(sʹ, aʹ; θ) − Q(s, a; θ)
2

. (3)

Specifically for the standard DRL process using the ϵ-greedy algorithm, starting with a state 

s obtained using an initial set of TPPs, with probability of ϵ, the DRL process took a random 

action a among all the possible actions, while chose a = argmaxaQ(s, a; θ) with a probability 

of (1−ϵ). After that, sʹ was obtained by solving the optimization problem using the updated 

TPPs, while r was computed by comparing the quality of sʹ with s using the plan scoring 

system, i.e. r = Φ(sʹ) − Φ s . Repeating such an ϵ-greedy search process and recording all the 

state-action pairs generated a pool of training samples {s, a, sʹ, r}. During this process, a 

strategy called experience replay was performed, which solved the optimization problem in 

Eq. (3) and updated θ using samples randomly picked from the pool of training data. 

Randomly selecting samples prevented training from being affected by the correlation 

among sequentially generated actions and plans. In this process, VTPN learnt the 

consequences of applying different TPP adjustment actions to a large number of plans, and 

the optimal TPP adjustment policy can be gradually identified. This standard DRL algorithm 

is summarized in Algorithm 1, which was successfully applied to realize intelligent 

automatic treatment planning in our previous studies 20, 23.

Algorithm 1.

Standard DRL algorithm to train VTPN.

1. Initialize network coefficients θ;

for episode = 1, 2, … , Nepisode

 for k = 1, 2, … , Npatient do

  2. Initialize λ, λbla, λrec, τbla, τrec

   Solve optimization problem (1) with {λ, λbla, λrec, τbla, τrec} for s1;

  for l = 1, 2, … , Ntrain do

   3. Select an action al with ϵ-greedy:

    Case 1: with probability ϵ, select al randomly;

    Case 2: otherwise al = arg maxa Q(sl, a; θ);

   4. Update TPPs using al;

   5. Solve optimization problem (1) with updated TPPs for sl+1

   6. Compute reward rl = Φ(sl+1) − Φ(sl);

   7. Store state-action pair {sl, al, rl, sl+1} in training data pool;

   8. Train θ with experience replay:

    Randomly select Nbatch training data from training data pool;

    Update θ using gradient descent algorithm to solve (3);

  end for

 end for

end for

Output θ
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2.4.2 Human knowledge in treatment planning parameter adjustment—The 

key to improve the training efficiency was to effectively guide the navigation in the state-

action space, so the training process can observe more actions that can improve plan quality 

than the standard DRL training process using the ϵ-greedy algorithm. As such, we proposed 

to integrate human knowledge in TPP adjustment with the ϵ-greedy algorithm.

It is an important question to what extent the human knowledge on TPP adjustment would 

cover. On one hand, it is necessary to define comprehensive rules to effectively guide the 

DRL training process. On the other hand, rules may not be perfect, as they are concluded 

based on human experience. The rules should cover only a limited number of scenarios, so 

that the DRL training can still freely explore the state-action space to discover TPP 

adjustment policy that is beyond the defined rules. In this proof-of-principle study, we 

considered three scenarios in the human knowledge set, one for each of PTV, bladder, and 

rectum. More specifically, let

CH = s PlanIQPTV(s) ≤ 0 . 5, or PlanIQBLA(s) ≤ 2, or PlanIQREC(s) ≤ 2 , (4)

represent the set containing three scenarios in which the PlanIQ score of 

PlanIQPTV, PlanIQBLA, and PlanIQREC for PTV, bladder, and rectum are lower than threshold 

values, i.e. 50% of the corresponding maximal achievable scores (maximal score of 1 for 

PTV, and 4 for bladder and rectum). s ∈ CH indicates that the plan falls into one of the 

scenarios. PH s  is an action defined based on human planner’s experience to adjust the 

TPPs. Based on the clinical importance, as well as our experience with the in-house 

developed TPS, we considered the following rules PH ⋅  with the highest to the lowest 

priorities:

Rule 1: If PlanIQPTV(s) ≤ 0.5, increase the value of λ by α;

Rule 2: Else if PlanIQBLA(s) ≤ 2 and PlanIQBLA(s) ≤ PlanIQREC(s),

Case 1: with probability ϵBLA, increase λBLA by α;

Case 2: otherwise, decrease τBLA by α;

Rule 3: Else if PlanIQREC(s) ≤ 2 and PlanIQREC(s) ≤ PlanIQBLA(s),

Case 1: with probability ϵREC, increase λREC by α;

Case 2: otherwise, decrease τREC by α;

Based on our experience, PTV coverage is always the most important. Hence, we have set it 

to be the top priority. The TPP adjustment to enhance PTV coverage will be chosen if the 

PTV coverage score achieved is no greater than the threshold value of 50% of its maximal 

score, i.e. PlanIQPTV(s) ≤ 0.5 For the specific way of TPP adjustment, as D95%(Mx) = dp has 

been set to be a hard constraint in the optimization engine, PTV coverage largely depends on 

the term penalizing PTV overdose, i.e. λ
2 ║ Mx − dp ║ +

2 . According to our experience, an 

easy and effective way to reduce PTV overdose is to increase the value of its weighting 
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factor λ. When PTV coverage score PlanIQPTV(s) > 0.5, we think the PTV is reasonably 

covered and hence consider applying TPP adjustment rules to improve bladder and rectum 

sparing, if the score for either one of them is lower than 50% of the corresponding maximal 

score, i.e. PlanIQBLA(s) ≤ 2 or PlanIQREC(s) ≤ 2. The priorities of rectum and bladder are set 

to be equal, and the rule is to adjust TPPs for the one receiving the lower score. Regarding 

the two TPPs for the selected OAR (weighting factor and dose limit), since both increasing 

weighting factor and reducing dose limit may lead to better OAR sparing, we randomly pick 

one of them for the selected organ. More specifically, we set the probability to choose the 

dose limit to be 0.8, as adjusting dose limit was found to be more effective according to our 

experience with the plan optimization engine.

2.4.3 Knowledge-guided deep reinforcement learning—The proposed KgDRL 

employed the aforementioned human rule as an additional brunch to the ϵ-greedy algorithm 

(Fig. 2), letting the rule to guide the training process of the VTPN. More specifically, given a 

state s, if s ∈ CH, the TPP adjustment action a was determined by the rules with a large 

probability ϵH, i.e. a = PH s , while the action was determined via the standard ϵ-greedy 

algorithm otherwise. Note that this additional choice did not largely increase the 

computational complexities from DRL in each episode, as majority of the computation costs 

were spent on solving the plan optimization problem based on determined TPPs, not on how 

to determine the actions. By involving PH ⋅  as the guidance to navigate the state-action 

space, we hoped to identify the proper TPP adjustment policy to improve the plan quality 

with much less training steps than the standard DRL training process. The workflow of the 

KgDRL algorithm is shown in Fig. 2 and outlined in Algorithm 2 in detail.

Algorithm 2.

KgDRL algorithm to train VTPN.

1. Initialize network coefficients θ;

for episode = 1, 2, … , Nepisode

 for k =1, 2, … , Npatient do

  2. Initialize λ, λbla, λrec, τbla, τrec

   Solve optimization problem (1) with {λ, λbla, λrec, τbla, τrec} for s1;

  for l = 1, 2, … , Ntrain do

   3. Select an action al based on human rule or ϵ-greedy:

    Case 1: with probability ϵH, if s ∈ CH, al = PH(sl);

    Case 2: otherwise apply ϵ-greedy algorithm:

     Case 2.1: with probability ϵ, select al randomly;

     Case 2.2: otherwise al = arg maxa Q(sl, a, θ);

   4. Update TPPs using al;

   5. Solve optimization problem (1) with updated TPPs for sl+1;

   6. Compute reward rl = Φ(sl+1) − Φ(sl);

   7. Store state-action pair {sl, al, rl, sl+1} in training data pool;

   8. Train θ with experience replay:
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    Randomly select Nbatch training data from training data pool;

    Update θ using gradient descent algorithm to solve (3);

  end for

 end for

end for

Output θ

2.5 Implementation details and evaluations

We collected 74 patient cases with prostate cancer treated with IMRT. We randomly picked 

15 patients for training and validation purposes. The remaining 59 patient cases were saved 

for testing. We trained the VTPN using the proposed KgDRL approach, as well as another 

VTPN with the standard DRL algorithm 23, i.e. Algorithm 1 for the comparison purpose. 

The 15 patients for training and validation were randomly split into three groups with 5 

patients in each. Three-fold cross validation each time using two groups as training and the 

other group as validation was performed to demonstrate the effectiveness of the proposed 

KgDRL scheme. The network architectures and experimental setups for both VTPNs were 

identical for a fair comparison. The training step Ntrain was set to 30. For each patient case, 

we started with all TPPs that were set to be unity. The initial probability ϵH was 0.7 in 

KgDRL and ϵ for ϵ-greedy algorithm for both cases was set to be 0.99. ϵH and ϵ decreased 

with the same rate of 0.99 per episode over the training process. In addition, ϵBLA and ϵREC, 

i.e. the probabilities defined for human rules were set to 0.2 based on experience from 

human planners.

All the computations was performed using Python with TensorFlow 34 on a desktop 

workstation with eight Intel Xeon 3.5 GHz CPU processors, 32 GB memory and two Nvidia 

Quadro M4000 GPU cards.

After successfully training the VTPNs using the standard DRL and the KgDRL in three-fold 

cross validation, we evaluated their performances using 59 patient cases that were not seen 

in the training step, and report the optimal performance of VTPNs trained via DRL and 

KgDRL, respectively. We have considered three different setups for comparison purposes. 1) 

Rule-based planning. For each case, we first set all TPPs to unity to generate an initial plan. 

After that, human rules summarized in section 2.3.2 were utilized to repeatedly adjust TPPs 

until s ∉ CH. The purpose of this experiment was to investigate the effectiveness of the 

summarized rules in treatment planning. 2) Planning using VTPN trained with KgDRL. We 

first initialized all TPPs to unity and then employed the VTPN trained with KgDRL to adjust 

TPPs and generate a plan. The iteration of TPP adjustment was continued, until one of the 

following three criteria was met: the plan reached the maximal score of 9, VTPN decided to 

keep all TPPs unchanged, or a maximal number of adjustment steps (50) was reached. 3) 

Planning using VTPN trained with the standard DRL. This was the same as in 2) except that 

VTPN trained with the standard DRL was employed.
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3. Results

3.1.1 Training efficiency and effectiveness of DRL and KgDRL

The rewards and Q-values along the training episodes in three-fold cross validation for 

VTPNs trained via KgDRL and DRL are shown in Fig. 3(a) and (b). Fig. 3(c) are PlanIQ 

score as a function of the training episode, which was computed using the VTPN trained to 

the episode number to plan the cases in the validation patient dataset. Rewards reflect the 

improvement in plan quality obtained via automatic TPP adjustment using the VTPN, while 

the Q-values indicate the output of VTPNs. The higher these values are, it is expected that 

the VTPN’s performance is better.

In general, a consistent increasing trend in rewards and Q-values along the training process 

in three-fold cross validation was observed for both DRL and KgDRL, illustrating the 

effectiveness of both training schemes. It was also observed that the reward and Q-value of 

KgDRL increased much faster compared to the standard DRL in all three runs of cross 

validation, e.g. the reward and Q-value of KgDRL at the 8-th episodes were comparable to 

those of DRL at the 100-th episode. Note that in each fold we stopped the KgDRL at the 10-

th episode, as we observed satisfactory performance on the validation data in only 8 

episodes, and the average plan score was not improved afterwards, see Fig. 3(c). On the 

other hand, DRL improved the average score of VTPN generated plans gradually, until it 

achieved satisfactory performance at around 100 episodes. This comparison indicated that it 

took KgDRL only 8% of episodes required by DRL to reach a similar level of intelligence in 

VTPN in all three folds of model training. Since the computational complexities for DRL 

and KgDRL in each training episode were similar, the reduction in the number of episodes 

translated immediately to the reduction in computation time. On average, it only took ~13 

hours for KgDRL to complete the training process, as compared to approximately a week 

time for DRL.

3.1.2 Testing performance of VTPNs trained via KgDRL—In this section, we 

studied the treatment planning performance using purely the human rules, and two optimal 

VTPNs trained in three-fold cross validation via KgDRL with 8 episodes and DRL with 100 

episodes, respectively. In addition, we also studied the performance of the VTPN trained via 

standard DRL with training suspended at 8 episodes to further highlight the training 

efficiency gain of KgDRL.

In Fig. 4, we first show the treatment planning process for one representative patient case 

performed by the VTPN trained with 8 episodes of KgDRL. It was observed that the VTPN 

successfully improved the plan quality, as evidenced by the generally increasing trend of the 

plan score along the planning process, and finally reaching the maximal score of 9. 

Specifically, the VTPN firstly determined to decrease the value of τrec to improve rectum 

sparing, and then focused on eliminating hot spots and enhancing the PTV dose 

homogeneity by raising λ, the weighting factor of PTV overdose in the objective function. It 

then changes the weighting factors of rectum and bladder, respectively, to adjust their 

importance. Later on, τbla was adjusted to reduce the dose delivered to bladder. In 18 steps 

of TPP adjustment, the plan score reached 9, i.e. the highest score in our scoring system, 
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which concluded the treatment planning process. The planning process using VTPN trained 

with 100 episodes of the standard DRL was similar, and hence is not presented.

We evaluated the effectiveness of using human rules for TPP adjustment on all testing 

patients, see Fig. 5 and Table 2. Compared to the initial plans that were generated with all 

TPPs set to unity, the rules were able to improve the plan score from 4.97 (±2.02) to 7.81 

(±1.59) (average plan score (± standard deviation)). Yet, there was still rooms to further 

improve the resulting plans, especially for those receiving relatively low scores. The main 

reason for the relatively low performance of the rule-based planning process was that we 

only selected three general rules being valid for most of the patient cases. These rules were 

not complete and by no means optimal for each specific patient. In particular, the rules failed 

to improve plans for two of the testing patient cases, which made the resulting plan scores 

less than one. This in fact highlighted the need of developing the VTPN to learn how to 

intelligently adjust TPPs for specific patient cases.

Compared to purely relying on rules, both VTPNs trained via KgDRL and DRL were able to 

achieve better performance. More specifically VTPN trained with only 8 episodes of 

KgDRL achieved an average plan score of 8.82 on all the testing patient cases, with most of 

the testing cases (48 out of 59) reached the maximal plan score of 9. With a similar 

performance level, the VTPN trained with 100 episodes of DRL was capable of reaching an 

average score of 8.43. Plan scores of all the testing cases were at least 8, higher than the 

average plan score achieved by using the rules only. Based on these results, VTPNs were 

successfully trained with DRL using 100 episodes and KgDRL using 8 episodes, 

demonstrating the effectiveness of the DRL framework in learning TPP-adjustment policy 

for high-quality treatment plans.

The advantage of KgDRL can also be observed from the angle of comparing the 

performance of VTPNs trained with KgDRL and DRL, but both with 8 episodes. In this 

case, the standard DRL was not able to fully train the VTPN to a proficient level in 

treatment planning. The resulting VTPN was only able to improve the average PlanIQ plan 

score from 4.97 to 5.87, much lower than the VPTN trained with KgDRL using the same 

number of episodes.

4. Discussions

The current study introduced an effective approach to incorporate human knowledge in the 

process of training a VTPN. Tests demonstrated that this approach was able to substantially 

improve the training efficiency. Although the current study focused on an exemplary 

problem of treatment planning for prostate cancer IMRT using an in-house TPS, the 

achieved success was expected to be of vital importance for the development of the DRL-

based intelligent automatic treatment planning framework towards more complicated tumor 

sites, e.g. head and neck (H&N) cancer, more complex treatment planning problems, e.g. 

VMAT, and the incorporation of clinically realistic TPSs with more options of TPP 

adjustments. Note that the state-action space of a treatment planning problem grows 

exponentially with the number of TPPs and a larger state-action space leads to longer 

training time. The much larger state-action space and longer plan optimization time for the 
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complex clinical treatment planning tasks would significantly increase the computational 

challenge to train a VTPN, which could make the standard DRL training approach 

impractical even for the situation that the VTPN is trained elsewhere, e.g. by the TPS vendor 

using a powerful computer. Additionally, similar to how the current Knowledge-based 

planning tools are implemented in clinic, the VPTN may require retraining and fine 

adjustment at a user’s institution to adapt the model to treatment planning practice at the 

specific institution. In this case, an efficient training scheme is also expected to be important. 

The proposed KgDRL can greatly accelerate the training process, and hence is critically 

important for applying VTPN to handle clinical treatment planning problems.

It is worthwhile to discuss to what extent we should define rules and incorporate them in the 

training process. Generally speaking, in the large space spanned by states and actions, the 

optimal policy to operate the TPS for treatment planning is represented as an action function 

of the state, i.e. deciding an action for a state. The process of training a VTPN is essentially 

to find an approximation using the deep neural network to represent this function. This 

function apparently occupies only a small portion of the entire state-action space. The 

ineffectiveness of the conventional DRL using the ϵ-greedy approach comes from the 

random exploration in the large state-action space, and hopefully being able to observe 

enough training data falling in the space of the optimal policy to allow training the VTPN. 

The proposed KgDRL approach, instead, defines a small space of rules (Fig. 6) to help 

generating training data within the desired region, hence accelerating the training process. 

Note that we defined a set of rules that did not cover all scenarios of plans. This is illustrated 

in Fig. 6. Specifically, the rules were defined only for plans with PTV score ≤ 0.5, bladder 

score ≤ 2, or rectum score ≤ 2. No rule was defined when a plan felt outside this range. In 

general, it would be difficult to define a complete set of rules that cover all scenarios, 

although this may be possible for the relatively simple planning problem in this study. 

However, the purpose of defining rules was to use them to effectively guide the DRL 

training process, even the pre-defined rules may not be complete. The DRL training process 

is able to explore the state-action space and discover optimal policy covering all scenarios. 

The validity of this approach was demonstrated by our studies.

The key to the success of KgDRL is effectiveness and generality of rules. Effectiveness 

means that the rules can improve plan quality, when using them to generate actions in 

treatment planning. Generality means that the effectiveness of rules can be realized on a 

large population of patients. Those rules satisfying both conditions can significantly increase 

the chance for a VTPN to observe proper ways of TPP adjustment, and learn from them, 

such that the training of the VTPN can be made more efficiently than training without using 

any guidance. In practice, it may be straightforward to define effective rules for a certain 

number of simple scenarios, such as the three ones considered in this study. However, it 

would be challenging to define rules that are both effective and general, as patient cases are 

different, and patient-specific rules may be required. One may introduce a set of very 

complex rules that can produce high-quality plans for each specific scenario one could think 

of. Yet doing so is not only tedious, but it is hard to ensure the validity of rules in unseen 

scenarios and hence likely to sacrifice the generality of the rules. Using these rules to guide 

the development of VTPN would risk at problems of misleading the training process.
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One excitement observed in this study was that it seemed the training of VTPN did not 

require very effective rules. The three very general rules in this study (Sec. 2.4.2) were 

relatively simple, but not very effective. As demonstrated by the study in Sec. 3.1.2, the 

performance of treatment planning purely based on rules was not satisfactory, resulting in 

the final PlanIQ score of 7.81 (±1.59). This indicated that the rules were only a subset of the 

optimal policy space. Yet, these rules served as seeds for the VTPN to grow and eventually 

the training process enabled the VTPN to discover the rest of the optimal policy space. The 

discovered policy was found to be effective and general for treatment planning, as indicated 

by the average score of 8.82 (±0.29) achieved by the VTPN on a number of patients that 

were not seen in the training process.

Integrating human knowledge with state-of-the-art deep learning techniques is actually a 

topic of great importance 35–38, as doing so not only helps improving effectiveness of 

building a deep learning model, it also often enhances other aspects of the model, such as 

interpretability. The proposed study provided a potential approach, but there are other 

possible solutions to serve the same purpose. For instance, the proposed KgDRL approach 

used rules to guide the training of a deep learning model with human experience. The 

resulting VTPN may or may not agree with the rules in those scenarios that rules were 

defined. To a certain extent, this approach is similar to having a “soft” constraint in an 

optimization problem: constraint on the agreement between the rules and the resulting policy 

discovered by the VTPN. On the other hand, we may also treat rules as “hard” constraints 

when building the VTPN, if there exist rules that are known for certain effective. In this 

strategy, VTPN may be constructed to contain two parts, one representing the rules and it 

does not require training, and one representing the remaining optimal policy space 

complement to the defined rules. Furthermore, it may be even possible that building a 

clinically applicable VTPN may rely on both the soft and the hard constraint approaches. It 

is an interesting direction to explore in future.

The current study has several limitations. First, similar to our previous study 20, 23, the 

reward function derived from the PlanIQ score may not fully represent the clinical objectives 

in treatment planning. The current study focused on improving the efficiency of training 

VTPN by incorporating human knowledge, and the validity of PlanIQ score is beyond this 

scope. However, to ensure future clinical applicability of VTPN, it is of central importance 

to model the criteria of more clinical relevance, such as physician’s judgement, as reward 

function to build a VTPN with a practical value for clinical practice. Motivated by the recent 

advancements in inverse deep reinforcement learning 39 that allowed learning the reward 

function based on human behaviors, the physician’s preference may be learned and 

incorporated into the training of the VTPN. Second, the current study can only serve as a 

proof-of-principle one to demonstrate the effectiveness of VTPN in a simplified treatment 

planning problem using an in-house TPS. Extending the VTPN with a clinically realistic 

TPS is critically important, and its feasibility should be comprehensively investigated in 

future. Last, but not the least, another limitation of our approach was the simple network 

structure. Under the current formulation (Fig. 1), the size of the network would increase 

linearly with respect to the number of TPPs involved in the plan optimization problem. As 

we can imagine, the network size of a VTPN to automatically operate a real TPS for the 

treatment planning of more complicate cancer sites would be huge. This would pose 
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substantial challenge in computations. Hence, improving the scalability of the VTPN is 

needed before VTPN can be applied to tackle clinical treatment planning tasks using 

commercial TPSs.

5. Conclusions

In this paper, we have proposed an KgDRL framework to integrate human experience with 

DRL for intelligent automatic treatment planning. Using prostate cancer IMRT treatment 

planning as a testbed, we showed that rules defined based on human experience was able to 

effectively guide the navigation process in the large state-action space. which substantially 

improved the training efficiency of VTPN. Compared to the standard DRL training approach 

using the ϵ-greedy algorithm, KgDRL reduced the training time by over 90%. The efficiency 

gain of KgDRL would potentially enable the applications of DRL to those complicated but 

more clinically relevant treatment planning problems. This study also showed a successful 

example of employing human knowledge to enhance the state-of-the-art deep learning 

techniques.
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Figure 1. 
(a) The workflow of intelligent automatic treatment planning via VTPN. (b) The overall 

structure of the VTPN. (c) Detailed architecture of a subnetwork (top) with the structure of a 

convolutional block (bottom left) and fully connected block (bottom right). Filter size (m) 

and number (n) for the convolutional layer and output size (k) for the fully connected layer 

are specified.
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Figure 2. 
Integrating human TPP adjustment rules with the ϵ-greedy algorithm to generate training 

samples in the DRL process. Such a process reduces to the standard DRL, if removing the 

dashed brunch corresponding to the incorporation of rules.
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Figure 3. 
Comparison of rewards (a) and Q-values (b), and validation performance (c) along training 

episodes between KgDRL and DRL in three-fold cross validation. Line gives the mean 

value, and the bar defines the range.
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Figure 4. 
Evolution of DVH, dose distribution, TPPs, and PlanIQ scores for a representative testing 

patient case in the planning process performed by the VTPN trained with 8 episodes of 

KgDRL. (a1) From left to right: DVHs at TPP adjustment steps 0 (initial plan), 5, 10, 15, 

and 18 (final step) compared with that of the initial plan. (a2) Corresponding dose 

distributions. (b) and (c) TPP values and PlanIQ plan scores along the planning process.
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Figure 5. 
A box plot comparing PlanIQ plan scores. Each blue box covers the 25th and 75th 

percentiles of the plan scores on 59 testing patient cases, while the red line in the middle 

gives the median value. Top and bottom lines indicate maximal and minimal scores. From 

left to right: initial plans, plans generated using only rules, plans generated by VTPN trained 

with 8 episodes of DRL, plans generated by VTPN trained with 100 episodes of DRL, and 

plans generated by VTPN trained with 8 episodes of KgDRL.
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Figure 6. 
An illustration of the relationship between the entire state-action space, optimal policy 

space, and rule space.
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Table 1.

Criteria employed in the PlanIQ scoring system for plan quality evaluation.

Quantity of interest Scoring Criterion

PTV D[0.03cc] (Gy) Score = 

1, if PTV D[0.03cc] < 84.4Gy
PTV D[0.03cc] − 87.12 Gy

84.4 Gy − 87.12 Gy , if 84.4Gy ≤ PTV D[0.03cc] ≤ 87.12Gy

0, if PTV D[0.03cc] > 87.12Gy

Bladder V[80Gy] (%) Score = 

1, if Bladder V[80Gy] < 15%
Bladder V[80Gy] − 20%

15% − 20% , if 15% ≤ Bladder V[80Gy] ≤ 20%

0, if Bladder V[80Gy] > 20%

Bladder V[75Gy] (%) Score = 

1, if Bladder V[75Gy] < 25%
Bladder V[75Gy] − 30%

25% − 30% , if 25% ≤ Bladder V[75Gy] ≤ 30%

0, if Bladder V[75Gy] > 30%

Bladder V[70Gy] (%) Score = 

1, if Bladder V[70Gy] < 35%
Bladder V[70Gy] − 40%

35% − 40% , if 35% ≤ Bladder V[70Gy] ≤ 40%

0, if Bladder V[70Gy] > 40%

Bladder V[65Gy] (%) Score = 

1, if Bladder V[65Gy] < 50%
Bladder V[65Gy] − 55%

50% − 55% , if 50% ≤ Bladder V[65Gy] ≤ 55%

0, if Bladder V[65Gy] > 55%

Rectum V[75Gy] (%) Score = 

1, if Rectum V[75Gy] < 15%
Rectum V[75Gy] − 20%

15% − 20% , if 15% ≤ Rectum V[75Gy] ≤ 20%

0, if Rectum V[75Gy] > 20%

Rectum V[70Gy] (%) Score = 

1, if Rectum V[70Gy] < 25%
Rectum V[70Gy] − 30%

25% − 30% , if 25% ≤ Rectum V[70Gy] ≤ 30%

0, if Rectum V[70Gy] > 30%

Rectum V[65Gy] (%) Score = 

1, if Rectum V[65Gy] < 35%
Rectum V[65Gy] − 40%

35% − 40% , if 35% ≤ Rectum V[65Gy] ≤ 40%

0, if Rectum V[65Gy] > 40%

Rectum V[60Gy] (%) Score = 

1, if Rectum V[60Gy] < 50%
Rectum V[60Gy] − 55%

50% − 55% , if 50% ≤ Rectum V[60Gy] ≤ 55%

0, if Rectum V[60Gy] > 55%
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Table 2.

Comparison of performance using rules only, DRL and KgDRL on testing dataset.

Initial Rules DRL KgDRL

Number of training episodes -- -- 8 100 8

Training time (hours) -- -- 13 172 13

Average PlanIQ score (± standard deviation) 4.97 (±2.02) 7.81 (±1.59) 5.87 (±2.37) 8.43 (±0.48) 8.82 (±0.29)

Med Phys. Author manuscript; available in PMC 2022 April 01.


	Abstract
	Introduction
	Methods and Materials
	Optimization engine and adjustable treatment planning parameters
	Virtual treatment planner network
	Plan quality evaluation metric
	Training the virtual treatment planner network
	Standard deep reinforcement learning process


	Algorithm 1.
	Algorithm 2.
	Implementation details and evaluations

	Results
	Training efficiency and effectiveness of DRL and KgDRL
	Testing performance of VTPNs trained via KgDRL


	Discussions
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.
	Table 2.

