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Abstract

The bacterial pathogen Borrelia burgdorferi is the causative agent of Lyme disease and is 

transmitted to humans through an Ixodes tick vector. B. burgdorferi is able to survive in both 

mammalian and tick hosts through careful modulation of its gene expression. This allows B. 
burgdorferi to adapt to the environmental and nutritional changes that occur when it is transmitted 

between the two hosts. Distinct interactions between the spirochete and its host occur at every step 

of the enzootic cycle and dictate the ability of the spirochete to survive until the next stage of the 

cycle. Studying the interface between B. burgdorferi, the Ixodes tick vector, and the natural 

mammalian reservoirs has been made significantly more feasible through the complete genome 

sequences of the organisms and the advent of high throughput screening technologies. Ultimately, 

a thorough investigation of the interplay between the two domains (and two phyla within one 

domain) are necessary in order to completely understand how the pathogen is transmitted.

1. Introduction

Arthropod borne diseases are becoming increasingly prevalent across the globe, and an 

understanding of the pathogen-arthropod interface can be an important tool in control of 

these diseases. Ixodes ticks carry many pathogens of human importance, including 

Anaplasma, Babesia, Borrelia, tick-borne encephalitis virus and Powassan virus. The most 

researched of these pathogens is the spirochete Borrelia burgdorferi, the causative agent of 

Lyme disease and the most common vector-borne disease in the United States (1–3). There 

are three important components to maintenance of the B. burgdorferi life cycle: the 

spirochete, the invertebrate tick vector, and the vertebrate host (Figure 1).

Ixodes ticks are hematophagous and take one blood meal during the larval, nymph and adult 

stage of their lifecycle. B. burgdorferi is not transmitted from adult ticks to eggs, so larval 

ticks must acquire the spirochetes from infected animals, such as birds and mice, with the 

first blood meal. The spirochetes will remain within the tick after feeding and molting into 

the nymphal stage. A B. burgdorferi infected nymph will feed on another reservoir host and 

transmit the spirochetes, continuing the enzootic cycle. After another molt into the adult 

stage, the adult tick will typically feed on larger animals (such as deer) that may not be 
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competent reservoir hosts for B. burgdorferi but are critical to tick mating. Ticks in the 

nymphal stage are primarily responsible for transmission of B. burgdorferi to humans, but 

humans are not important in the enzootic cycle and are considered dead-end hosts (1).

The tick salivary glands and midgut play important roles in the colonization and 

transmission of B. burgdorferi. During acquisition from an infected host that occurs with the 

tick blood meal, B. burgdorferi enters the tick with blood, and interacts with tick commensal 

microbes and tick proteins to establish infection and persistence within the vector. Ticks, in 

response to the bloodmeal and the presence of the pathogen, will modify expression of 

certain genes. B. burgdorferi then has to respond to the vast environmental changes of 

moving from a vertebrate host to an invertebrate host. These include but are not limited to 

differences in host immunity, nutrient availability, and temperature. For example, after a 

blood meal, hard ticks such as Ixodes will not feed again for many months. To adapt, the 

organism needs to slow its growth rate, evade tick immunity and survive a wide range of 

temperatures. Then, when the tick takes its next blood meal, spirochetes must identify the 

signals of a new feeding and initiate the changes required for successful migration to the 

salivary glands in preparation for transmission into a new mammalian host (1,4–8). In this 

review, we will provide an overview of the enzootic cycle, focusing on the interplay between 

the mammalian host, the Ixodes tick vector, and B. burgdorferi, at each step.

2. Tick acquisition and initial Borrelia adaptations

During the first stage of the enzootic cycle, B. burgdorferi is transmitted into ticks during the 

larval blood meal. This change in environment requires B. burgdorferi to rapidly adapt from 

the mammal to the tick in order to survive. B. burgdorferi must sequester nutrients from the 

blood meal and evade elimination by components of the tick immune system (Figure 1).

2.1 Borrelia transmission into ticks

Ixodes ticks use a feeding apparatus, made of a ventral barbed hypostome, which acts as an 

anchor and two chelicerae, lined by rows of dentricles, to saw into the host skin (9). In the 

case of I. scapularis but not I. ricinus, the tick anchors the mouthparts to the skin via a 

cement-like material that is created by the salivary glands (10,11). The blood meal lasts for 

several days, so they have had to develop many strategies to remain attached to the host 

without triggering key host immune defenses and allowing for adequate blood flow. To 

accomplish this, tick saliva contains immunosuppressant, vasodilator and anticoagulant 

molecules that are beneficial to feeding and are utilized by pathogens such as B. burgdorferi 
to assist with transmission (12–14). These will be discussed in detail later in the review. 

When spirochetes enter the midgut of the larval tick, they utilize the nutrients from the 

blood-meal and rapid replication occurs (15). Very little is known about spirochete nutrient 

utilization and metabolism in larval ticks, but nutrient utilization during the nymphal blood 

meal is better characterized and will be discussed in later sections.

B. burgdorferi’s biphasic life cycle requires the spirochete to adapt to the changes in 

environmental conditions from the vertebrate phase to the arthropod phase, including shifts 

in pH, temperature, immune defenses, and nutrient availability. B. burgdorferi combats these 

changing conditions by activating transcriptional regulators important in controlling 
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expression of genes that are involved in attachment to the tick and evading tick immunity 

(4). A two-component system, consisting of Histidine kinase 1 (Hk1) and response 

regulatory protein 1 (Rrp1), have been studied in the tick phase and appear to work 

concurrently during both the larval and nymphal life stages to regulate expression of genes 

required for survival within the tick. There are still large gaps of knowledge surrounding the 

regulation and activation of Rrp1 and Hk1 (16–20). Hk1 signaling seems to be induced by 

stimuli during the process of larval and nymphal feeding but it is unclear if these signals are 

derived from the vertebrate host at the site of the tick bite or from the tick midgut (21).

It is known that Hk1/Rrp1 play a critical role in promoting Borrelia survival within the gut 

and regulating production of the nucleotide second messenger cyclic-dimeric-GMP (c-di-

GMP) (17). Hk1 binding of free amino acids or their derivatives (18) results in a signaling 

cascade culminating in the phosphorylation of Rrp1 (reviewed in (4)). Rrp1 phosphorylation 

catalyzes the synthesis of c-di-GMP, which in turn modulates the expression of genes 

required for survival within ticks including those important for chemotaxis, nucleotide and 

carbohydrate metabolism (17,20,22). Rrp1-deficient Borrelia strains, which are unable to 

synthesize c-di-GMP, are unable to survive within the tick vector (19), underscoring the 

importance of both the Hk1/Rrp1 two-component system and c-di-GMP on Borrelia 
survival. Indeed, levels of c-di-GMP help regulate other functions of Borrelia survival, 

including motility and virulence (23,24).

2.2 Tick immune system, detection of Borrelia, and Borrelia evasion

Ticks take in relatively large blood meals and are therefore vulnerable to the many invading 

pathogenic species that may be present in the blood. Arthropods defend themselves through 

many immune signaling pathways like Janus kinase-signaling transducer activator of 

transcription (JAK-STAT), immune deficiency (IMD), and Toll signaling, but our knowledge 

of these immune mechanisms in humans and mice cannot necessarily be applied to tick 

immunity, as ticks are phylogenetically distinct (25,26). I. scapularis encodes 33 genes that 

potentially belong to the Toll pathways, but the roles of these genes and Toll pathways are 

yet to be elucidated (27). The I. scapularis IMD pathway, though significantly different than 

the traditional insect IMD pathway, produces antimicrobial responses to B. burgdorferi and 

Anaplasma phagocytophilum to reduce colonization of these pathogens. During A. 
phagocytophilum infection, this pathway is trigged by infection-derived lipids 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and 1-palmitoyl-2-

oleoyldiacylglycerol (PODAG), however it is not known whether infection-derived lipids are 

the trigger for this pathway in B. burgdorferi infection (28).

A crucial component of arthropod physiology, the peritrophic membrane (PM) also acts as 

part of the tick immune defenses. The PM allows metabolites and other materials to be 

transported between the gut lumen and surrounding tissues, and also acts to prevent abrasive 

particles from getting through the gut epithelium (29,30). During early stages of feeding, the 

PM can be detected in Ixodes tick midguts, and can act as an immune barrier to pathogens 

(30,31). Some Babesia microti parasites, also transmitted by Ixodes ticks, develop an 

organelle called the arrowhead that passes through the PM and allows parasites to enter the 

epithelial cells (32). Pathogens that inhabit other arthropods such as Aedes aegypti 
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mosquitoes and sand flies have been known to secrete chitinases that break down the PM 

barrier and allow for movement through the gut epithelium (33,34). B. burgdorferi does not 

appear to have homologs of this protein. Proteome analyses of PM isolated from fed ticks 

indicated that there were few unique proteins and the predominant protein was homologous 

to arthropod chitin deacytlase. Knockdown of this predominant protein, I. scapularis CDA-

like protein (IsCDA), did not prevent formation of the PM or persistence of B. burgdorferi 
(30). However, passive transfer of antibodies against this protein did increase persistence of 

B. burgdorferi in ticks without impacting the total bacterial population in the gut, perhaps 

demonstrating a role for the PM in selectively limiting the levels of B. burgdorferi in the gut. 

It is hypothesized from the amino acid sequence that perhaps IsCDA, while containing a 

conserved enzymatic domain, provides mechanical strength for the PM rather than acting as 

an active enzyme (30). Yang et al. recently discovered that a PM-associated protein, 

Peritrophic Membrane Chitin Binding Protein (PM_CBP), likely plays a role in the structure 

and organization of the PM (35). Interference of PM_CBP expression resulted in decreased 

thickness and increased permeability of the PM, as well as delayed tick feeding (35).

With the blood meal, ticks ingest immune molecules from the vertebrate host that are 

released in response to the feeding ticks. Vertebrate cytokines and chemokines may impact 

the tick’s own innate immune signaling processes. Smith et al. found that vertebrate cytokine 

IFNγ taken up in the blood meal induces I. scapularis Rho-like GTPase (IGTPase) in a 

STAT-dependent fashion, which then regulates expression of a borreliacidal peptide, 

domesticated amidase effector 2 (Dae2) (Figure 2). Knockdown of IGTPase in nymphal 

ticks caused an increase in spirochete burden (36). Dae2, which is expressed during the 

unfed nymphal and unfed adult stages of I. scapularis ticks, is thought to act on the cell wall 

of B. burgdorferi to regulate levels of the spirochete after the tick has acquired the bacteria. 

It does not, however, limit the amount of bacteria taken in by the tick at the blood, as 

knockdown in nymphal ticks immediately after engorgement did not result in lower 

spirochete burden (37).

3. Borrelia interactions with the tick gut

Following uptake from the blood meal, B. burgdorferi establishes residence within the tick 

gut. Within this environment, the spirochete interacts with other bacteria within the gut 

microbiome and tick gut proteins in order to remain viable.

3.1 Tick gut microbiome

The tick gut microbiome may also influence pathogen success and colonization, and 

manipulation of the microbiome may allow for interruption of this colonization. B. 
burgdorferi may be particularly susceptible to this, as it does not possess the genetic 

mechanisms for direct interactions with other bacteria, demonstrated by the finding that 

increases in bacterial genera like Pseudomonas, Bacillus, and Enterobacteriaceae are 

associated with decreases in B. burgdorferi in the tick midgut (38). However, studies on hard 

ticks such as I. scapularis have observed differing results in terms of the tick microbiome, 

with some studies finding few bacterial genera in the tick gut and other studies observing 20 

or more. The geographical location of field collected ticks, the life stage of the tick, the tick 
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species, and time from molting and feeding may also play a role in the inconsistencies 

reported in tick microbiome research, as well as a lack of agreement as to whether the tick 

microbiome includes environmental microbes and symbionts (39,40).

Recent evidence has leaned towards lack of a stable microbiome. Ross et al. found through 

visualization of bacteria and direct measurements of bacterial burden, that I. scapularis ticks 

do not have a stable midgut microbiome (38). A possible explanation for the discrepancies is 

that many of the initial studies were done by 16s rRNA sequencing and that low biomass has 

been associated with misinterpretation of sequencing data as well as susceptibility to 

contamination. Pooling samples when studying the tick microbiome may lead to more 

consistent results in the future (38,41,42). In a recent study supporting the results from Ross 

et al., Guizzo et al. found that the hard ticks I. ricinus and Rhipicephalus microplus ticks 

also have relatively small midgut bacterial communities compared to other blood sucking 

arthropods, even after the blood meal. Interestingly, the ovaries of both species had much 

larger microbial communities (43). However, despite a relatively small and inconsistent 

taxonomic composition, Estrada-Pena et al. found that I. scapularis midgut microbiomes are 

functionally redundant. This redundancy implies that the microbiomes have a core 

functionality that can be accomplished by many taxonomic combinations, and this allows 

the functional tick microbiome to be quite resistant to perturbation (39).

Narasimhan et al. found that the microbiome of the tick may play a key role in the tick’s 

immune defenses against pathogens attempting to colonize the gut (44). They suggest that 

the expression of STAT, a key component in the JAK/STAT signaling pathway, is modulated 

by the tick gut microbiome, and that this may facilitate the expression of a core glycoprotein 

of the tick PM, peritrophin. Increased expression of peritrophin would therefore strengthen 

the integrity of the PM barrier and they theorize that this may protect the spirochetes from 

the harsh environment of the gut lumen (44) (Figure 2). Indeed, it has been recently 

demonstrated that administration of anti-PM_CBP antibodies resulted in impaired spirochete 

survival in the tick gut (35), again suggesting a potentially critical role of PM integrity on 

Borrelia survival. This research presents a novel and atypical role for the PM, as it is 

typically thought to be a physical immune barrier that prevents pathogens from breaking 

through the epithelial layer (29).

Different microorganisms have also been found to manipulate the tick microbiome to 

facilitate colonization and persistence. A protein upregulated in ticks infected with B. 
burgdorferi and induced by feeding is Protein of I. scapularis with a Reeler domain (PIXR). 

Knockdown of PIXR via RNAi or ticks fed on mice immunized with recombinant PIXR 

caused a decrease in B. burgdorferi colonization in larval and nymphal ticks, and it is 

hypothesized that PIXR plays a role in inhibiting gram-positive bacterial biofilm formation 

in the tick gut. This is similar to the role of IAFGP, a protein induced by Anaplasma 
phagocytophilum, which inhibits biofilm formation by binding to the peptidoglycan in the 

cell walls of gram-positive bacteria (45). Though it is not clear how the induction of PIXR 

benefits B. burgdorferi, it may be elimination of the physical biofilm barrier that allows for 

easier colonization, or it may be a reduction in some detrimental immune responses 

provoked by biofilm production and changes in the tick microbiome (46).
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3.2 Gut protein-Borrelia interactions

The B. burgdorferi outer surface proteins OspA and OspB have been shown to be critical for 

survival within and colonization of the tick gut (47,48). Of the two, much more is known 

about the importance of OspA for survival within the tick, and the importance of OspA 

antibodies in preventing binding of B. burgdorferi to the tick gut, as this has been the focus 

of vaccination efforts (49). OspA is selectively expressed when B. burgdorferi enters larval 

ticks, and this allows for attachment and colonization in the gut. During tick feeding, some 

spirochetes will stop producing OspA, which is thought to allow the spirochetes to detach 

from the tick gut and travel to the salivary glands for transmission to the host. It is also 

thought that some adherence to the tick gut occurs via OspA-OspA interactions and that the 

downregulation of OspA during migration to the salivary glands reduces these interactions 

and prevents clumping of the spirochetes during transmission to the vertebrate (50). Some 

spirochetes will continue to produce OspA but these spirochetes disappear during the 

establishment of mammalian infection (51–53). It is unclear if it is because the spirochetes 

eventually downregulate OspA or if those that do not are cleared by the host immune 

system. There is an abundance of research demonstrating that OspA elicits immunity against 

B. burgdorferi and OspA was the antigen for the only approved human vaccine for Lyme 

disease (54). C3H mice administered recombinant OspA have been shown to be protected 

against multiple strains of B. burgdorferi (54–56). Additionally, antibodies to OspA bind to 

the spirochetes in the tick gut during feeding, so mice administered OspA antibodies are also 

protected from challenge with B. burgdorferi (57,58).

The related protein, OspB, has also been shown to play a role in tick colonization by the 

spirochete. Non-borreliacidal antibodies to OspB have been shown to inhibit the interaction 

between the spirochetes and the tick gut, and some of this inhibition may be due to antibody 

binding to multiple epitopes, causing steric hinderance (59). It is possible that, due to the 

genetic and structural similarities of the two outer surface proteins, and the colocalization of 

these proteins on the surface of the spirochete, antibodies to OspB may impact the binding 

of OspA to the tick gut (59,60). Neelakanta et al. demonstrated in their data that OspB 

facilitates the survival of spirochetes in the tick, as spirochetes deficient in OspB were not 

able to colonize, resulting in low numbers of spirochetes in the tick gut despite entering the 

ticks from infected mice at the same rate as their wild type counterparts (47). The mutant 

spirochetes that were able to persist may have been able to utilize OspA to adhere to the tick 

gut, as OspA was not affected in the OspB mutants (47).

At the same time as B. burgdorferi is highly expressing OspA, I. scapularis is highly 

expressing the OspA specific ligand, Tick Receptor for OspA (TROSPA). TROSPA 

expression does appear to be influenced by the presence of spirochetes within the tick, as 

ticks that do not harbor any B. burgodorferi express less TROSPA. This upregulation within 

the tick would be beneficial to the spirochetes, as the OspA-TROSPA interaction increases 

spirochete colonization in the tick gut (Figure 2). After tick feeding and engorgement, 

expression of TROSPA decreases within the tick, in parallel to decreased expression of B. 
burgdorferi OspA (61). Another protein found to impact B. burgdorferi colonization in the 

tick gut is I. scapularis protein disulfide isomerase A3 (IsPDIA3). Knockdown of this 

protein in nymphs resulted in decreased B. burgdorferi colonization. Furthermore, larvae fed 
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on mice that were given anti-recombinant IsPDIA3 sera had decreased B. burgdorferi 
colonization. When IsPDIA3 was knocked down in ticks already infected with B. 
burgdorferi, however, it did not impact the spirochete burden, demonstrating that IsPDIA3 is 

important for colonization but not viability or persistence of B. burgdorferi (62).

4. Borrelia survival between blood meals

While the blood meal ushers in a large wave of nutrients, spirochetes need to survive within 

the tick for months after the blood meal nutrients have been depleted until the following 

blood meal has been taken. During this time, there are many changes in B. burgdorferi gene 

expression, and the spirochete has to modify its utilization of carbon sources in order to 

survive within the tick until the next blood meal (Figure 1).

Studies have identified several Borrelia genes required for persistence within the tick after 

the blood meal nutrients have waned, although a complete picture of which genes are critical 

for survival between blood meals remains unknown. BB0690, a Dps protein, homologs of 

which have been shown to protect other bacteria against DNA damage and oxidative stress 

(63,64), is highly expressed in ticks and is required for Borrelia persistence, as Dps-deficient 

spirochetes are unable to survive for prolonged periods in unfed ticks (65). While BB0690 

does not bind DNA or protect against oxidative stress in vitro, it does bind to iron and 

copper, which in turn helps to protect the spirochete against peroxide stress (65,66). 

Additionally, the B. burgdorferi DnaK suppressor protein (DksA) helps to mediate the 

response to starvation through downregulating DNA replication machinery proteins, 

flagellar components, and ribosomal proteins (67,68). The surface lipoprotein of unknown 

function, bptA, has been shown to be a critical regulator of Borrelia virulence and 

persistence within the tick although the mechanism by which it acts is still unknown (69).

Rrp1, the diguanylate cyclase that synthesizes c-di-GMP, is required to control expression of 

glycerol transport and metabolism in B. burgdorferi (19,70). During the initial part of the 

tick phase of the enzootic cycle, the influx of mammalian blood into the tick gut allows for 

the utilization of glucose as a carbon source by B. burgdorferi. However, in the period of 

time after the larval blood meal and prior to the nymphal blood meal, glucose and other 

nutrients provided by the mammalian blood are depleted quickly and B. burgdorferi switches 

its primary carbon source to glycerol, as well as chitobiose and maltose for glycolysis, in 

order to survive within the tick (20,71–76). Glycerol is readily available in the tick midgut, 

as it is produced by ticks to serve as “antifreeze” during the winter. Spirochetes that are 

deficient in either Rrp1 (16,19) or genes encoding the glycerol metabolism operon (71) are 

unable to survive in ticks. Glycerol utilization and metabolism in B. burgdorferi is regulated 

by the stringent response and RelBbu (BB0198) (77,78). RelBbu is a homolog of RelA and 

SpoT (79), enzymes that control the levels of two nucleotide signaling molecules, termed 

alarmones: guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp). 

Together, these molecules modulate transcription, translation, and numerous other cellular 

activities. In B. burgdorferi, RelBbu is responsible for (p)ppGpp synthesis (77,80,81) and is 

critical for spirochete survival within the tick in between blood meals, partially due to its 

regulation of the glycerol metabolism pathway (77). It is possible that the importance of 

RelBbu in spirochete survival is not limited to regulation of glycerol metabolism genes, as 
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RNA sequencing and microarray analysis has revealed a number of genes that are 

differentially regulated by RelBbu during nutrient stress (77,78). Through identifying specific 

pathways regulated by RelBbu, we can further understand how B. burgdorferi survives in the 

tick between blood meals.

5. Borrelia migration from the midgut to the salivary glands to a new host

While Borrelia reside in the tick midgut between blood meals, the onset of the blood meal 

prompts the spirochetes to migrate out of the midgut and into the salivary glands in 

preparation for transmission into the mammalian host (82). The influx of blood into the tick 

ushers in further changes to the midgut environment, including temperature and pH, 

inducing changes to Borrelia gene expression necessary for adapting to the new environment 

(5,83–86). While acquiring the blood meal, ticks remain attached to their host for several 

days. The tick salivary proteins expressed throughout the feeding period evolve to enhance 

successful transmission of Borrelia to the vertebrate host (14).

5.1 Nutrient uptake during the nymphal blood meal

The onset of the nymphal blood meal ends the period of nutritional deprivation for the 

spirochete. Immediately following the nymphal blood meal, spirochete numbers in the 

midgut remain low but increase as the feeding continues in response to the influx of 

nutrients (15,87,88). Hoxmeier et al. used metabolomics to dissect the interaction between I. 
scapularis ticks and B. burgdorferi during the blood meal, as B. burgdorferi does not possess 

the pathways for synthesis of nucleotides, amino acids, fatty acids, or enzyme cofactors and 

therefore it competes with the tick for these nutrients (89). Elucidating these interactions and 

identifying these metabolites could be important for controlling spirochete growth and 

persistence within the tick vector.

B. burgdorferi lacks the enzymes for the classical pathway for purine salvage, including 

hypoxanthine-guanine phophoribosyltransferase (hpt), adenylosuccinate synthase (purA), 

and adenylosuccinate lysase (purB). It also does not contain the genes that encode the 

enzymes for de novo synthesis of purines so it sequesters deoxynucleotides and purine 

bases, the most common purine being hypoxanthine, from the tick blood meal through novel 

purine salvage pathways (90–92). Similarly, B. burgdorferi obtains amino acids from the 

blood meal, but very little is known about how the spirochetes sequester them from the tick 

(93). Peptides are a source of amino acids for many bacteria, and this is likely the case for B. 
burgdorferi, as it possesses a peptide transport system similar to oligopeptide permease 

(Opp) transporters. The genome encodes five peptide-binding proteins, all of which are 

capable of working with the transporter to facilitate peptide transport (94). The peptide 

binding proteins show different binding specificity and patterns of expression suggesting 

that they may play specific roles in particular parts of the lifecycle (94–97). Ablation of this 

Opp system in vitro results in spirochetes that are morphologically abnormal and unable to 

replicate, further highlighting the critical role of this system for spirochete survival (95). 

Immediately after the nymphal blood meal, B. burgdorferi switches its carbon source to 

glucose, the most prevalent carbohydrate source in mammalian blood and one of the limited 

amounts of carbohydrates B. burgdorferi can utilize for energy (19,71,98,99). This 
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utilization of glucose is supported by the presence of multiple phosphotranferase-type 

glucose transporter genes in the B. burgdorferi genome (4,72,73,100). B. burgdorferi is also 

dependent on the blood meal in the tick for fatty acids and cholesterol as it cannot synthesize 

them, elongate fatty acid chains or oxidize exogenous fatty acids on its own (101–103). The 

spirochete’s outer membrane is composed of cholesterol and fatty acids and free cholesterol 

appears to be crucial to the interactions with the tick through lipid rafts (104).

5.2 Changes in Borrelia and tick gene expression occurring during the blood meal(s)

As previously discussed, Rrp1-Hk1 mediates the initial transition of B. burgdorferi to the 

tick host during the blood meal. The environment during the blood meal is harsh, with 

activation of reactive oxygen and nitrogen species as well as activation of the tick immune 

system (7,27,28,105–107). By studying a transposon library of Borrelia mutants (108), 

Phelan et al. were able to identify 46 genes that were essential to Borrelia survival in ticks 

after the blood meal (109). Most of these genes were of unknown function, and likely have a 

variety of functions critical for Borrelia survival and migration out of the gut. However, 

several of the genes appeared to be involved in protection against reactive oxygen species. 

BB0017, a protein known to protect B. burgdorferi against reactive oxygen species, is 

required for tick survival through control of expression of other genes (109).

After establishing infection in the tick midgut, the next major event in the lifecycle is the 

nymphal blood meal. Spirochete gene expression changes in response to nymphal blood 

uptake are critical for B. burgdorferi survival and transmission to a new host. During uptake 

of the nymphal blood meal, the Hk2/Rrp2 two-component system becomes active, although 

the specific signal that leads to this activation is unknown. Phosphorylation of Rrp2 by Hk2 

results in Rrp2 activation (110–112). In turn, Rrp2 acts as a transcriptional activator for 

RpoN, which controls expression of RpoS, both of which are alternate sigma factors (112–

117). While many components of this pathway have yet to be elucidated, the Rrp2-RpoN-

RpoS pathway is essential for successful spirochete transmission into mice. Genes in this 

regulon, including ospc (important in early mammalian infection) and decorin binding 

protein A (dbpa, important in binding to mammalian extracellular matrix proteins), are 

involved in the tick-mammal transmission cycle (116,118–120).

Spirochete motility is also critical for survival in the tick following the blood meal (88). 

Spirochetes deficient in flaB (121), the periplasmic flagellar filament, or cheY3 (122), a 

chemotaxis response regulator, survive in ticks to a lower extent than wild-type Borrelia. 

While it is unknown when during the tick phase of the enzootic cycle these genes are 

required for survival, it is possible that motility is upregulated during feeding when the 

spirochetes need to migrate from the midgut into the salivary glands. In addition to motility, 

other genes have been documented to change expression in feeding ticks or are important for 

spirochete transmission from ticks to mammals, including bba52 (123), bba03 (124), bba07 
(125), and bba66 (126). In addition to identifying Borrelia proteins that are critical for 

spirochete transmission from ticks, researchers have also begun to identify tick proteins that 

impact spirochete transmission. For example, the tick gut protein ISDLP (I. scapularis 
dystroglycan-like protein) is upregulated during tick feeding and is important for B. 
burgdorferi transmission (127). In order to understand the specific impact of each of these 
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proteins on spirochete survival and successful transmission from tick to mammal, the 

specific functions and interacting partners of these B. burgdorferi and tick proteins need to 

be elucidated.

Interactions between spirochete proteins and tick proteins are critically important to both 

establishment of the spirochete in the midgut and migration out of the midgut and into the 

salivary glands. While the interaction between OspA and TROSPA is critical for spirochete 

maintenance in the midgut, downregulation of OspA and TROSPA during the blood meal 

help promote spirochete egress from the midgut (50,61). To identify additional interacting 

proteins, Narasimhan et al. screened a yeast display library of tick gut proteins against total 

Borrelia membrane extracts (128). From this screen, the tick gut protein Ixofin3D was found 

to help congregate spirochetes into clusters in the midgut epithelium, which was required for 

transmission to the salivary glands and egress from the midgut (128). While the Borrelia 
protein that specifically interacts with Ixofin3D is unknown, other Borrelia genes have been 

shown to be important for interacting with tick proteins and inducing migration to the 

salivary glands. Interactions between the Borrelia surface protein BBE31, which is 

upregulated during nymph feeding, and the secreted gut protein TRE31 results in spirochete 

migration through the hemolymph to the salivary glands (129).

5.3 Salivary gland composition

Upon egress from the tick midgut, Borrelia enter the salivary glands prior to transmission 

into the vertebrate host. The tick salivary gland is a complex environment, composed of 

several hundred known proteins (130). While many of these proteins are critical for Borrelia 
transmission into the mammalian host (see “Immunomodulatory effects of tick saliva”), 

there have been recent studies that have emphasized the diversity of the salivary gland 

proteins at different stages of feeding.

Acquiring a blood meal from a mammal is a lengthy process, with the tick remaining 

attached to the mammal for a few days to up to one week (14). During this time, the proteins 

secreted from the salivary glands change rapidly. Using proteomics, researchers have 

determined that ticks secrete functionally similar but distinct proteins every 24 hours in 

order to evade detection by the mammalian immune system (131). Other groups have used 

sequencing technologies, including cDNA libraries (130,132,133), phage display (134), and 

next generation sequencing (135,136), to characterize salivary gland proteins and have found 

that the complexity and diversity observed in tick salivary gland proteins is likely due to the 

long host attachment time Ixodes ticks require in order to acquire a blood meal. Many of the 

proteins identified in these studies have known functions, including proteases, cell adhesion 

proteins, cytoskeletal proteins, antimicrobial proteins, and others (132). However, a 

substantial portion of the salivary gland proteins are of unknown function. Determining 

whether these proteins interact with Borrelia surface proteins or mammalian proteins can 

help identify their role and function in the tick salivary gland.

In addition to differential expression over the course of feeding, it has become evident that 

proteins in the salivary gland, including lipocalins, Kunitz-domain containing proteins, and 

metalloproteases have molt stage-specific expression, suggesting that the interactions 

between the mammal and the tick are likely to differ between stages (136). Likewise, tick 
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salivary protein expression differs depending on the mammalian host, as the tick 

transcriptome and proteome composition is distinct when fed on mice or guinea pigs (137). 

These adaptions by the tick that are dependent on the molt stage or mammalian host help to 

ensure adequate blood meal uptake and evasion of mammalian immune detection.

5.4 Immunomodulatory effects of tick saliva

Proteins in tick saliva have immunomodulatory properties that impact multiple aspects of 

mammalian host defense. While their primary purpose is to ensure that the tick can feed to 

repletion, B. burgdorferi take advantage of some of these salivary proteins or their functions 

to facilitate movement from the tick to the mammalian host (138–140).

One salivary gland protein, Salp15, is particularly influential in impacting the mammalian 

CD4+ T cell response to Borrelia. Salp15 has been documented to bind to the CD4 co-

receptor on CD4+ T cells, preventing T cell receptor signaling through the inhibition of Lck 

and Zap70 phosphorylation (138,141) (Figure 2). Together, this results in a decrease in IL-2 

production, a cytokine critical for T cell expansion (138). The impact on the CD4+ T cell 

response is not limited to Salp15, as other unknown tick salivary gland proteins have been 

shown to bind IL-2 directly, preventing T cell proliferation (142). Other salivary proteins, 

such as Iris and Iristatin, inhibit production of several proinflammatory cytokines, including 

IL-6, TNFα, and IFNγ (143,144). Tick saliva has also been documented to impact more 

upstream pathways, specifically impairment of dendritic cell maturation, antigen 

presentation, and cytokine production (139,145,146), all of which can inhibit the 

downstream CD4+ T cell response.

The impact of tick saliva on the mammalian host response is not limited to T cells. In 

addition to its influence in inhibiting cytokine production, Salp15 has also been documented 

to bind to OspC on Borrelia, protecting the bacterium from antibody mediated killing in 

mice (147). Antibody targeting of Salp15 resulted in enhanced phagocytosis of Borrelia and 

targeting of OspC antibodies to the Borrelia surface (148). Other salivary gland proteins, 

such as the B cell inhibitory protein (BIP), inhibit B cell proliferation and activation 

(140,149). Salp15 and other salivary gland proteins, including Isac, Salp20, TSLPI and 

IRAC, have also been reported to interfere with the complement cascade, preventing both 

neutrophil phagocytosis and complement-induced lysis of Borrelia (150–154) (Figure 2). 

Furthermore, tick saliva can reduce integrin expression on neutrophils, reducing chemotaxis 

and inhibiting neutrophil mediated killing of Borrelia (155,156). Through inhibition of 

multiple aspects of the mammalian immune response, tick salivary proteins help ensure 

adequate transmission of Borrelia from the tick to the mammal and completion of the 

enzootic cycle.

6. Utilizing insights from the tick-pathogen interface

Repeat exposure to tick salivary proteins can induce tick immunity in hosts such as rabbits 

and guinea pigs, but not in the natural Peromyscus leucopus reservoir (157). Tick immunity 

can result in a decrease in tick feeding and longer time to engorgement, among other 

detriments to tick health. Immunity to tick proteins can be driven by several immune 

components, including eosinophils, basophils, mast cells, and antibodies against the salivary 
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proteins (158,159). Interestingly, although repeat tick bites do not appear to cause tick 

immunity in mice, when infected ticks are fed on mice that had been repeatedly infested 

with ticks, the immune responses against tick proteins did reduce transmission of B. 
burgdorferi (160). Furthering this, when serum from rabbits with tick immunity was 

passively transferred to mice, B. burgdorferi transmission was reduced upon challenge with 

infected ticks, demonstrating the importance of tick salivary proteins to the transmission of 

B. burgdorferi (161). This effect can also be seen in humans, as individuals living in 

endemic Lyme disease areas who have been repeatedly exposed to tick bites have lower rates 

of Lyme disease (162). However, it is unclear if this is driven entirely by immunity to tick 

saliva, or if the reaction to the tick bite simply allows for a more rapid identification and 

removal of the tick.

Interfering with tick salivary proteins that impede mammalian immunity against Borrelia is 

an attractive option to combatting long-term Borrelia infections in mammals. There have 

been numerous studies that have utilized gene silencing technologies in ticks to determine 

the effects of salivary proteins on Borrelia transmission and survival within the tick, and are 

promising targets for therapeutics aimed to decrease Borrelia transmission. RNA-

interference (RNAi) mediated silencing of the salivary protein tick histamine release factor 

(tHRF), which binds to basophils and stimulates histamine release, has been shown to 

reduce B. burgdorferi burden in mice and reduce tick feeding efficiency (163). Similarly, 

silencing of Isac reduced tick weight and Borrelia burdens in ticks (164). RNAi silencing of 

the salivary protein sialostatin L, which has a predominately anti-inflammatory role in 

mammals through targeted inhibition of several proteases (165), reduced tick weight and 

survival following attachment (166).

Furthermore, vaccinating mice and other mammals against tick salivary proteins is a 

potential way to combat Borrelia transmission from ticks to mammals and vice versa. There 

have been several promising studies indicating that vaccination against tick salivary proteins 

could be a successful avenue to developing an effective anti-tick vaccine. Vaccination of 

mice with recombinant Salp15 has been shown to protect mice from B. burgdorferi 
colonization (148), evidence that tick salivary proteins can be immunogenic in mammals. 

Similarly, mice vaccinated with recombinant TSLPI reduced B. burgdorferi burdens, while 

RNAi silencing of TLSPI in ticks reduced Borrelia survival in ticks following the blood 

meal (151). Oral vaccination of mice using recombinant vaccinia virus expressing the tick 

gene subolesin resulted in significantly lower tick infestation on vaccinated mice and 

substantially reduced uptake of B. burgdorferi by ticks that fed to repletion (167). Larval 

ticks fed on mice administered antiserum against the secreted salivary gland protein 

IsPDIA3 showed a reduction in B. burgdorferi colonization both in the fed larvae and once 

the ticks had molted into nymphs (62), suggesting that reducing acquisition by ticks from 

mice could further limit the spread of the spirochete from ticks to other mammals. These 

vaccination studies are not limited to efficacy in mice – vaccination of tick sialostatin L2 in 

guinea pigs lead to decreased feeding ability of ticks, including longer feeding time, 

increased tick rejection rate, and enhanced inflammation (168). Although guinea pigs differ 

from the natural mouse hosts, these studies are encouraging when thinking about potential 

tick vaccination strategies.
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Proteomic studies have also aided in the discovery of potential salivary protein vaccine 

candidates. Comparing the tick salivary proteome at 24 hours and 66 hours post-attachment, 

Narasimhan et al. discovered that salivary gland proteins expressed in the first 24 hours 

following attachment are sufficient to induce mammalian directed anti-tick immunity and 

can prevent tick feeding and Borrelia transmission (161). Yeast display libraries have been 

used to identify salivary gland proteins that impair mammalian immune function (169). 

These data have been useful to further immunization studies, as vaccination of rabbits with 

several newly discovered tick salivary proteins led to a reduction in nymph feeding (169). 

Together, these studies suggest that targeted interference with tick salivary proteins, whether 

through RNAi silencing or vaccination with recombinant protein, is a promising method for 

an anti-tick vaccine that can ultimately reduce Borrelia transmission from ticks to mammals.

While vaccinating humans against one or several of these tick proteins is a potential 

preventative approach, it does not address the geographic spread of the disease or the 

increasing prevalence of infection among ticks. Reservoir targeted vaccine approaches 

targeting B. burgdorferi infection in ticks and wild mice have the potential to greatly reduce 

the prevalence of disease. Vaccination of wild P. leucopus mice could help reduce total 

spirochete burdens in the wild, thereby lessening the chances of human B. burgdorferi 
infection. Success for this approach was shown in a field study in southern Connecticut, 

where mice were hand captured and injected with OspA. This resulted in a decreased 

prevalence of infected ticks in the subsequent season (170). Another method of reservoir 

targeted vaccines involves oral vaccination of animals. The benefit of oral vaccination is that 

delivery of an anti-tick or anti-B. burgdorferi vaccine could occur through placed baits. 

Successful oral strategies of vaccination have utilized recombinant B. burgdorferi proteins or 

viral vectors encoding either spirochete or tick genes (171–174). Targeting tick antigens in a 

reservoir targeted vaccine approach also has added benefits of reducing transmission rates of 

other tick borne pathogens, including B. microti and A. phagocytophilum (167).

7. Conclusions and Perspectives

The stages of the enzootic cycle result in several distinct environments to which B. 
burgdorferi must adapt in order to survive (Figure 1). Spirochete gene regulation is a critical 

component of this adaptation, as it is necessary for preventing elimination by host defenses 

and altering metabolism according to nutrient availability. Entry into the tick via a blood 

meal from a mammal requires B. burgdorferi to change its gene expression from evading 

mammalian host detection to evading the tick immune pathways. The nutrient availability 

from the larval blood meal wanes quickly, and B. burgdorferi must alter its carbon source in 

order to survive until the nymphal blood meal. Upon tick uptake of the nymphal blood meal, 

B. burgdorferi must again change anatomical locations within the tick by migrating from the 

gut to the salivary glands, which contain an entirely new set of defenses that the spirochete 

must overcome in order to be successfully transmitted into the mammalian host. Ultimately, 

when B. burgdorferi returns to the mammal, it must alter its gene expression yet again in 

order to evade mammalian immune detection. Studying the interface between B. burgdorferi 
and its tick and mammalian hosts is now more accessible than in the past, as the genomes of 

all three species have been sequenced and are readily available (101,175,176). High 

throughput screens that utilize sequencing technologies have emerged as critical methods to 
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identify points of intersection and interaction between the spirochete and its hosts. There 

still remains much to be known about specific protein-protein interactions and signaling 

pathways between the hosts and B. burgdorferi, and how these interactions change according 

to tick molt stage and the different mammalian species. While there is no approved vaccine 

to prevent transmission of the spirochete from ticks to mammals, unique perspectives on the 

enzootic cycle and interactions between B. burgdorferi and the Ixodes tick vector can help 

identify potential targets for blocking mammal to tick transmission, tick to mammal 

transmission, or spirochete survival in the tick vector. It is our hope that this review provides 

adequate context for future research designed to identify interactions between I. scapularis 
and B. burgdorferi.
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Figure 1: The enzootic cycle of Borrelia burgdorferi.
Throughout the enzootic cycle, B. burgdorferi must adapt to new challenges within the tick. 

Upon entering the tick, B. burgdorferi must rapidly adapt to changes in environment and 

upregulate tick-phase genes, while at the same time evade detection by the tick immune 

system. The influx of blood into the tick gut during the nymphal blood meal promotes the 

migration of B. burgdorferi to the salivary glands and eventual entry into the host, where it 

must again adjust to environmental changes. B. burgdorferi associated changes are indicated 

in green boxes, changes in the tick are indicated in brown boxes. Created with 

BioRender.com.
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Figure 2: Interactions between B. burgdorferi and the Ixodes tick vector.
Interactions between B. burgdorferi and tick proteins occur at multiple locations within the 

tick. The tick midgut provides an opportunity to influence B. burgdorferi colonization 

through the peritrophic membrane, tick gut microbiome, and other tick gut proteins, 

including TROSPA and PIXR. Tick salivary gland proteins are able to impair the 

mammalian immune response and aid B. burgdorferi survival within the mammal. Some of 

these interactions include Isac, Salp20, TSLPI and IRAC prevention of complement 

mediated lysis of B. burgdorferi, Salp15 binding to CD4+ T cells and inhibiting their 

activation, while simultaneously binding to B. burgdorferi and preventing antibody mediated 

detection of the spirochete, and Iris and Iristatin mediated reduction of proinflammatory 

cytokine production. The equal sign denotes “leads to.” Created with BioRender.com.
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