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Abstract

A significant proportion of individuals with attention-deficit/hyperactivity disorder (ADHD) show 

persistence into adulthood. The genetic and neural correlates of ADHD in adolescents versus 

adults remain poorly characterized. We investigated ADHD polygenic risk score (PRS) in relation 

to previously identified gray matter (GM) patterns, neurocognitive, and symptom findings in the 

same ADHD sample (462 adolescents & 422 adults from the NeuroIMAGE and IMpACT 
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cohorts). Significant effects of ADHD PRS were found on hyperactivity and impulsivity 

symptoms in adolescents, hyperactivity symptom in adults, but not GM volume components. A 

distinct PRS effect between adolescents and adults on individual ADHD symptoms is suggested.

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric 

disorder characterized by inattention and/or hyperactivity-impulsivity (American Psychiatric 

Association, 2013). The disorder is associated with alterations of brain structure and 

function mostly found in the caudate nucleus, right globus palidus and putamen, fronto-

striatal-parietal pathway, and cerebellum (Dickstein, Bannon, Castellanos, & Milham, 2006; 

Faraone et al., 2005; Frodl & Skokauskas, 2012; Halperin & Schulz, 2006; Hoogman et al., 

2017; Nakao, Radua, Rubia, & Mataix-Cols, 2011; Polanczyk & Rohde, 2007; Valera, 

Faraone, Murray, & Seidman, 2007). ADHD is also often marked by impairments in 

cognitive functioning; including deficits in working memory, inhibitory control, and 

cognitive flexibility (Alderson, Kasper, Hudec, & Patros, 2013; Lijffijt, Kenemans, Verbaten, 

& van Engeland, 2005; Martinussen, Hayden, Hogg-Johnson, & Tannock, 2005; Tarver, 

Daley, & Sayal, 2014). The persistence rate of ADHD from childhood into adulthood is 

estimated between 15 to 60%, depending on the definition of persistence (Chandra, 

Biederman, & Faraone, 2016).

Symptom profiles, neuroanatomical features, and cognitive deficits also appear to differ 

between children and adults with ADHD. In children, hyperactivity is the more common 

presentation, whereas inattention, restlessness, and working memory deficits are more 

common in adulthood (Agnew-Blais et al., 2016). In addition, previous literature has shown 

different neuroanatomical features between the age groups with adolescents showing more 

significant alterations in the bilateral Crus I, insula, caudate, thalamus, and middle occipital 

gyrus, adults showing more significant alterations in the middle frontal gyrus (Duan et al., 

2018; Jiang et al., 2019), and children (age 4–9 years) having the greatest reduction in 

cortical surface area among all the age groups (Hoogman et al., 2019).

ADHD is considered among the most heritable psychiatric disorders with a heritability 

percentage estimate of 76% (Biederman, Faraone, Keenan, Knee, & Tsuang, 1990; Wolfers 

et al., 2016). Twelve independent loci on 11 different chromosomes were identified as 

surpassing genome-wide significance to carry the risk to ADHD (Demontis et al., 2019). 

However, only a small percentage of heritability was accounted for, indicating a need for 

further investigation into the common variants of ADHD (Demontis et al., 2019).

Given the differing symptom profiles, neuroanatomical features, and cognitive deficits, 

examination of the genetic underpinnings of adult ADHD is needed. We aimed to investigate 

the differences in genetic effects between adolescents and adults with ADHD. Specifically, 

we investigated how ADHD polygenic risks scores (PRS) based on a genome wide 

association children and adult study from the Lundbeck Foundation Initiative for Integrative 

Psychiatric Research (iPSYCH; https://ipsych.au.dk/downloads/) may influence brain 

structures and symptoms in ADHD that has persisted into adulthood, and how these genetic 

effects differ from those in adolescence (Duan et al., 2018; Jiang et al., 2019).
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Methods

2.1 Participants

This study included adolescents and adults with ADHD, siblings of individuals with ADHD, 

and unrelated healthy controls (462 adolescent participants from the NeuroIMAGE cohort, 

278 adult participants from the NeuroIMAGE cohort, and 144 adult participants from the 

Dutch IMpACT consortium). The NeuroIMAGE projects included relatives of both the 

adolescent participants and the adult participants, while the IMpACT cohort were unrelated. 

Participant breakdown and demographics are further explained in Supplemental Appendix 1. 

Participant recruitment, consent process, and enrollment are detailed in the original studies 

(Mostert et al., 2015; Onnink et al., 2016; von Rhein et al., 2015).

2.2 Clinical and Neurocognitive measures

In brief, individuals with ADHD were included if they met the DSM-IV (NeuroIMAGE 

project) (American Psychiatric Association, 1994) or DSM-IV-TR (IMpACT consortium) 

(American Psychiatric Association, 2000) criteria for ADHD. Two symptom domains, 

inattention and hyperactivity/impulsivity, were evaluated between the two cohorts based on 

the 18 DSM-IV symptom questions (American Psychiatric Association, 1994). The 

symptom scores for both domains ranged from 0 to 9, with larger scores indicating more 

severe symptoms (Duan et al., 2018; Noordermeer et al., 2017). To examine working 

memory capacity, the WAIS Digit Span test (Wechsler, 2000) with maximum forward and 

backward scores was assessed in both NeuroIMAGE and IMpACT participants. Further 

assessment information is detailed in Supplemental Appendix 1.

2.3 Neuroimaging

T1-weighted images were acquired from three 1.5T scanners (Amsterdam using Siemens 

SONATA and Siemens AVANTO, and Nijmegen using Siemens SONATA). The imaging 

preprocessing procedure was the same as in previous studies and is further detailed in 

Supplemental Appendix 2. In brief, the Jacobian-scaled modulated images were regressed 

for age, sex, and site prior to analyses.

2.4 Structural brain decomposition

The preprocessed images went through component estimation using the minimum 

description length algorithm (Rissanen, 1978). Twenty distinct gray matter (GM) 

components were computed by the infomax algorithm (Bell & Sejnowski, 1995) ICA (Xu, 

Groth, Pearlson, Schretlen, & Calhoun, 2009) within the GIFT toolbox (http://

mialab.mrn.org/software/gift). ICASSO (Himberg, Hyvarinen, & Esposito, 2004) with 10 

ICA runs was used to ensure the stability of components. Detailed information about the 

GM brain components identified in the previous studies is described in Supplemental 

Appendix 3.

2.5 Genetic data and PRS Construction

We used PRSice-2 (https://www.prsice.info/) for PRS calculations (Choi & O’Reilly, 2019). 

Detailed information of genetic data and preprocessing is further described in Supplemental 
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Appendix 4. The Lundbeck Foundation Initiative for Integrative Psychiatric Research 

(iPSYCH; https://ipsych.au.dk/downloads/) child and adult ADHD summary statistics were 

used as the base file, and the preprocessed genetic data were used as the target file for 

adolescent and adult samples.

2.6 Association analyses of PRS, structural brain components, and behavior data

Our previous research identified GM components, which were greater in controls than 

individuals with ADHD (Duan et al., 2018; Jiang et al., 2019). The association between PRS 

and those GM components that showed differences between cases and controls, symptom 

score, or neurocognitive differences were analyzed in separate linear mixed models (LMM). 

In the LMMs, the GM component was the dependent variable. Age, diagnosis, medication 

use (yes/no), and PRS were included as fixed effect with family as a random effect on the 

intercept. The quadratic effect of age2 (testing possible non-linear age effects) was added 

into the fixed effect for adolescents only.

The associations between PRS and symptom score and neurocognitive data were also tested 

with similar LMMs. The individual ADHD symptoms of hyperactivity and inattention, and 

the working memory assessments of WAIS digital span forward and backward, were 

included in four separate LMMs as dependent variables. Again, age, sex, medication, and 

PRS were included as fixed effect with family as a random effect on the intercept. 

Significance corrections for multiple comparisons were done using false discovery rate 

(FDR) correction (p < 0.05) (Genovese, Lazar, & Nichols, 2002).

Results

Detailed demographic information can be found in Supplementary Tables 1 and 2 for 

adolescents and adults, respectively. In the adolescent sample, the p-value threshold to 

compute PRS was 0.0025 with 3% of the case vs. control variance explained (p = 1.29E–04) 

(Figure 1a). Using this threshold, a total of 1,789 SNPs were included in the PRS model. In 

the adult sample, the p-value threshold to compute PRS was 0.065 with 5.6% of the case vs. 

control variance explained (p = 2.94E–04). A total of 15,908 SNPs were included in this 

model (Figure 1b).

In adolescents, there were no significant associations between PRS and any of the GM 

components previously reported (Supplemental Appendix 5). In adolescents, PRS were 

positively related to hyperactivity scores (β = 0.10, p = 7.52E4 (FDR corrected)) and 

inattention scores (β = 0.09, p = 0.02 (FDR corrected)) after controlling for age, sex, and 

medication. In adults, PRS were positively related to hyperactivity scores (β = 0.19, p = 

3.58E–03 (FDR corrected)) while controlling for age, sex, and medication, but not 

inattention scores (β = 0.06, p = 0.15 (FDR corrected)). There were no significant 

associations with the previously reported GM components for adults (Supplemental 

Appendix 6).
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Discussion

In this study, we assessed PRS effects on ADHD diagnosis, symptoms, and brain networks 

implicated in ADHD separately in two age cohorts: adolescents and adults. Our findings did 

not show a PRS effect on any of the previously identified GM components (see 

Supplemental Appendices 5 and 6) related to ADHD in either adolescents or adults (Duan et 

al., 2018; Jiang et al., 2019). However, our results did show a PRS effect on individual 

symptom domains of ADHD; in adolescents this held for both hyperactivity and inattention 

scores, while in adulthood this was only found for hyperactivity scores.

Inattention is the prominent symptom profile of adults with ADHD, not hyperactivity 

(Spencer, Biederman, & Mick, 2007). Previous PRS literature has shown associations 

between PRS and individual externalizing symptoms, hyperactivity among others, but not 

internalizing symptoms including inattention (Brikell et al., 2018). Our findings are in line 

with this previous literature. This may partially explain why our results showed no 

association between PRS and inattention in adults. In adolescents, symptoms of 

hyperactivity and inattention were highly correlated, and therefore, the dual results could be 

capturing the same behavioral presentation. These results may offer new insights into the 

genetic effects of the different behavioral phenotypes of ADHD through the lifespan.

The variable persistence rate of ADHD from childhood to adulthood has previous lead to the 

speculation that adults with ADHD may present a more homogeneous phenotype of ADHD. 

Therefore, children with ADHD could be a more muddled representation of ADHD; perhaps 

representing varied phenotypes, environmental factors, or eventually simply “grow out” of 

their clinical diagnosis. Adults who have had the diagnosis of ADHD persist through 

adolescence into their adulthood, may be a more severe and consistent representation of the 

disorder. A recent study by Rovira and colleagues also found that the PRS for persistent 

ADHD (or adulthood ADHD) relates to a more severe and consistent clinical phenotype 

when compared to the PRS for childhood ADHD (Rovira et al., 2020). Our previous and 

current results support this notion that adulthood ADHD differs from childhood ADHD in 

phenotypic presentation, in the affected brain structures, and now, genetically.

Limitations in our study include a relatively broad age range for the adolescent data (7 to 18 

years old; mean = 14.65, SD = 2.24) that we counteracted by completing a voxelwise 

correction with the quadratic effect of age (age^2) in the analyses. Our sample sizes are also 

relatively small and should be replicated with larger samples as these results are meant to 

serve as preliminary findings for ADHD in adolescents and adults.

In conclusion, the finding of different age groups with ADHD presenting with distinct 

symptom profiles partially explained by PRS is an important addition to the ADHD 

literature. We demonstrated a difference between adolescents and adults in the effects of 

PRS on individual symptom domains. These results may be explained by differences in the 

genetic effects of the symptom domains of ADHD and should serve as a starting point for 

future genetic studies of adults with ADHD.

Jiang et al. Page 5

Psychiatry Res Neuroimaging. Author manuscript; available in PMC 2022 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We investigated ADHD polygenic risk score (PRS) related to previously 

identified gray matter (GM) patterns, neurocognitive functions, and symptoms 

in ADHD

• Different age cohorts revealed different symptom profiles related to PRS

• Distinct PRS effects between adolescents and adults with ADHD is suggested
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Figure 1. Polygenic Risk Model Estimation
a) The polygenic risk model estimation based on iPSYCH data and case/control phenotypes 

in adolescent sample. The risk scores set at P value threshold of 0.0025 were included in the 

following analyses. b) The polygenic risk model estimation based on iPSYCH data and case/

control phenotypes in adult sample. The risk scores set at P value threshold of 0.0652 were 

included in the following analyses.
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