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Summary:

Ticks are hematophagous arthropods with unique molecular mechanisms for digesting host blood 

meal while acting as vectors for various pathogens of public health significance. The tick’s 

pharmacologically active saliva plays a fundamental role in modulating the host’s immune system 

for several days to weeks, depending on the tick species. The vector tick has also developed 

sophisticated molecular mechanisms to serve as a competent vector for pathogens, including the 

spotted fever group rickettsiae. Evidence is still inadequate concerning tick–rickettsiae–host 

interactions and saliva-assisted transmission of the pathogen to the mammalian host. Rickettsia 
parkeri, of the spotted fever group rickettsia, can cause a milder version of Rocky Mountain 

spotted fever known as American Boutonneuse fever. The Gulf Coast tick (Amblyomma 
maculatum) often transmits this pathogenic rickettsia in the United States. This review discusses 

the knowledge gap concerning tick–rickettsiae–host interactions by highlighting the spotted fever 

group rickettsia and the Am. maculatum model system. Filling this knowledge gap will provide a 

better understanding of the tick–rickettsiae–host interactions in disease causation, which will be 

crucial for developing effective methods for preventing tick-borne diseases.

Keywords

Ticks; Hematophagy; Rickettsiae; Tick-borne disease; antioxidants

1. Introduction

Arthropod vector ticks harbor a diverse range of viral, bacterial, and protozoan agents and 

transmit them to their mammalian host, making them a major public health threat (Estrada-

Peña and de la Fuente, 2014; Mansfield et al., 2017; Parola et al., 2013; Wikel, 2013, 

2018a). According to the Centers for Disease Control and Prevention (CDC), a total of 
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491,671 cases of tick-borne diseases (~76.5% of all vector-borne diseases) were reported in 

the United States and territories from 2004–2016 (CDC, 2019). Lyme disease is the most 

common vector-borne disease in the United States, and a recently released estimate based on 

medical insurance records suggests that approximately 476,000 Americans are annually 

diagnosed and treated for this disease. Even more tick-borne diseases (TBDs) are recorded 

by the CDC (CDC, 2019). The total number of reported rickettsial cases jumped from 495 

infections in 2000 to 6,248 infections in 2017 (Biggs et al., 2016). As exposure to ticks will 

likely increase, due to expanding deer and rodent populations and global climate change, an 

increasing number of people will be at risk of contracting rickettsiosis that is vectored by 

tick species.

Various tick species can transmit >20 emerging and resurgent agents, all capable of causing 

significant diseases, including alpha-gal syndrome (Crispell et al., 2019), in humans and 

animals, including livestock, pets, and wildlife. Rickettsial pathogens cause life-threatening 

human infections and are significant causes of morbidity globally. Arthropod vectors, such 

as ticks, fleas, lice, and chiggers, transmit the intracellular bacteria that cause these diseases. 

Rickettsial diseases have been responsible for the loss of millions of lives throughout history 

(Sahni et al., 2013). An estimated one billion people worldwide are at risk of rickettsial 

diseases, which are caused by an obligate intracellular Gram-negative bacterium (Walker 

and Ismail 2008; Parola et al., 2005), and this enhanced risk is partly due to rapid global 

travel and the high-volume international livestock trade. Previously, strict quarantine and 

surveillance protocols contained the spread of tick-borne diseases. However, the high 

frequency and ease of global movement constitute a risk for the transportation of ticks and 

tick-borne diseases that may have previously been isolated to one region. Migratory birds 

also provide a means of tick dispersal over thousands of miles (Mukherjee et al., 2013; 

Budachetri et al., 2017). Intriguingly, Rickettsia parkeri, an emerging spotted fever group 

rickettsia, causes a disease of public health significance that is characterized by fever, 

headache, malaise, myalgia, arthralgia, the presence of a maculopapular rash, and multiple 

eschars (Walker and Ismail, 2008; Parola et al., 2005; Paddock et al., 2004; Whitman et al., 

2007; Paddock et al., 2008). In the United States, a six-fold increase in clinical cases of 

spotted fever group (SFG) rickettsiosis has been reported since 2005 (Walker and Ismail 

2008; Groseclose et al., 2004; Adams et al., 2015). The increase in R. parkeri rickettsiosis 

clinical cases is mainly due to the underreporting and serological conservation of R. 
rickettsii, the agent that causes Rocky Mountain spotted fever (Paddock et al., 2009; 2008).

R. parkeri is maintained within the Gulf Coast tick Amblyomma maculatum populations 

through both transstadial (between life-stage molts) and transovarial transmission (TOT, 

deposition into eggs of the developing next generation; Budachetri et al., 2014). R. parkeri 
infection of tick salivary glands and ovaries is an essential stage of the bacterial life cycle. 

There is a dearth of information about the interplay between the tick vector Am. maculatum 
and intracellular pathogenic bacterium R. parkeri. The first sialotranscriptome of Am. 
maculatum opened up a new avenue of research by enabling the development of molecular 

tools to investigate the functional role of tick genes in hematophagy and vector competence 

using an Am. maculatum–R. parkeri model (Karim et al., 2011; Villarreal et al., 2013). The 

interactions between the tick vector and rickettsia bacteria are an understudied research area, 

and Am. maculatum together with R. parkeri offers a unique model system for 
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understanding pathogen infection and saliva-assisted transmission of the emerging SFG of 

rickettsia and their tick vectors (Socolovschi et al., 2009).

2. Tick hematophagy

To survive, ticks must maintain homeostasis (a stable equilibrium maintained by 

physiological processes) and obtain a disproportionately large blood meal of up to 100 times 

their unfed weight (Fig. 1). The Gulf Coast tick, Amblyomma maculatum, has recently 

gained increased attention due to its now established role as a competent vector for 

Rickettsia parkeri, which causes an emerging rickettsial disease of public health significance 

(Paddock and Goddard 2015). This hard tick species is distributed across several regions of 

Central and South American countries bordering the Gulf of Mexico and the Caribbean Sea, 

with a range larger than both Amblyomma americanum and Ixodes scapularis (Estrada-Pena 

et al., 2005). Bird migration and animal movement have likely contributed to the vast 

distribution of this tick across the United States (Mukherjee et al., 2014). It is a known 

vector of Rickettsia parkeri and other bacterial species, including Candidatus Rickettsia 

andeanae (Noden et al., 2020).

In hard ticks, the blood-feeding process occurs once in each post-embryonic life stage, 

whereas soft ticks feed multiple times on the host. The tick feeding on the host can be 

divided into the stages of attachment, slow feeding, fast feeding (24–48 h before 

detachment), repletion, and disengagement from the host (Fig. 1). Successful tick feeding 

requires a repertoire of pharmacologically active proteins and compounds to evade host 

hemostasis, inducing blood coagulation, platelet aggregation, and vasoconstriction, which is 

the reason for investigating tick factors for vaccine development (Francischetti et al., 2009; 

Karasuyama et al., 2020). An updated inventory of the secreted proteins in tick saliva 

(sialome/secretome) suggested complex antigenic variation and a sialome switch at different 

time points in the host for the successful feeding (Karim et al., 2021, 2011; Karim and 

Ribeiro, 2015; Ribeiro and Mans, 2020).

Tick saliva is instrumental in the biological success of tick vectors, including blood-feeding 

success, and the secretion of saliva proteins is regulated by a conserved exocytotic 

machinery composed of soluble N-ethyl sensitive factor attachment protein receptors 

(SNAREs, Karim et al., 2002). These SNARE genes were silenced using RNA interference 

to demonstrate their role in saliva secretion and tick feeding (Browning and Karim, 2013; 

Villarreal et al., 2013). The study of tick exosomes, which are sources of potent host-

response inhibitors, provided new therapeutic components that potentially play a role in 

wound healing (Zhou et al., 2020). Modulation of the tick secretome at the tick–host 

interface helps infectious agent transmission to the host (Kazimírová and Štibrániová, 2013; 

Kotál et al., 2015; Wikel, 2018b). The exosomes responsible for saliva secretion have 

received more attention lately, although more study is needed for the characterization of 

exosomes in preparation of the tick feeding site, maintenance of the blood pool for a 

prolonged period, successful healing of the wound site, and detachment from the host. 

Exosomes and their accumulated “secretome” cargo determine the integrity of the tick–host 

interface in such a way that host responses are evaded and tick pathogens traffic into the host 

via saliva.
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3. Tick-borne rickettsiosis

Rickettsial diseases are caused by infection with obligate intracellular Gram-negative 

alphaproteobacteria transmitted by arthropod vectors and may affect an estimated one billion 

people worldwide (Parola et al., 2013). Tick-borne rickettsial diseases are caused by two 

groups of intracellular bacteria belonging to the order Rickettsiales and including (a) 

bacteria belonging to spotted fever group (SFG) of the genus Rickettsia within the family 

Rickettsiaceae and (b) bacteria within the family Anaplasmataceae, including several genera, 

such as Anaplasma and Ehrlichia (Dumler et al., 2001). Traditionally, rickettsial agents have 

been divided into three groups based on immunological cross-reactivity and vector species 

in the SFG. Most of these are tick-associated, although the typhus group is associated with 

body lice (R. prowazekii) or fleas (R. typhi), as is the scrub typhus group, Orientia 
tsutsugamushi (Renvoise et al., 2009). There were few known rickettsial infections before 

1984, and from 1984–2004 many rickettsial pathogens were identified with the utilization of 

cell culture and molecular techniques (Tomassone et al., 2018). The discovery of increased 

numbers of rickettsial agents removed the old concept that only one tick-borne rickettsiosis 

is prevalent within a geographical area. These rickettsial agents include bacteria for which 

no species have been identified, and typical rickettsiosis has been found to be caused by 

additional rickettsial species (Renvoise et al., 2009). Further genomic studies revealed the 

genomic reduction of Rickettsia due to a highly selective intracellular lifestyle (Diop et al., 

2018). Several Rickettsia species have been discovered, and many are recently known to be a 

causative agent of human disease.

There are several important rickettsial pathogens and diseases prevalent in North America, 

such as R. parkeri (maculatum disease; Paddock et al., 2008), R. rickettsii (Rocky Mountain 

spotted fever; Ricketts, 1991; Sahni et al., 2019), SPECIES (rickettsia pox; Reeves et al., 

2007), Candidatus R. philippi (eschar-associated illness; Shapiro et al., 2010), R. prowazekii 
(a zoonosis spread to humans from infected flying squirrels in the United States; Chapman 

et al., 2009, p. 201), R. typhi (typhus; Blanton and Walker, 2017), and R. africae (associated 

with traveling in sub-Saharan Africa; Raoult et al., 2001). Most of the rickettsial diseases are 

grouped by severity of illness and contain overlapping clinical manifestations. Several 

Rickettsia pathogens, such as R. rickettsii, R. prowazekii, R. conorii, and R. typhi, can cause 

life-threatening diseases. The fatality rate of Rocky Mountain spotted fever prior to the age 

of antibiotics was 20–25% but has now been reduced to 3–4% (Dumler and Walker, 2005; 

Walker, 1989). Due to several virulent strains of R. rickettsii in Latin America, the current 

fatality rate is as high as 30–40% (Sahni et al., 2019). During the first few days of human 

rickettsioses, the symptoms progress from chills, fever, headaches, myalgia, nausea, and 

vomiting to the appearance of rashes on the body within 3–5 days, which can gradually 

progress to a severe condition and cause respiratory failure, kidney injury, hypotensive 

shock, hemorrhagic lesions, jaundice, and even coma. But rickettsioses due to R. parkeri and 

R. africae are non-life-threatening, may develop epidermal and dermal necrosis (eschar) at 

the tick feeding site, and may cause headache, fever, myalgias, and draining 

lymphadenopathy (Paddock et al., 2008; Raoult et al., 2001). Another tick pathogen, R. 
amblyommatis, is carried by almost 50% of Amblyomma americanum ticks, which are 

known to be the most prevalent human biting ticks in the southeastern and south-central 
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regions of the USA, are spreading steadily north, and have caused subclinical infections in 

several patients, who asymptomatically developed anti-SFG antibodies (Sahni et al., 2019; 

Walker and Ismail, 2008).

Several cases of R. parkeri infection have been found within the USA (Paddock and 

Goddard, 2015). It is likely that some of the 13,500 uncharacterized cases of SFG 

rickettsioses that were reported in the United States during the period 2008–2012 were 

caused by R. parkeri (Drexler et al., 2016). In other countries, such as Uruguay, Argentina, 

and parts of Brazil, R. parkeri is known as the most important pathogen for spotted fever 

rickettsiosis (Nava et al., 2008; Saito et al., 2019; Venzal et al., 2005; Weck et al., 2017). The 

most common zoonotic bacteria reported in Africa are the SFG rickettsiae, mainly 

represented by R. africae, R. aeschlimannii, R. conorii, and R. massiliae (Macaluso et al., 

2003; Parola et al., 2005). Point-of-care diagnostic tools and molecular surveillance studies 

of tick vectors should help in detection of new and emerging tick-borne rickettsiae.

4. Pathogenic and endosymbiotic rickettsiae

It was suggested in a recent rickettsiae review that each member of the SFG should be 

considered a potential pathogen (Parola et al., 2013). The ability of endosymbiotic 

rickettsiae to invade tick host cells has been lost during evolution, and this characteristic 

differentiates them from pathogenic rickettsiae. R. peacockii, an endosymbiont rickettsia in 

the Dermacentor andersoni tick, has lost the ability to enter hemocytes and salivary gland 

tissues, which establishes its endosymbiotic nature and prevents its infecting vertebrates 

(Baldridge et al., 2004; Novakova and Smajs, 2018). The line between pathogenic bacteria 

and endosymbionts is not well defined, as there are several virulent strains of pathogenic 

rickettsiae, such as the R. rickettsii strain, which lives inside ticks and can be transmitted 

transovarially (Ellison et al., 2008). The pathogenic and endosymbiotic nature of rickettsiae 

may have evolved through different scenarios. First, a loss of pathogenicity, for example, by 

R. peacockii, a strictly endosymbiotic Rickettsia that is closely related to the severely 

pathogenic R. rickettsii. Studies have shown various deletions and mutations in the genome 

of R. peacockii by transposon recombination that eliminated its pathogenic ability (Felsheim 

et al., 2009; Gillespie et al., 2012). Rickettsia buchneri (an endosymbiont) and Rickettsia 
monacensis (a pathogen) also define a similar situation (Kurtti et al., 2016). Second, gain of 

pathogenicity, since the repeated occurrences of horizontal transfer in rickettsia may have 

led to novel bacterial phenotypes, as in Coxiella burnetii, which infects vertebrate cells, 

causes Q fever, and originated from Coxiella-like endosymbionts (CLEs; Duron et al., 

2017).

5. Animal models and rickettsiosis

Rickettsial infection begins with inoculation of the host skin by a tick bite. Initially, the 

target cells of infection are macrophages and/or dendritic cells; next, the rickettsiae spread 

into the regional lymph nodes via lymphatic vessels, as observed in the case of R. sibirica 
mongolitimonae infection, which cause lymphangitis (Fournier et al., 2005). Rickettsiae 

bacteria then spread throughout the body hematogenously, mainly infecting endothelial cells 

and, to a lesser extent, macrophages, skin, the gastrointestinal tract, lungs, kidneys, heart, 
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brain, liver, and other organs. As a result of rickettsial infection of the endothelium, several 

cell-signaling cascades are activated to secrete several host innate immune signaling 

molecules, including cytokines and chemokines.

The increasing number of cases of these SFG rickettsia (SFGR) infections brings urgent 

attention to understanding the mechanism of disease development and immune responses to 

SFGR infections. Several animal models have been developed, but all have ultimately been 

found incomplete due to drawbacks in the potential approaches related to the host immune 

system or a lack of tick transmission and pathogenesis of these diseases. Tick-transmission 

mouse models (C3H/HeN) for R. parkeri were established and provided evidence that tick 

transmission significantly increases the bacterial load inside mouse organs compared with 

intravenous injection (Saito et al., 2019). Furthermore, a rat model was successfully used for 

A. maculatum for an R. parkeri transmission study, and traditionally used guinea pigs have 

been similarly proposed to be useful models for R. parkeri tick-transmission studies (Stokes 

et al., 2020; Suwanbongkot et al., 2019). The consensus tick transmission model for R. 
parkeri will depend on the ease of infesting ticks, a sufficient pathogen load in animal 

organs, and accurate representation of human disease. The standard animal transmission 

model of spotted fever rickettsiosis is needed to perform many tick-transmission-blocking 

experiments. The Macaluso laboratory further studied the tick transmission of R. parkeri in 

primates, representing one more step forward, and demonstrated that the tick bite plays a 

critical role in infection (Banajee et al., 2015). Of all animal models, tick transmission in 

primates best represents the natural mode of pathogen infection in humans and was 

significantly better than the injection method.

6. Vector biology of rickettsial diseases

The ability of ticks to harbor and be colonized by infectious agents in their gut tissues during 

a blood meal, on first infection or as a reservoir of infection, is determined by tick–pathogen 

interactions. The various pathogens are vectored by different tick species, which is the 

outcome of these interactions. The vector biology of rickettsial pathogens is not well studied 

or understood. The human body louse, a vector for R. prowazekii, is known to be an 

unsuccessful host, as 100% of the infected lice are killed by the rickettsiae (Sahni et al., 

2019). The most pathogenic rickettsia, R. rickettsia, is found in <0.1% of its vector tick, 

Dermacentor variabilis (in the United States), while less pathogenic rickettsia, such as R. 
africae and R. amblyommatis, have high colonization rates in their respective tick vectors.

Several studies on the salivary secretions of Ixodes scapularis, which transmits several 

diseases, such as anaplasmosis, Lyme borreliosis, babesiosis, Powassan virus encephalitis, 

and Ehrlichia muris eauclairensis, have revealed salivary anticoagulants that maintain blood 

flow during feeding, immunomodulators to suppress the host immune system, and pain 

suppressors for the tick to go unnoticed by the host (Sahni et al., 2019). There are very few 

studies of the salivary secretions of ticks vectoring rickettsioses, but similar phenomena 

most likely take place, as mentioned above, in the case of the well-studied Ixodes scapularis 
tick (Sahni et al., 2019). There is a gap in knowledge of the vector biology of Dermacentor, 
Amblyomma, and Rhipicephalus ticks, including several significant phenomena, such as 
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reactivation of rickettsial virulence in unfed ticks that do not cause disease but are 

reactivated to virulence during tick feeding.

7. Tick–pathogen interactions

It is well established that during blood feeding, the tick bite makes a feeding lesion and 

suppresses host hemostatic, immune, and inflammatory responses for successful feeding, 

while pathogens manipulate tick and host molecular processes to facilitate successful 

infection, multiplication, and transmission (Fig. 1). Vector competence is defined as the 

ability to acquire, maintain, and transmit pathogens; it is a multifactorial process that 

involves multiple genes and multiple gene networks in multiple organs. Vector colonization 

is defined as the acquisition, survival, multiplication, and trafficking of the pathogen in a tick 

vector. Understanding the functional consequence of pathogen colonization within the tick 

vector and transmission to the host are fundamental to the development of new paradigms 

based on the targeting of tick proteins to control ticks and tick-transmitted pathogens. 

Simultaneously, both the tick vector and the mammalian host react against tick infestation 

and pathogen infection by activating different mechanisms. Intracellular pathogenic bacteria 

facilitate infection, multiplication, and transmission by suppressing the host response. To 

suppress the host response, pathogenic bacteria have developed several molecular 

mechanisms, including manipulation of the immune response, inhibition of cell apoptosis, 

remodeling of the cytoskeleton, and control of host cell epigenetics (de la Fuente et al., 

2016). Genomic reprogramming of ticks with infection or the ability of the pathogen to 

evade the tick’s potent innate immunity by differentially expressing their genome still results 

in infected ticks. In the case of Rickettsia rickettsii, the prevalence of human pathogens in 

ticks is always very low, which suggests that ticks might be continually clearing these 

infections (Niebylski et al., 1999). However, the bacterium itself modulates its genome 

depending on the environment, whether in the tick or in animals, as in the case of Ehrlichia 
(Kuriakose et al., 2011). While in ticks or mammals, the intracellular bacterium Ehrlichia 
differentially regulates its outer membrane proteins, especially Omp1B or P30–10, which 

are expressed at significantly higher levels in ticks than in mammalian hosts (Felek et al., 

2003; Unver et al., 2002). The entry-triggering protein (EtpE) of Ehrlichia, known as the key 

to entry into host cells, is highly expressed in infected ticks and inhibits the host cellular 

redox response from NADPH oxidase (Budachetri et al., 2020; Teymournejad et al., 2017). 

The Lyme disease agent Borrelia expresses OspA and OspB during tick colonization, 

whereas spirochetes express OspC during mouse infection (Tilly et al., 2016). In the case of 

Rickettsia risticii, the genes upregulated by temperature are different than those upregulated 

by a blood meal (Galletti et al., 2016).

Rickettsia generally invades host cells by binding their outer-surface cell antigens (sca0, also 

known as rompA, and sca5, also known as rOmpB) to the outer surface of cellular receptors 

and is then internalized by receptor-mediated endocytosis via clathrin-coated vesicles (Chan 

et al., 2009). A similar sca5-mediated invasion mechanism used by rickettsiae against 

vertebrates is also used to invade tick cells (Thepparit et al., 2010). Upon invasion, 

rickettsiae lyse these inclusions and escape into the cytosol, where they replicate and hijack 

the host cell actin cytoskeleton and attach themselves to the actin tails (Sonenshine and 

Macaluso, 2017). The actin protein complex Arp2/3 is essential for the internalization of 
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several known SFG rickettsiae (Petchampai et al., 2014; Sonenshine and Macaluso, 2017). 

Rickettsia express RickA in vertebrate host cells, which in turn promotes activation of the 

host cell actin complex and enables these bacteria to be propelled throughout host cells and 

into cell protrusions, which mediate cell-to-cell infection, and that is how infection can be 

spread throughout the surrounding tissues (Jeng et al., 2004; Kumar et al., 2004; Sonenshine 

and Macaluso, 2017). Actin bridges are required for Rickettsia rickettsii infection, while R. 
parkeri and other SFGRs are spread by manipulating the intercellular tension and mechano-

transduction between host cells (Lamason et al., 2016).

In tick salivary glands, A. phagocytophilum facilitates its own infection by inhibiting the 

intrinsic apoptosis pathway (through porin downregulation), while tick cells promote tick 

survival by activating the extrinsic apoptosis pathway to limit A. phagocytophilum infection 

(de la Fuente et al., 2016; Narasimhan and Fikrig, 2015; Neelakanta et al., 2010; Busby et 

al., 2012; Hajdušek et al., 2013; Gulia-Nuss et al., 2016; Sonenshine and Macaluso, 2017; 

Hajdušek et al., 2013). Studies of field-collected A. maculatum composition showed the 

presence of two bacterial symbionts, Francisella-like endosymbiont (FLE) and Candidatus 
Midichloria mitochondrii endosymbiont (CMM). Several genetically diverse FLEs were 

reported in Dermacentor variabilis and D. andersoni (Dergousoff and Chilton, 2012; Liu et 

al., 2016). Francisella is a Gram-negative coccobacilli, a gamma proteobacterium widely 

recognized because of Francisella tularensis, causing a fatal disease known to infect more 

than 100 mammalian species (Gerhart et al., 2016). It was hypothesized that pathogenic 

Francisella tularensis is transformed into symbiotic FLE in ticks (Gerhart et al., 2016). In 

most microbiome studies, FLE are prevalent in ticks and perhaps replace the pathogenic R. 
parkeri and favor Candidatus R. andeanae, another rickettsial symbiont within the tick vector 

(Paddock et al., 2015). In ticks, a new symbiont, Candidatus Midichloria mitochondrii 

(CMM), with a unique localization to tick cell mitochondria or cytoplasm, was discovered 

previously (Sassera et al., 2006). The authors of phylogenetic and statistical studies of 16S 

rRNA sequences of “Midichloria and like organisms” proposed a novel family “Candidatus 

Midichloriaceae” within the order Rickettsiales (Montagna et al., 2013). In our study, we 

observed the mutualistic relationship between A. maculatum-transmitted R. parkeri with 

CMM (Budachetri et al., 2018a). Recently ten different genera of maternally inherited 

bacteria have been described in ticks (Noda et al., 1997; Nováková and Šmajs, 2018; 

Perlman et al., 2006; Zhong et al., 2007, p. 200). Among them, the most prevalent bacterial 

genera found in ticks are Coxiella-LE (60.5%) and Rickettsia (55.6%), which have also been 

identified in more tick species than in any other genera (Duron et al., 2017). Rickettsia was 

also found to aggregate specifically (nonrandomly) with Midichloria. This type of 

endosymbiotic association suggests a need to synthesize all the components of certain 

essential pathways, such as vitamin B, for tick fitness (Duron et al., 2017). Collaboration of 

FLE and Rickettsia is a more efficient alternative for synthesizing B7 and B9 vitamins than 

relying on CLE (Duron et al., 2017; Hunter et al., 2015).

Transovarial transmission of more than one rickettsial species from the SFG have not been 

proven, but the coexistence of R. bellii with SFG rickettsiae has already been described 

(Blanc et al., 2007), and the presence of R. bellii in D. andersoni ticks prevents the infection 

of Anaplasma marginale (Gall et al., 2016). Symbiosis with vitamin-provisioning rickettsiae 

Karim et al. Page 8

Parasite Immunol. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is essential and warrants in-depth studies on the nutrition and reproductive fitness of tick 

species.

8. Tick–rickettsia interactions: redox reactions and selenoproteins

Upon tick attachment, the vertebrate host’s immune system activates phagocytes, such as 

neutrophils, monocytes, macrophages, and eosinophils, to prevent invasion of foreign 

microorganisms by producing ample amounts of superoxide ions—one of the components 

responsible for high oxidative stress in ticks. Ticks have a significantly elevated level of anti-

oxidant capacity, suggested by their tolerance for oxidizing agents, such as 20 mM paraquat 

and up to 7% H2O2, which is significantly higher than in animal/human cells (Kumar et al., 

2016). The ability of ticks to offset starvation and blood-feeding-related stress suggests that 

they have a proactive antioxidant system. Tick saliva promotes feeding and pathogen 

transmission by modulating the host immune and inflammatory responses. Tick saliva 

composition, as revealed by our sialotranscriptome (from the Greek “sialo” for saliva), 

indicates the presence of over 5,000 putative secreted peptides containing representatives of 

dozens of protein families (Karim et al., 2011; Karim and Ribeiro 2015; Karim et al., 2021).

In A. maculatum, superoxide dismutase (SOD) and catalase, together with a battery of 

selenogenes, quench radicals or break down peroxides during blood feeding and pathogen 

colonization (Table 1). The tick is a unique model with which to study redox biology, as the 

feeding of ticks on blood generates toxic levels of reactive oxygen species (ROS) that could 

damage lipids, proteins, and DNA, thus promoting mutation, cellular dysfunction, and cell 

death. To successfully feed and survive, ticks must somehow prevent these detrimental 

effects and promote the beneficial aspects of ROS, which suggests that there are precise 

regulatory strategies for maintaining appropriate ROS levels, both within the tick and 

possibly at the tick–host interface. Our studies have shown an adaptive coevolutionary 

process that has enabled tick-borne pathogen (TBP) survival by manipulating an antioxidant 

defense system associated with selenium (Se), including a full set of selenoproteins and 

other antioxidants (Karim et al., 2011; Karim and Ribeiro 2015; Adamson et al., 2013; 

Budachetri et al., 2017, 2017a, 2018; Budachetri and Karim 2015; Crispell et al., 2016; 

Adamson et al., 2014; Kumar et al., 2019). The generation of ROS is among the first lines of 

host defense against invading microbes (Hoffman 2003; Ha et al., 2005). Selenoproteins 

exhibit diverse biological functions, such as detoxification of peroxides, regeneration of 

reduced thioredoxin, and reduction of oxidized methionine residues by oxidation of the 

selenium (Se−) active site (Grommer et al, 2005; Reeves and Hoffman 2009). In this review, 

we focused on unique antioxidant genes playing significant roles in oxidative stress 

management in ticks with blood meal and R. parkeri infection.

Selenoproteins are selenium-containing proteins known for redox function and centered on 

the selenium atom in selenocysteine (U), encoded by UGA (Opal codon) (Allmang and 

Krol, 2006). The alternate coding of UGA to selenocysteine (known as the 21st amino acid) 

occurs in all three domains of life, with a mechanism involving specific synthesis machinery, 

including Sec-tRNAsec, the SECIS element in the 3’-UTR of selenoprotein mRNAs; SECIS-

binding protein; selenocysteine-specific elongation factors; and selenophosphate synthetase, 

supplying selenium (Allmang and Krol, 2006). There are 25 known human selenoproteins, 
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and the best studied are glutathione peroxidases, thioredoxin reductases, and iodothyronine 

deiodinases (Labunskyy et al., 2014). Selenoproteins are known for their antioxidant 

properties, and selenium plays a central role in redox reactions. Nature has chosen selenium 

over sulfur, because of Se’s rate and redox advantages. Se is a better nucleophile and reacts 

with greater ease to ROS, and the Se–O bond is readily reduced and resists permanent 

oxidation (Reich and Hondal, 2016). The silencing of selenocysteine elongation factor 

(eEFsec) in R. parkeri-infected Am. maculatum salivary glands suggested epigenetic control 

of tick gene expression (Adamson et al., 2013) and has provided further support for the idea 

that tick-borne pathogens modulate the system to promote their survival and transmission to 

the vertebrate host. However, the question of how these selenoproteins contribute to the 

survival of R. parkeri within the tick vector has yet to be answered. We utilized a reverse 

genetic approach (RNAi) to silence tick genes and estimate the silencing impact on the level 

of R. parkeri colonization inside tick organs. In Table 1 we summarize the work related to 

selenoproteins and their roles in pathogen infection within the tick vector. Most of the work 

was focused on A. maculatum and R. parkeri, although we started expanding our work to 

Ixodes scapularis and Borrelia burgdorferi interactions as well. We utilized an RNAi 

approach to specifically silence tick selenogenes and certain non-selenogenes (SOD and 

catalase) and observed the impact on tick blood feeding, fecundity, and bacterial load (for 

total bacteria, R. parkeri, or symbionts) in each experiment (Table 1).

Homoeostasis between ROS generation and antioxidants is of vital significance to the 

survival of the pathogen within the arthropod. A study in Drosophila revealed that the 

ingestion of a bacterial pathogen within a catalase-knockout fly led to the death of the fly 

because of uncontrolled oxidative stress (Ha et al., 2005). The role of SOD in R. parkeri 
colonization within A. maculatum strongly indicates the impact of antioxidants on tick–

pathogen interactions (Crispell et al., 2016). The silencing of SOD (Cu/Zn-SOD and Mn-

SOD) reduces the R. parkeri load, with an elevated level of oxidative stress due to less 

complete quenching of hydroxide radicals produced with infection or by the natural KREBs 

cycle in mitochondria (Crispell et al., 2016). Catalase, which significantly reduces hydrogen 

peroxides or other organic peroxides, is a significant component of the tick antioxidant 

system and, upon silencing, not only interferes with reduced rickettsial load but negatively 

affects tick fecundity and transovarial transmission of R. parkeri (Budachetri, 2017; Kumar 

et al., 2016).

Recent work has demonstrated the role of antioxidants, including selenoproteins, in R. 
parkeri colonization in tick tissues (Budachetri et al., 2018a). The functional role of 

selenoproteins in tick hematophagy and vector competence is in larval or nymph ticks, but 

the available literature supports their importance in tick homeostasis, obligate hematophagy, 

and vector competence and for protecting the tick microbiome from high oxidative stress 

(Adamson et al., 2014, 2013; Budachetri et al., 2018b; Budachetri and Karim, 2015; Kumar 

et al., 2016). While information regarding the impact of antioxidants on vector–pathogen 

interactions is limited, several studies have suggested the role of antioxidants as redox 

switches in pathogen colonization (Crispell et al., 2016; Stolf et al., 2011; Walczak et al., 

2012). Apart from redox reactions, two selenoproteins, SelO and SelS, are especially known 

for endoplasmic reticulum (ER) stress mitigation, which is required for the successful 

dissemination of R. parkeri, and this bacterium mitigates ER stress by manipulating 
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expression of the selenogenes selS and selM (Adamson et al., 2013). However, its functional 

role is unknown. Recent studies involving the tick’s selenocysteine elongation factor 

(eEFSec) demonstrate the involvement of selenoproteins in gene regulation as well as their 

putative role in tick vectorial competence (Adamson et al., 2013).

9. Conclusions and future research

The Amblyomma maculatum and Rickettsia parkeri model is a unique system with which to 

study tick–pathogen–host interactions. The acquisition, infection, survival, and proliferation 

of R. parkeri inside tick organs (such as midgut, hemocytes, salivary glands, and ovarian 

tissues), including the ability to transmit to eggs, needs to be explored in the context of 

vector competence. The reduced genome and intracellular lifestyle of R. parkeri make it an 

appropriate bacterium with which to study the innate cellular immune response and how it 

avoids phagolysosome digestion. A survey of field-collected ticks showed a 20–30% R. 
parkeri infection rate, which suggests an active role for the tick’s innate immune system 

defense. The rickettsia inside tick organs modulates the tick genome in such a way that the 

bacterium avoids elevated ROS by manipulating the tick’s robust antioxidant machinery, 

which is comprised of a battery of selenoproteins and various other non-selenoproteins 

(SOD, catalase, glutathione reductase).

The microbiome composition of ticks is comprised of pathogenic and non-pathogenic 

microbes, which interact within the tick vector synergistically, like CMM and R. parkeri, or 

competitively, like CMM and FLE. In-depth insight into the endosymbiont and its 

interaction with pathogenic microbes is needed to decipher the molecular mechanism 

existing during the colonization of the tick vector by pathogenic microbes. The blood-

feeding success of Ixodid ticks on the host skin for several days offers pathogenic bacteria 

inside the tick sufficient time to transmit to the host. Interestingly, most infectious agents, 

such as the Lyme disease-causing bacterium (Borrelia sp.), Ehrlichia, or Anaplasma, are 

transmitted within 2–3 days of the arrival of ticks on the host. The early tick feeding 

behavior is important, and transmission-blocking strategies should focus on highly 

upregulated proteins, protein families, or pathways during early time points.
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Figure 1. 
The tick feeding process involves multiple host-response inhibitors secreted from the tick 

salivary glands, and bacteria at the tick–host interface take advantage during transmission to 

enter susceptible hosts. A representation of tick feeding and tick mating on the host (I), 

depicting the preparation of the blood pool inside the host skin dermis, which is rapidly 

engulfed later. The tick weight gain by an Amblyomma maculatum female (II) represents 

two distinct stages of feeding: slow, until day six, and rapid, after 8–12 days (10 female ticks 

were weighed at each stage). Larval (A, B) and nymphal (C, D) ticks at the unfed and fully 

engorged stages and adult female ticks (E, F, G) at the unfed, slow-feeding, and engorged 

stages. Scale: 1 mm (A, B and C, D); 5 mm (E, F, G).
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Table 1:

How selenoproteins respond during hematophagy and pathogen infection. All functional roles of 

selenoproteins were studied in Amblyomma maculatum, except for SelK, which was studied in both A. 
maculatum/Rp and I.sca/Bb. MG, midgut; SG, salivary glands; dpa, days post attachment.

Tick 
antioxidant

GenBank 
Acc #

Gene expression 
(Rickettsiaparkeri 
infection)

Gene expression (blood 
meal)

Impact of 
knockdown (kd)

References

SOD1 (Cu/Zn 
SOD)

JO844140 Increased in both MG and 
SG.

MG: gradually reduced 
with dpa.
SG: increased initially and 
later remained similar to 
that of unfed.

Rp significantly 
reduced in MG and 
SG.

(Crispell et al., 
2016)

SOD3 
(MnSOD)

JO843979 No impact MG: remained similar 
with dpa.
SG: increased before fast 
feeding and then 
decreased to level similar 
to unfed.

N/A (Crispell et al., 
2016)

Cat JO843741 Increased in SG but not in 
MG.

MG: gradually reduced 
with dpa.
SG: remained constant.

Reduced in load in 
MG, SG, and eggs.

(Budachetri et al., 
2017; Kumar et al., 
2016)

GST Increased only in SG. (Budachetri et al., 
2018a)

SEF KC989559 Increased MG: gradually reduced
SG: remained constant.

MG: pathogen load 
reduced.
SG: increased.

(Adamson et al., 
2013)

SBP2 MF115980 Increased in both tissues. Reduced and then restored 
in gut, while gradually 
reduced in SG with dpa.

Reduced transovarial 
transmission.
No impact on MG or 
SG.

(Budachetri et al., 
2017)

SEPHS2 Increased in tissues. Increased strongly in gut 
tissues, while gradually 
reduced in SG with dpa.

N/A (Budachetri et al., 
2017)

SelK* JO843326 Increased in Rp- and B. 
burgdorferi-infected MG 
and SG.

Increased with blood meal 
in both tissues.

Reduced load of Bb. (Adamson et al., 
2014; Kumar et al., 
2019)

TrxR JO843723 Induced in SG only. Expression remained 
constant in SG, while MG 
reduced before fast-
feeding step.

Total bacterial load 
reduced in MG and 
SG. Not done with rp.

(Budachetri & 
Karim, 2015)

SelP MF115978 Increased in tissues. Increased strongly in gut 
tissues, and gradually 
reduced in SG.

No effect in tick gut or 
salivary gland tissue 
Rp load.

(Budachetri et al., 
2017)

SelM Increased in SG and OV. 
No impact on MG.

Increased in both tissues. Reduced only in SG. (Adamson et al., 
2014)

SelO KC989561 Increased in MG and SG. Remained similar in MG, 
gradually reduced in SG.

Reduced load in MG 
and SG.

((Budachetri et al., 
2018a)

SelS JO842687 Increased in MG and SG. Constant in MG, while 
spiked with blood in SG.

Reduced load in SG 
only.

(Budachetri et al., 
2018a)

SelT KC989562 No change (Budachetri et al., 
2018a)

SelX JO845128 Induced only in gut. (Budachetri et al., 
2018a)
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