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It is reported that microRNAs (miRNAs) play an important role
in various human diseases. However, the mechanisms of miRNA
in these diseases have not been fully understood. Therefore, de-
tecting potentialmiRNA-disease associations has far-reaching sig-
nificance for pathological development and the diagnosis and
treatment of complex diseases. In this study, we propose a novel
diffusion-based computational method, DF-MDA, for predicting
miRNA-disease association based on the assumption that mole-
cules are related to each other in human physiological processes.
Specifically, we first construct a heterogeneous network by inte-
grating various known associations among miRNAs, diseases,
proteins, long non-coding RNAs (lncRNAs), and drugs. Then,
more representative features are extracted through a diffusion-
basedmachine-learningmethod. Finally, the RandomForest clas-
sifier is adopted to classify miRNA-disease associations. In the 5-
fold cross-validation experiment, the proposed model obtained
the average area under the curve (AUC) of 0.9321 on the
HMDDv3.0 dataset. To further verify the prediction performance
of the proposed model, DF-MDA was applied in three significant
human diseases, including lymphoma, lung neoplasms, and colon
neoplasms. As a result, 47, 46, and 47 out of top 50 predictions
were validated by independent databases. These experimental re-
sults demonstrated that DF-MDA is a reliable and efficient
method for predicting potential miRNA-disease associations.

INTRODUCTION
MicroRNAs (miRNAs) are a collection of small (about 23 nucleo-
tides) non-coding RNAs.1 They generally act as negative or positive
regulators in biological processes by connecting with 30 UTR sites
of the mRNAs.2 A great number of reports have demonstrated that
miRNAs influence many critical biological processes, including cell
diffusion,3 growth,4 divergence,5 death,6 and so on. Therefore, miR-
NAs have great effects on various biological progress.7–9

Recently, emerging evidence has shown that miRNAs are closely
related to diseases and play an important role in complex human dis-
eases.10–12 It has become a research hotspot to predict miRNA-disease
associations.13–15 For example, Liu et al.16 demonstrated that hsa-
miR-124-3p could effectively regulate the SOCS3 (suppressor of cyto-
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kine signaling 3), a tumor suppressor in breast neoplasms cells. Ku-
marswamy et al.17 detected that miR-21 is downregulated in almost
all types of cancers, which led the miR-21 to become an attractive
target for therapeutic strategies. Furthermore, miRNAs have been
new biomarkers in human disease diagnosis, especially in the cancer
field.18 Xie et al.19 discovered that miR-342-3p could inhibit lung can-
cer cell proliferation by targeting Ras-related protein Rap-2b, which
may bring about a novel biomarker and treatment for lung cancer pa-
tients. Therefore, effectively identifying miRNA-disease associations
could greatly promote the treatment of human complex diseases.20,21

With the development of biotechnology, a growing number of biolog-
ical data were generated.22 Multiple databases (e.g., the Human
MicroRNADiseaseDatabase [HMDD],23miR2Disease,24andDatabase
of Differentially Expressed miRNAs in Human Cancers [dbDEMC]25)
are formed by collecting these biological data.26 These databases supply
a large amount of data verified by biological experiments, which makes
predicting miRNA-disease associations by computational methods
feasible.27 An increasing number of researchers use these known data
to predict the association between miRNAs and diseases by computa-
tional methods. The most likely relationship betweenmiRNAs and dis-
eases would need to be verified by biological experiment, which could
eliminate a large number of wrong answers and save valuable experi-
mental costs.28–30 The best computational methods can even replace
biological experiments and complete the prediction of the relationship
between miRNAs and diseases with extremely high accuracy. For
example, Jiang et al.31 developed a novel computational model for the
prediction of miRNAs and diseases. However, this method excessively
2021 ª 2021 The American Society of Gene and Cell Therapy. 1501
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Figure 1. Flowchart of DF-MDA to predict potential

miRNA-disease associations
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relied on the relationship amongmiRNAs, which greatly impact the re-
sults. Xuan et al.32 proposed a novel computational model of HDMP.
Different frompreviousmodels,HDMPaddedweightedkmost similar-
ity neighbors ofmiRNAs, and theweight is determined by the similarity
betweenmiRNAand its neighbor, which could greatly improve the per-
formance of model predictions. Nonetheless, HDMP becomes invalid
to predict the diseases without any known related miRNAs. Chen
et al.33 presented WBSMDA for predicting miRNA-disease associa-
tions. This model connected the within score and between score of
the relationship between miRNA and disease. WBSMDA greatly
improved the scope and prediction of the model and suitable for pre-
dicting new disease-miRNA associations. In addition, You et al.34 pre-
sented PBMDA to predict the potential relationship between miRNAs
and diseases, which constructed a heterogeneous association network
by integrating a large amount of biological data. PBMDA could well
work for these new diseases with unknown related miRNAs and vice
versa. What’s more, this model takes advantage of the topology infor-
mation of the heterogeneous network by depth-first calculating based
on the path. A model of RKNNMDA proposed by Chen et al.35 is a
ranking-basedK-nearest neighbor (KNN)method for predicting the as-
sociation of miRNA and disease. These KNNs would be ranked by the
support vector machine (SVM) ranking model to obtain the priority
miRNA-disease relationships. In recent years, these proposed computa-
tional methods have made up for the time-consuming and costly tradi-
tional biological experiments to a certain degree.36
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In this study, we developed a novel computa-
tional model, DF-MDA, for predicting
miRNA-disease associations based on the
assumption that molecules are related to each
other in human physiological processes. The
flow chart of DF-MDA is shown in Figure 1.
More specifically, we first utilize a comprehen-
sive molecular-associations network (MAN)37

to integrate various biological data and learning
the behavior feature information of miRNAs
and diseases in the network by the diffusion
model. Then, based on the known miRNA and
disease association, we construct a comprehen-
sive feature descriptor by integrating the above
information with miRNA sequence information
and disease semantic similarity information.
Finally, these feature descriptors are trained by
the Random Forest (RF) classifier to accurately
classify and predict the association between
miRNAs and disease. In the experiment, DF-
MDA obtained outstanding performance in 5-
fold cross-validation (the average area under
the curve [AUC] of 0.9321) based on the HMDD v3.0 database. To
further evaluate the performance of the model, we compared the pro-
posed model with different classifiers and feature extraction models.
In addition, we implemented the case studies of lung neoplasms, co-
lon neoplasms, and lymphoma neoplasms. As a result, 47, 46, and 47
out of top 50 miRNA candidates were verified by independent data-
bases, respectively. The above experiment results demonstrated that
the DF-MDA is a reliable and effective model to predict the associa-
tion of miRNA and disease.

RESULTS
Evaluation criteria

In order to more comprehensively evaluate the performance of the
proposed model, we adopted a variety of evaluation criteria to assess
DF-MDA, involving accuracy (Acc.), sensitivity (Sen.), specificity
(Spec.), precision (Prec.), and Matthew’s correlation coefficient
(MCC). These formulae of criteria were calculated as follows:

Acc: =
TP +TN

TP +TN + FP + FN

Sen: =
TP

TP + FN

Prec: =
TP

TP + FP



Figure 2. ROC curves performed by DF-MDA on HMDD dataset
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Spec: =
TN

TN + FN

MCC =
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞp

where true positive (TP), true negative (TN), false positive (FP) and
false negative (FN) express the number of positive samples correctly
predicted, negative samples correctly predicted, positive samples
wrongly predicted, and negative samples wrongly predicted by the
model, respectively. Furthermore, we also draw the receiver operating
characteristic (ROC) curve and the AUC to describe the capability of
DF-MDA.

Performance evaluation

In this study, we implemented the 5-fold cross-validation methods
based on known database HMDD v3.0 to evaluate the DF-MDA
model. In this paper, we choose these verified miRNA-disease associ-
ations to be the positive samples and randomly selected the same
number of uncorrelated miRNA-disease associations to be the nega-
tive samples. These pairs of miRNA-disease would be split into five
uncrossed subsets. For each validation, four-fifths of them were re-
garded as a train set and the other was test in the classifier. To avoid
Table 1. 5-fold cross-validation results performed by DF-MDA on HMDD

dataset

Fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC

1 86.32 87.10 85.54 85.77 72.65 0.9328

2 87.13 88.01 86.24 86.48 74.27 0.9334

3 86.17 87.61 84.72 85.15 72.37 0.9325

4 86.40 86.40 86.40 86.40 72.79 0.9284

5 86.46 87.91 85.01 85.44 72.95 0.9336

Average
86.50 ±

0.37
87.41 ±

0.66
85.58 ±

0.74
85.85 ±

0.58
73.01 ±

0.74
0.9321 ±

0.0021
the leakage of test information, we used the train set to construct the
whole network. As a result, the Acc., Sen., Spec., Prec., MCC, and
AUC achieved 86.50%, 87.41%, 85.58%, 85.85%, 73.01%, and
0.9321, with standard deviations of 0.37%, 0.66%, 0.74%, 0.58%,
0.74%, and 0.0021, respectively. The detailed result of the model un-
der 5-fold cross-validation on HMDD v3.0 is shown in Table 1.
Furthermore, the ROC curves generated by DF-MDA are shown in
Figure 2. The above experiment results indicate that DF-MDA is an
efficacious model to predict the potential relationship of miRNA-
disease.

Comparison with DeepWalk model

In order to test the performance of the diffusion-based model, we
compared the DF-MDA model with the DeepWalk model in the
same dataset. DeepWalk38 is a classic network embedding model
based on a random walk. The algorithm has been widely used in bio-
informatics and achieved excellent results.39 In this experiment, we
also used 5-fold cross-validation by the DeepWalk model based on
HMDD v3.0. As a result, the DeepWalk model achieved an average
AUC of 0.8929. As shown in Table 2, the performance of DF-MDA
is better than that of DeepWalk for predicting miRNA-disease asso-
ciations. The reason for this result is that the DeepWalk model is
mainly concerned with the local characteristics of the network, while
the DF-MDA model extracts the more comprehensive feature of no-
des in the molecular association network. The accuracy of DF-MDA
is 4.57% higher than the DeepWalk model, and the sensitivity of our
method is 8.70% higher than the DeepWalk model. The performance
comparisons in 5-fold cross-validation are shown in Figure 3.

Comparison with different feature descriptor models

In this study, every node is described by its inherent attribute infor-
mation and the behavior information in the whole network. To test
their influence on the performance of DF-MDA, we compared the
different feature descriptors with only attribute information (DF-
MDA_AI), only behavior information (DF-MDA_BI) and both of
them (DF-MDA), respectively. We assume the attribute information
of other nodes has almost no impact on the predictive performance of
the proposed model. In this work, we only adopt the attribute feature
information of miRNAs and diseases. The detailed result of different
feature descriptor models based on HMDD v3.0 is shown in Table 3.
As shown in the table, the AUC of DF-MDA is 0.0552 and 0.0138
higher than that of DF-MDA_AI and DF-MDA_BI, respectively,
and the accuracy of DF-MDA is 5.23% and 0.74% higher than that
of DF-MDA_AI and DF-MDA_BI, respectively. The reason for this
Table 2. The comparison results between DeepWalk and DF-MDAmodel by

Random Forest classifier based on HMDD database

Model Acc. (%) Sen. (%) Spec. (%) Prec. (%)
MCC
(%) AUC

DeepWalk
81.93 ±

0.56
78.70 ±

0.71
85.15 ±

1.05
84.14 ±

0.92
63.99 ±

1.15
0.8929 ±

0.0047

DF-MDA
86.50 ±

0.37
87.41 ±

0.66
85.58 ±

0.74
85.85 ±

0.58
73.01 ±

0.74
0.9321 ±

0.0021
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Figure 3. ROC curves performed by DeepWalk and DF-MDA by Random

Forest classifier based on HMDD database

Figure 4. ROC curves performed by DF-MDA_AI model, DF-MDA_BI model,

and DF-MDA model based on HMDD database
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result is that the DF-MDA_AI predicts the relationships between
miRNAs and diseases by the miRNA attribute information and dis-
ease semantic similarity, which could capture the properties of the
node itself. However, the DF-MDA_AI ignores these known associa-
tions in the network, which is unable to provide comprehensive infor-
mation for our prediction. The same situation exists in DF-MDA_BI,
which lacks the attribute information of nodes. The ROC curves of the
three experiments are shown in Figure 4. In conclusion, the perfor-
mances in DF-MDA of AUCs are more outstanding than the model
of feature descriptor with only one information.

Comparison with different classifier models

DF-MDA adopted the Random Forest classifier to train and classify
the potential miRNA-disease associations. To evaluate the perfor-
mance of the Random Forest model, we compared it with Bagging,
LogisticRegression, Naive Bayes, and AdaBoost classifier models.
We implemented 5-fold cross-validation by all above models on the
same training set and test set. As a result, Random Forest yielded
an average AUC of 5-fold cross-validation of 0.9321 and outper-
formed Bagging (0.9089), LogisticRegression (0.9124), Naive Bayes
(0.8505), and AdaBoost (0.9153). The Random Forest is only worse
than Bagging of Spec., and the accuracy is 2.54% higher than that
Table 3. The comparison results between DF-MDA_AI model, DF-MDA_BI

model and DF-MDA model based on HMDD database

Model Acc. (%) Sen. (%) Spec. (%) Prec. (%)
MCC
(%) AUC

DF-
MDA_AI

81.27 ±

0.58
83.71 ±

0.75
78.84 ±

0.65
79.82 ±

0.57
62.63 ±

1.16
0.8769 ±

0.0052

DF-
MDA_BI

85.74 ±

0.39
82.48 ±

0.67
88.99 ±

0.35
88.23 ±

0.35
71.63 ±

0.76
0.9183 ±

0.0030

DF-MDA
86.50 ±

0.37
87.41 ±

0.66
85.58 ±

0.74
85.85 ±

0.58
73.01 ±

0.74
0.9321 ±

0.0021
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of the second-highest method. The explanation for this phenomenon
is that Random Forest can handle very high dimensional data.
Furthermore, the model has strong generalization ability due to
adopting the unbiased estimation for generalization error in creating
a random forest. It is worth mentioning that the Naive Bayes model is
lower than other algorithms. The reason is that the Naive Bayes as-
sumes that the features are independent of each other, which is often
not true in reality. The detailed results of different classifier models
are shown in Table 4. Furthermore, we drew the ROC curve as shown
in Figure 5. These results have demonstrated that DF-MDA by
Random Forest classifier has achieved the best performance, particu-
larly in Acc., MCC, and AUC. From the information above, the
Random Forest classifier is more appropriate for DF-MDA.
Comparison with related works

At present, an increasing number of computational methods have been
proposed for predicting miRNA-disease associations. Therefore, in or-
der to further evaluate the performance of ourmodel, we compared the
proposed method with seven previous works, including RWRMDA,40

MTDN,41 EGBMMDA,42 LMTRDA,43 DBMDA,44 PBMDA,45 and
CGMDA.46 Since these algorithms have not calculated multiple evalu-
ation criteria, we only compared the AUC on the terms of the 5-fold
cross-validation-based HMDD database. As shown in Table 5, the per-
formance of DF-MDA is outstanding compared with other methods,
and the proposed method is 0.0282 higher than the average AUC of
all algorithms. This is because the proposed model combines the attri-
bute information and behavior information of miRNAs and diseases
and extracts the feature more comprehensively.
Case studies

In this work, we carry out three important human diseases (lung neo-
plasms, colon neoplasms, and lymphoma) by DF-MDA based on
HMDD v3.0 to further evaluate its predictive power. These known



Table 4. The comparison results between Random Forest and other classifier models (Bagging, LogisticRegression, Naive Bayes, and AdaBoost) based on

HMDD database

Model Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC

Random Forest 86.50 ± 0.37 87.41 ± 0.66 85.58 ± 0.74 85.85 ± 0.58 73.01 ± 0.74 0.9321 ± 0.0021

Bagging 83.90 ± 0.52 81.26 ± 1.06 86.53 ± 0.45 85.79 ± 0.40 67.89 ± 1.01 0.9089 ± 0.0012

LogisticRegression 83.96 ± 0.39 83.44 ± 0.80 84.48 ± 0.78 84.32 ± 0.61 67.93 ± 0.78 0.9124 ± 0.0014

Naive Bayes 78.67 ± 0.42 85.40 ± 0.75 71.94 ± 0.46 75.27 ± 0.33 57.86 ± 0.87 0.8515 ± 0.0079

AdaBoost 83.81 ± 0.17 83.32 ± 0.51 84.29 ± 0.62 84.14 ± 0.45 67.62 ± 0.34 0.9153 ± 0.0038

www.moleculartherapy.org
miRNA-disease associations are used as the training dataset, and the
test dataset includes the association pairs of three diseases and all
possible miRNAs. In this study, we verified the top 50 candidate miR-
NAs by two independent databases (dbDEMC25 and miR2Disease24).
In three case studies, most candidate-related miRNAs were
confirmed, demonstrating that DF-MDA is a reliable model for pre-
dicting the association of miRNA and disease.

Lung neoplasm is the second most common cancer in humans (~13%
of all) except for skin cancers, and the number of deaths caused by lung
cancer is the highest (~24% of all).47 In 2019, there are about 228,150
new lung cancer cases (116,440 of men and 111,710 of women) and
142,670 deaths for lung cancer (76,650 of men and 66,020 of women)
in the United States. An increasing amount of research pays attention
to the prediction of the potential relationship between miRNAs and
lung neoplasms.48 Therefore, we implemented a case study of lung neo-
plasms by DF-MDA for more miRNA based on HMDD v3.0, and the
details of the result are shown in Table 6, in which 47 of top 50 candi-
dates were verified based on the independent database.
Figure 5. ROC curves performed by Random Forest and other classifiers

(Bagging, LogisticRegression, Naive Bayes, and AdaBoost) based on

HMDD database
Colon neoplasm is the third most common cancer in the United
States (~8% of new cancer) except for skin cancer.47 In 2019, it is ex-
pected that about 145,600 people will develop colon cancer (78,500
men and 67,100 women) and there will be about 51,020 deaths
from colon cancer (27,640 men and 23,380 women). Recently,
increasing researchers have indicated that miRNAs are related with
colon neoplasms.49 Thus, we used DF-MDA to predict more colon
neoplasm-related miRNAs to verify its performance, and the details
of the result is shown in Table 7, in which 46 of top 50 candidates
were confirmed based on the independent database.

Lymphoma is one of the most commonmalignant cancers (~4% of all
new cancers), especially in teenagers in the United States.47 In 2019, it
is estimated that there will be about 74,200 new cases of lymphoma
(41,090 of men and 33,110 of women) and 19,970 deaths from lym-
phoma (11,510 men and 8,460 women). Lymphoma mainly contains
two types of Hodgkin’s lymphoma (HL) and non-HL (NHL).50

Therefore, we selected lymphoma as a case study to verify the perfor-
mance of DF-MDA. The details of the result are shown in Table 8, in
which 47 of top 50 candidates were proved based on the independent
database.
DISCUSSION
Recently, an accumulating amount of research demonstrated that
miRNAs have a close link with diseases. In this work, we proposed
the diffusion-based computational model DF-MDA for predicting
miRNA-disease associations. This model can extract effective features
of miRNAs and diseases from a complex heterogeneous network,
including miRNA, disease, drug, protein, and long non-coding
RNA (lncRNA), and the Random Forest classifier was adopted to
classify the potential miRNA-disease associations. Compared with
other classifiers and feature extractionmodels, DF-MDA shows excel-
lent performance. In addition, in the case study of lung neoplasms,
colon neoplasms, and lymphomas, 47, 46, and 47 of top 50 miRNA
candidates predicted by DF-MDA were verified in the independent
database, respectively. These results indicated that DF-MDA can be
used as a valuable model for predicting miRNA-disease associations.

There are some reasons for the remarkable predictive power of DF-
MDA. First, unlike previous studies, we combined multiple molec-
ular-association datasets to construct a comprehensive network of
more than just miRNAs and diseases. It is worth noting that DF-
Molecular Therapy Vol. 29 No 4 April 2021 1505
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Table 5. The comparison results between DF-MDAwith other relatedworks

Method AUC

RWRMDA 0.8617

MTDN 0.8872

EGBMMDA 0.9048

LMTRDA 0.9054

DBMDA 0.9129

PBMDA 0.9172

CGMDA 0.9099

DF-MDA 0.9321

Table 6. Prediction of the top 50 miRNAs related to lung neoplasms based

on known miRNA-disease associations in HMDD database

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-106b-5p dbDEMC 26 hsa-mir-302b-5p dbDEMC

2 hsa-mir-204-5p dbDEMC 27 hsa-mir-501-5p dbDEMC

3 hsa-mir-181b-5p dbDEMC 28 hsa-mir-302f dbDEMC

4 hsa-mir-15b-5p dbDEMC 29 hsa-mir-367-3p dbDEMC

5 hsa-mir-16-1-3p dbDEMC 30 hsa-mir-363-3p dbDEMC

6 hsa-mir-193b-5p dbDEMC 31 hsa-mir-449b-5p dbDEMC

7 hsa-mir-23b-5p dbDEMC 32 hsa-mir-429 dbDEMC

8 hsa-mir-424-5p dbDEMC 33 hsa-mir-1271-5p dbDEMC

9 hsa-mir-20b-5p dbDEMC 34
hsa-mir-125b-2-
3p

dbDEMC

10 hsa-mir-28-5p dbDEMC 35 hsa-mir-484 dbDEMC

11 hsa-mir-296-5p dbDEMC 36 hsa-mir-518b dbDEMC

12 hsa-mir-452-5p dbDEMC 37 hsa-mir-378a-5p dbDEMC

13 hsa-mir-483-5p dbDEMC 38 hsa-mir-376b-5p dbDEMC

14 hsa-mir-329-3p dbDEMC 39 hsa-mir-302a-5p unconfirmed

15 hsa-mir-590-5p dbDEMC 40
hsa-mir-450a-1-
3p

unconfirmed

16 hsa-mir-383-5p dbDEMC 41 hsa-mir-539-5p dbDEMC

17 hsa-mir-211-5p dbDEMC 42 hsa-mir-425-5p dbDEMC

18 hsa-mir-491-5p dbDEMC 43 hsa-mir-339-5p dbDEMC

19 hsa-mir-373-3p dbDEMC 44 hsa-mir-455-5p dbDEMC

20 hsa-mir-302c-3p dbDEMC 45 hsa-mir-128-1-5p dbDEMC

21 hsa-mir-16-2-3p dbDEMC 46 hsa-mir-500a-5p dbDEMC

22
hsa-mir-19b-2-
5p

unconfirmed 47 hsa-mir-370-5p dbDEMC

23
hsa-mir-92a-2-
5p

dbDEMC 48 hsa-mir-376a-5p dbDEMC

24 hsa-mir-454-5p dbDEMC 49 hsa-mir-345-5p dbDEMC

25 hsa-mir-508-5p dbDEMC 50 hsa-mir-584-5p dbDEMC
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MDA not only uses the attribute information of miRNAs and dis-
eases, but also adopts their behavior information for predicting
the potential relationship between them. Second, the behavior infor-
mation of biological molecular was extracted by the diffusion-based
model, which could effectively detect the network structure by
generating more informative traces. Additionally, DF-MDA is suit-
able for new diseases with unknown related miRNAs and new miR-
NAs with unknown related diseases. However, limitations also exist
in the model. First, the relationship evidence of miRNAs and dis-
eases are still insufficient for prediction. The prediction perfor-
mance of DF-MDA would improve with the amount of biological
data increasing in future work. Furthermore, the miRNA sequence
information extraction method also influences the performance of
our approach.

MATERIALS AND METHODS
Human miRNA-disease associations database

In this study, we implement the model on the HMDD v3.023 data-
base. The HMDD database supplies plenty of experimentally veri-
fied miRNA-disease associations, which can be freely obtained
from http://www.cuilab.cn/hmdd. Currently, HMDD has collected
32,281 verified miRNA-disease associations, including 1,102 miR-
NAs and 850 diseases from 17,412 papers. After removing
redundancy and simplifying, we obtained 16,427 miRNA-disease
associations, involving 1,023 miRNAs and 850 diseases. In the
experiment, we use the adjacency matrix AMði; jÞ to represent
the miRNA-disease association. When the miRNA mðiÞ is
confirmed to be related with disease dðjÞ, the AMði; jÞis equal to
1, otherwise 0.

MAN

In this experiment, we used the MAN to integrate multiple biological
data. The MAN is a large heterogeneous network proposed by Guo
et al.37 This complex network consists of various nodes and edges based
on the associations among them. It provides a novel frame to identify
the potential association between any research object in the network.
Through thismolecular-associationnetwork, a comprehensiveperspec-
tive is obtained to understand human biological progress and disease
treatment. At present,MAN integrates five different kinds of molecules
(miRNA, disease, lncRNA, protein, and drug) and associations between
1506 Molecular Therapy Vol. 29 No 4 April 2021
them. The details of different types of molecules are shown in Table 9,
and associations between them are shown in Table 10.
Vector representation of miRNA sequences

To more comprehensively describe the features of miRNAs, we
introduced the sequence information of the miRNA. In this study,
we downloaded all miRNA sequences in MAN from the miR-
base60 and converted miRNA sequences to vectors by the
k-mers method. The k-mers could divide the sequence into a train
of subsequences with k bases.61 Given a sequence of length m, the
sequence could be divided into m� k+ 1 k-mers. In this experi-
ment, conjoint triads (3-mer) of miRNA were extracted from
sequences. There are four bases of miRNA: A; C; G and U ,
therefore, 3-mers could split the sequence of miRNA into AAA;
AAC; .; UUU . First, dividing the miRNA sequence into some
conjoint triads was based on a slipping window. Then, we

http://www.cuilab.cn/hmdd


Table 7. Prediction of the top 50 miRNAs related to colon neoplasms based

on known miRNA-disease associations in HMDD database

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-182-5p dbDEMC 26 hsa-mir-484 dbDEMC

2 hsa-mir-29c-5p dbDEMC 27 hsa-mir-452-5p dbDEMC

3 hsa-mir-193b-5p dbDEMC 28 hsa-mir-27b-5p dbDEMC

4 hsa-mir-206 dbDEMC 29 hsa-mir-30e-5p dbDEMC

5 hsa-mir-122-5p dbDEMC 30 hsa-mir-134-5p dbDEMC

6 hsa-mir-214-5p dbDEMC 31 hsa-mir-181c-5p dbDEMC

7 hsa-mir-139-5p dbDEMC 32 hsa-mir-99b-5p dbDEMC

8 hsa-mir-497-5p dbDEMC 33 hsa-mir-99a-5p dbDEMC

9 hsa-mir-34c-5p dbDEMC 34 hsa-mir-373-5p dbDEMC

10 hsa-mir-183-5p dbDEMC 35 hsa-mir-212-5p dbDEMC

11 hsa-mir-423-5p dbDEMC 36 hsa-mir-144-5p dbDEMC

12 hsa-mir-100-5p dbDEMC 37 hsa-mir-92a-2-5p dbDEMC

13 hsa-mir-16-5p dbDEMC 38 hsa-mir-92b-5p dbDEMC

14 hsa-mir-9-5p dbDEMC 39 hsa-mir-381-5p unconfirmed

15 hsa-mir-149-5p dbDEMC 40 hsa-mir-135a-5p dbDEMC

16 hsa-mir-491-5p dbDEMC 41 hsa-mir-10a-5p dbDEMC

17 hsa-mir-124-5p dbDEMC 42 hsa-mir-199b-5p dbDEMC

18 hsa-mir-130b-5p dbDEMC 43 hsa-mir-301a-5p unconfirmed

19 hsa-mir-34b-5p dbDEMC 44 hsa-mir-425-5p dbDEMC

20 hsa-mir-146b-5p dbDEMC 45 hsa-mir-542-5p dbDEMC

21 hsa-mir-199a-5p dbDEMC 46 hsa-mir-20b-5p dbDEMC

22 hsa-mir-342-5p dbDEMC 47 hsa-mir-340-5p dbDEMC

23 hsa-mir-494-5p dbDEMC 48 hsa-mir-181b-2-3p unconfirmed

24 hsa-mir-26a-5p dbDEMC 49 hsa-mir-338-5p dbDEMC

25 hsa-mir-26b-5p dbDEMC 50 hsa-mir-367-5p unconfirmed

Table 8. Prediction of the top 50 miRNAs related to lymphoma based on

known miRNA-disease associations in HMDD database

Rank miRNA Evidence Rank miRNA Evidence

1
hsa-mir-34a-
5p

dbDEMC 26 hsa-let-7b-5p dbDEMC

2
hsa-mir-
125b-5p

dbDEMC 27 hsa-mir-96-5p dbDEMC

3 hsa-mir-107 dbDEMC 28 hsa-let-7g-5p dbDEMC

4
hsa-mir-27a-
5p

unconfirmed 29 hsa-mir-429 unconfirmed

5
hsa-mir-195-
5p

dbDEMC 30
hsa-mir-192-
5p

dbDEMC

6
hsa-mir-145-
5p

dbDEMC 31
hsa-mir-125b-
2-3p

dbDEMC

7
hsa-mir-
106b-5p

dbDEMC 32
hsa-mir-30b-
5p

dbDEMC

8 hsa-let-7a-5p dbDEMC 33
hsa-mir-424-
5p

dbDEMC

9
hsa-mir-29a-
5p

dbDEMC 34
hsa-mir-146b-
5p

dbDEMC

10
hsa-mir-182-
5p

dbDEMC 35 hsa-mir-24-3p dbDEMC

11
hsa-mir-34b-
5p

dbDEMC 36
hsa-mir-339-
5p

dbDEMC

12
hsa-mir-205-
5p

dbDEMC 37
hsa-mir-148a-
5p

dbDEMC

13 hsa-mir-9-5p dbDEMC 38
hsa-mir-100-
5p

dbDEMC

14
hsa-mir-183-
5p

dbDEMC 39
hsa-mir-23a-
5p

dbDEMC

15
hsa-mir-
106a-5p

dbDEMC 40 hsa-mir-206 dbDEMC

16 hsa-let-7c-5p dbDEMC 41
hsa-mir-199b-
5p

dbDEMC

17
hsa-mir-218-
5p

dbDEMC 42
hsa-mir-335-
5p

dbDEMC

18
hsa-mir-141-
5p

unconfirmed 43
hsa-mir-181b-
5p

dbDEMC
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calculated the frequency of each sub-sequence and normalized
these data. In this way, we converted the miRNA sequence infor-
mation into a 64-dimensional numerical vector to represent
miRNA attribute information.
19
hsa-mir-15b-
5p

dbDEMC 44
hsa-mir-34c-
5p

dbDEMC

20
hsa-mir-223-
5p

dbDEMC 45
hsa-mir-214-
5p

dbDEMC

21
hsa-mir-124-
5p

dbDEMC 46
hsa-mir-30c-
5p

dbDEMC

22
hsa-mir-30a-
5p

dbDEMC,
miR2Disease

47
hsa-mir-181d-
5p

dbDEMC

23
hsa-mir-340-
5p

dbDEMC 48 hsa-let-7e-5p dbDEMC

24
hsa-mir-
378a-5p

dbDEMC 49
hsa-mir-191-
5p

dbDEMC

25
hsa-mir-
196a-5p

dbDEMC 50
hsa-mir-125b-
1-3p

dbDEMC
Disease semantic similarity

To accurately describe the features of diseases, we obtained the disease
semantic similarity information from the Medical Subject Headings
(MeSH) database,62 which provided an effective disease classification
system. In this system, diseases could be represented by related
directed acyclic graph (DAG).63 The relationship between two dis-
eases could be indicated by a directed edge pointing to child nodes
by parent nodes. Suppose DAGðDÞ= ðD;NðDÞ; EðDÞÞ, where NðDÞ
indicates the node set containing all diseases ofDAGðDÞ and EðDÞ in-
dicates the edge set of all relationships of DAGðDÞ. The semantic
value of disease D was contributed by disease T as the formula

�
DDðTÞ= 1 if T =D
DDðTÞ=maxfq � DDðT 0ÞjT 0˛childrenofTg if TsD

(1)
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Table 9. The number of different types of nodes in MAN

Node Number of nodes

miRNA 1,023

Disease 2,026

Drug 1,025

Protein 1,647

lncRNA 769

Total 6,528

Molecular Therapy
Here, q is the semantic contribution factor; the contribution value of
D to itself is set as 1. Therefore, we can obtain the sum DVðDÞ of D:

DVðDÞ =
X
T˛ND

DDðTÞ (2)

According to the assumption that diseases with more same parts
in their DAGs should hold higher similarity of them, we can
obtain the semantic similarity among a and b by the following
formula:

Sða; bÞ =
P

T˛NaXNb
ðDaðTÞ+DbðTÞÞ

DVðaÞ+DVðbÞ (3)

Then, we used the disease semantic similarity to express the attribute
information of disease, and this process exists dimensional reduction
by stacked autoencoder. The attribute information of diseases is also
converted as a 64-dimensional vector.

Diffusion-based network embedding

In order to extract the comprehensive feature from the MAN, we
adopted a diffusion-based network embedding. First of all, the com-
plex heterogeneous network was constructed, including 6,528 nodes
and 102,261 edges. Then, the 6,528-dimensional frequency vector
before and after each node in the graph was obtained by the diffusion
progress of the subgraph. To unify the dimensions of the feature vec-
Table 10. The number of different types of associations in MAN

Association Database Amounts of relationships

miRNA-disease HMDD51 16,427

miRNA-protein miRTarBase52 4,944

Drug-protein DrugBank53 11,107

lncRNA-disease lncRNADisease54, lncRNASNP255 1,264

Protein-protein STRING56 19,237

miRNA-lncRNA lncRNASNP255 8,374

lncRNA-protein lncRNA2Target57 690

Drug-disease CTD58 18,416

Protein-disease DisGeNET59 25,087

Total – 105,546
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tor, we used a neural network to process these frequency vectors. The
input of the neural network is 6,528 one-hot vectors, and the output is
the vector fusing the before and after frequency vector. Finally, we ob-
tained a 64-dimensional vector to represent the behavior information
of miRNAs and diseases.

The diffusion process for generating sequences

Previous studies have indicated that RandomWalk is a depth-first al-
gorithm that could repeatedly visit nodes. However, the original
network structure is hardly reflected by the node similarity defined
by a random walk. The diffusion could efficiently detect the network
structure by generating more informative traces.64

Suppose a given graph is defined as GðV;EÞ, where V indicates the
vertices set containing all nodes of G and E represents the edge set
of G. The diffusion graph is defined as bG, and the seed node is vi.
The maximal walking step is supposing as k. In every step, we chose
a random node vi from bG as diffusion source and vj, a random
neighbor of vi, from G as diffusion object. Then, the diffusion object
vj and the edge (vi, vj) would be added to the diffusion graph bG. We
compared the generating sequence process of random walk and diffu-
sion as shown in Figure 2. The walking step k is set as four in this
example. In Figure 6 (1), the walker is starting from v1, and the red
node is the location of the walker. After a random walk process, it
is obvious that the generated sequence is (v1, v2, v4, v2). In Figure 6
(2), we imitate the diffusion process by a graph with four nodes,
and the initial diffusion source also is v1. Unlike the single trace of
random walk, all sampled nodes would be retained and may become
a diffusion source in the next step in the diffusion process. The diffu-
sion could generate a sequence of ((v1), (v1, v2), (v1, v2, v4), (v1, v2,
v4)). As we can see in this example, if the step k= 5, the v3 would
not be visited in a random walk, which is a disadvantage of the sin-
gle-trace algorithm. However, as the diffusion graph bG contained
the neighbor of the node v3, the v3 is possible to be visited.

To obtain the sequence, we doubled each edge in the diffusion graphbG. Then, the degree of each node is even, and there must be a Euler
walk. This Euler walk would be the diffusion sequence that preserved
the relationship of adjacent nodes. In this work, we set the walk length
as 10, and the vertex-set-cardinality is equal to 80.

Feature extraction and network embedding

Given a set of node sequences, the feature is extracted by the sliding
window. To more comprehensively detect the information of the
network, we design the visit frequency vectorM1 by counting the fre-
quency of other nodes before and after the node v1. For example, there
is a set of sequences with five nodes as follows:

v1 � v4 � v5 � v3 � v4 � v3 � v2 � v1

v4 � v5 � v3 � v1 � v2 � v3 � v5 � v4

v2 � v3 � v2 � v1 � v4 � v5 � v4 � v1



Figure 6. Example of generating sequence of

random walk model and diffusion model
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In this example, the size of the sliding window is set as 1, and we
would demonstrate the visit frequency vector of v3. As a result, the
frequency vector of before and after the node v3 is as follows:

M�1
3 = ½0 2 0 1 2�

M + 1
3 = ½1 2 0 1 1�

where M�1
3 and M + 1

3 represent the frequency of occurrence before
and after v3, respectively. Then, these two vectors would be concate-
nated as a visit frequency vector M3.

In this study, we develop a neural network to learn an embedding
from the feature. For each node v, we set as follows:

Hv = aðuin �Nv + binÞ (4)

Here, a and bin are the regulated parameters, and uin is the incoming
weight matrices of the hidden neurons. The output function is as
shown:

bMv = sðuout �Hv + boutÞ (5)

Then, we define the loss function as

LðMv; bMvÞ = �Mvlogð bMvÞ (6)

Finally, the minimization objective could be obtained as shown:

min
X

LðMv; sðuout �Hv + boutÞÞ (7)

Integration of feature information

To comprehensively describe the potential information of each node,
we extracted feature descriptors from the two kinds of information of
them. On the one hand is the attribute information, including the
sequence information of miRNAs KMðmðiÞÞ and the semantic simi-
larity of diseases SDðdðjÞÞ. On the other hand, the behavior informa-
tion BMðmðiÞÞ and BDðdðjÞÞ were extracted by the diffusion-based
model. Finally, we integrated the above information into a compre-
hensive feature descriptor FðmðiÞ; dðjÞÞ based on knownmiRNA-dis-
ease associations from the HMDD v3.0 database. The feature
descriptor can be defined by a 256-dimensional vector as follows:

FðmðiÞ; dðjÞÞ = ½BMðmðiÞÞ;KMðmðiÞÞ;BDðdðjÞÞ; SDðdðjÞÞ� (8)

Random Forest classifier

Random Forest is an important integrated machine learning algorithm
proposed by Breiman et al.,65 which can be used for classification and
regression problems. The Random Forest has been widely used in bio-
informatics with reliable performance.66 The algorithm first randomly
selects bootstrap samples from the original samples as the training
set. Second, Random Forest randomly selects variables from each boot-
strap sample and split nodes by the random subspace method. By this
method, an unpruned classification tree is grown for each sample.
Finally, RandomForest obtains prediction results by amajority vote ac-
cording to these decision trees. Specifically, we adopted a 256-dimen-
sional feature descriptor to represent each sample in the training set.
In this study, we selected the optimal parameter nTree as 99 by the
grid searchmethod to implement the final classification prediction task.
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