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Abstract

Background: Sequencing of patient-derived xenograft (PDX) mouse models allows investigation of the molecular
mechanisms of human tumor samples engrafted in a mouse host. Thus, both human and mouse genetic material is
sequenced. Several methods have been developed to remove mouse sequencing reads from RNA-seq or exome sequencing
PDX data and improve the downstream signal. However, for more recent chromatin conformation capture technologies
(Hi-C), the effect of mouse reads remains undefined. Results: We evaluated the effect of mouse read removal on the
quality of Hi-C data using in silico created PDX Hi-C data with 10% and 30% mouse reads. Additionally, we generated 2
experimental PDX Hi-C datasets using different library preparation strategies. We evaluated 3 alignment strategies (Direct,
Xenome, Combined) and 3 pipelines (Juicer, HiC-Pro, HiCExplorer) on Hi-C data quality. Conclusions: Removal of mouse
reads had little-to-no effect on data quality as compared with the results obtained with the Direct alignment strategy. Juicer
extracted more valid chromatin interactions for Hi-C matrices, regardless of the mouse read removal strategy. However, the
pipeline effect was minimal, while the library preparation strategy had the largest effect on all quality metrics. Together,
our study presents comprehensive guidelines on PDX Hi-C data processing.
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Introduction

Patient-derived tumor xenograft (PDX) mouse models are indis-
pensable in preclinical and translational cancer research. Previ-
ous studies have demonstrated that human tumors engrafted

in immunocompromised mouse models preserve each patient’s
genetic heterogeneity [1] and response to treatment [2, 3]. Con-
sequently, the main application of PDX systems is to elucidate
the molecular mechanisms of human cancers within controlled
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in vivo conditions. With the wide adoption of sequencing tech-
nologies, sequencing of PDX samples is now a standard [4–7].

High-throughput sequencing of PDX samples faces chal-
lenges not present in sequencing of cell lines and homoge-
neous tissues. Engraftment of human cancer tissue fragments
into mice leads to the rapid loss of human stroma and inva-
sion of mouse stromal cells [1, 3]. Consequently, sequencing of
PDX tumor samples produces reads derived from both human
and mouse genomes, with mouse read contamination ranging
from 4–7% up to 20% for RNA-seq and exome data [8], and even
47% on average for whole-genome sequencing data [9]. Metas-
tases are even more variable, and we previously identified up to
99% mouse reads in PDX RNA-seq data from lung, liver, or brain
metastases [4]. Given the high similarity of human and mouse
genomes, with orthologous gene products on average 85% iden-
tical [10], the presence of mouse reads introduces uncertainty in
the alignment of PDX sequencing data.

Three strategies have been developed to address the removal
of mouse reads from PDX sequencing data. The first strategy, re-
ferred to hereafter as “Direct,” is the direct alignment of PDX
sequencing data to the human genome. The second, filtering
strategy includes separation of human and mouse reads and
using only human data for downstream analysis. Xenome was
among the first tools implementing filtering strategy. It classifies
reads into the human, mouse, both, neither, or ambiguous cat-
egories using a 25-mer matching algorithm [11]. Despite being
relatively old and lacking maintenance, Xenome remains widely
used in bioinformatics pipelines [12]. We refer to this strategy
as “Xenome” throughout. The third strategy involves the align-
ment of reads to human and mouse genomes simultaneously
and then filtering reads by best alignment match [8]. This ap-
proach has been implemented in Disambiguate [13], bamcmp
[14], and XenoCP [15] tools. This strategy, referred to hereafter
as “Combined,” includes alignment to the in silico combined
human-mouse reference genome to disambiguate human and
mouse reads at the alignment step [4, 16].

Each strategy for mouse read removal from PDX sequencing
data has its own advantages and disadvantages. The Xenome
and Combined strategies require extra effort, more process-
ing time, and in some cases doubling requirements for com-
putational resources. Several studies investigated the benefits
of removal of contaminating mouse reads from PDX sequenc-
ing data. In DNA-seq PDX data, the removal of mouse reads re-
duced the false-positive rate of somatic mutation detection, es-
pecially when matching normal samples are not available [8,
12, 13, 15, 17]. In RNA-seq data, the removal of mouse reads
improved gene expression quantification [15], correlation with
pure human gene expression [8], and enrichment in relevant
pathways [14]. Benchmarking of all 3 strategies using DNA-
seq convincingly demonstrated that the Xenome and Combined
strategies are necessary to minimize false discovery rates in de-
tecting genomic variants, with exome sequencing data benefit-
ing the most [17]. The general consensus is that the removal of
mouse reads from PDX sequencing data improves the extrac-
tion of human-specific signal from RNA-seq and DNA-seq PDX
sequencing data [8, 11–16].

Chromatin conformation capture technology and its high-
throughput derivatives, such as Hi-C [18], have recently emerged
as tools to assess the 3D structure of the genome. Changes in the
three-dimensional (3D) structure of the genome are an estab-
lished hallmark of cancer [19–21]. However, the majority of the
3D cancer genomics studies have been performed in vitro using
cell lines [22–24]. Hi-C sequencing of PDX samples opens novel
ways for understanding mechanisms of human cancers under

controlled in vivo conditions. However, the effect of contaminat-
ing mouse reads on the quality of PDX Hi-C data, and the choice
of pipeline, remains undefined.

Hi-C sequencing data possess unique qualities that need to
be considered when evaluating the effect of mouse reads in
Hi-C PDX data. First, Hi-C paired-end reads are processed indi-
vidually, as single-end data. Second, Hi-C data undergo exten-
sive filtering to extract “valid pairs,” i.e., reads representative
of two ligated DNA fragments with proper orientation and dis-
tance between them [25, 26]. Furthermore, in contrast to typical
sequencing experiments, processing of Hi-C data requires high-
performance computational resources because one Hi-C exper-
iment produces more than 20x the number of reads of a typi-
cal RNA-seq experiment [27]. It remains uncertain whether ef-
forts to remove mouse reads from PDX Hi-C data are justified
and meaningfully improve the quality of human Hi-C data.

To address the effect of mouse read removal in PDX sequenc-
ing data, we evaluated 3 strategies for preprocessing PDX Hi-
C data: Direct, Xenome, and Combined. Using different library
preparation strategies, we generated 2 deeply sequenced Hi-C
datasets of a carboplatin-resistant UCD52 breast cancer cell line
[4, 5]. We further created 3 in silico PDX Hi-C datasets with either
10% or 30% of mouse read contamination, mirroring the percent
of mouse reads observed in our experimental Hi-C data. In par-
ticular, we used Hi-C data from normal and cancer cells to in-
vestigate whether the biological properties, such as copy num-
ber variations inherent to cancer genomes, affect the quality of
Hi-C data. Human Hi-C data without mouse read contamination
were used as a baseline. This design allowed us to comprehen-
sively quantify the effect of contaminating mouse reads on the
quality of Hi-C data and the downstream results.

Although several studies discuss how to process Hi-C data
and what pipeline to use [25, 28, 29], they have not evaluated
the effect of mouse read contamination. We evaluated 3 leading
pipelines, Juicer [30], HiC-Pro [31], and HiCExplorer [32], in terms
of Hi-C data quality, their ability to extract biological informa-
tion, and computational runtime.

In total, we tested 9 combinations of strategies—all pairwise
combinations of 3 strategies for mouse read handling (Direct,
Xenome, and Combined) and 3 pipelines (Juicer, HiC-Pro, and
HiCExplorer)—to generate contact matrices from 9 in silico and 2
experimental PDX Hi-C datasets. Furthermore, we assessed the
effect of library preparation strategies on the quality of down-
stream results from Hi-C data. We found that removing mouse
reads using the Xenome or Combined strategies minimally af-
fects the quality of Hi-C matrices and information extracted
from them, while the Direct alignment yielded comparable-
quality results without the additional computational overhead.
The choice of processing pipeline had negligible impact on
data quality and the downstream results. Ultimately, the choice
of library preparation was the single variable with largest ef-
fect on data quality. From these studies, we recommend using
the Direct alignment of PDX Hi-C data to the human genome.
The choice of the library preparation strategy should be given
priority.

Results
A comprehensive workflow for assessing the impact of
mouse read contamination in PDX Hi-C data

Sequencing of biological samples from patient-derived
xenograft (PDX) mouse models faces a challenge of mixed
genomic context derived from host (mouse) and graft (human)
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cells. Naturally, the goal is to sequence human-specific genomic
information; however, highly homologous mouse reads may
hinder the identification of human genomic information. We
investigated whether the presence of mouse reads in human
Hi-C data negatively affects Hi-C data quality and whether the
removal of mouse reads improves the detection of topologically
associating domains (TADs) and chromatin loops. We created
in silico PDX Hi-C data and generated two experimental PDX
Hi-C datasets (Table 1, Additional File 1: Table). We assessed 3
alignment strategies for mouse read removal and 3 common
pipelines to generate Hi-C matrices (Fig. 1).

The in silico PDX Hi-C data were created by concatenating
FASTA reads from previously published mouse and human Hi-
C data [27] (see Methods). Human Hi-C data from GM12878 B-
lymphoblastoid cells (nearly normal karyotype) and KBM7 myel-
ogenous leukemia (near-haploid karyotype) were selected to as-
sess the effect of mouse read contamination in normal and can-
cer Hi-C data, respectively. HMEC human mammary epithelial
cells were selected to parallel the breast cancer origin of our ex-
perimental PDX Hi-C data. Mouse Hi-C data from B-lymphoblast
CH12-LX cells were used to create the in silico PDX Hi-C data with
∼ 10% and ∼ 30% level of mouse read contamination. Human Hi-
C data for the corresponding cell lines without mouse reads were
used as a baseline.

The main limitation of in silico PDX Hi-C data is that human
and mouse reads originate from different libraries. Although in
silico PDX Hi-C data may be sufficient to test the performance of
aligners on a mixture of highly homologous human and mouse
reads, it is unknown whether this mixture can recapitulate the
complexity of experimental PDX Hi-C data, where, theoretically,
crosslinking and ligation of human and mouse DNA can occur.
To investigate whether the removal of mouse reads from ex-
perimental PDX Hi-C data improves the quality of Hi-C matri-
ces, we generated replicates of Hi-C data from a triple-negative
breast cancer PDX (UCD52 cells), obtained with 2 different li-
brary preparation strategies (Library 1 and Library 2; see Meth-
ods). As expected, human-specific replicates of experimental
PDX Hi-C data prepared with the same library preparation strat-
egy showed high correlation, in contrast to those prepared with
a different strategy (mean Pearson correlation coefficient (PCC) =
0.9963 and 0.9547, respectively). Mouse matrices were uniformly
correlated irrespective of the library preparation strategy (mean
PCC = 0.9870; Additional File 2: Figure). Therefore, replicates of
Hi-C data were merged for downstream processing. In total, we
processed 11 PDX Hi-C datasets (Table 1).

We applied 3 alignment strategies to remove mouse read
contamination: the Direct alignment of PDX Hi-C reads to
the human reference genome (“Direct”), the alignment of
data cleaned of mouse read data using the Xenome tool [11]
(“Xenome”), or using pre-alignment to a combined human and
mouse genome (“Combined”; see Methods, Fig. 1). We then ap-
plied 3 pipelines for processing of Hi-C data: Juicer [30], HiC-Pro
[31], and HiCExplorer [32] (Fig. 1). The use of different methods
for mouse read removal and pipelines allowed us to establish
the optimal strategy for analyzing Hi-C data derived from PDX
mouse models.

Experimental PDX Hi-C data have a higher proportion
of ambiguously mapped reads

Xenome accurately estimated the 10%/30% proportion of mouse
reads in our in silico PDX Hi-C data (Fig. 2, Additional File 3: Table).
We observed a similar proportion of mouse reads in our experi-
mental PDX data (∼12% and 30%; Table 1). Less than 1% of reads

were mapped to both or neither human nor mouse genomes,
and these results were consistent in the in silico and experimen-
tal PDX Hi-C data. Compared with in silico PDX data, the number
of “ambiguous” reads in the experimental data was higher (4–
5% vs. 1%; Additional File 3). This higher intra-population het-
erogeneity is expected because, in contrast to cell lines, exper-
imental PDX samples contain a mixture of different cell types
and cell states. This will introduce background noise interac-
tions and should be considered when comparing experimental
and in silico PDX Hi-C analysis results. Overall, our results indi-
cate that in silico PDX Hi-C data reflect the level of mouse read
contamination observed in experimental settings. However, the
higher level of ambiguously mapped reads suggests unique bi-
ological properties in experimental PDX Hi-C data and justifies
the need for their analysis.

Removal of mouse reads has negligible impact on the
retrieval rate and quality of Hi-C contacts

Following data processing using all combinations of alignment
strategies and pipelines, we investigated the level of residual
mouse reads mismapped to the human genome. For that, we
used in silico PDX Hi-C data where the identity of human and
mouse reads can be tracked. As expected, following Xenome and
Combined mouse read removal strategies, the data processed
by any pipeline had, on average, 0.0064% of mouse reads, and
these results were independent of the initial level of mouse read
contamination (range, 0.0002–0.0125%; Additional File 4: Table).
Furthermore, using the Direct alignment strategy resulted in a
higher level of residual mouse reads (average, 0.0625%; range,
0.0037–0.2402%). Juicer retained the largest proportion of mouse
reads with, on average, 0.1032%/0.2250% of the initial 10% and
30% mouse read contamination, respectively, while HiC-Pro re-
tained the smallest proportion of mouse reads (Additional File 4:
Table). Thus, both HiC-Pro and HiCExplorer pipelines effectively
eliminated contaminating mouse reads with direct alignment of
Hi-C reads to the human genome.

We extracted 4 Hi-C quality metrics from the log files pro-
duced by each pipeline (all QC metrics are given in Additional
File 5: Table). “Alignment rate” is the proportion of reads aligned
to the human genome. “Valid interaction pairs” is the propor-
tion of reads marked as Hi-C contacts by each pipeline con-
sidering the valid restriction site within a reasonable distance.
Higher values of those metrics indicate better data quality.
“Cis/trans ratio” is the ratio of intra- vs. inter-chromosomal in-
teracting reads. A higher cis/trans ratio indicates enrichment for
within-chromosomal reads, expected in the Hi-C experiments.
“Long/short ratio” is the ratio of cis interactions >20 kb away
vs those <20 kb away. The expectation is to capture more long-
distance chromatin interactions, i.e., a long/short ratio with a
value >1, while a long/short ratio <1 indicates that long inter-
actions were lost, prompting a cautious interpretation of the re-
sults. These Hi-C quality metrics allow for the comprehensive
definition of optimal alignment strategy and the effect of mouse
read removal.

The removal of mouse reads had minimal-to-no effect on the
alignment quality metrics of in silico and experimental PDX Hi-
C data (Fig. 3, Additional File 6: Figure). Expectedly, the align-
ment rate and the proportion of valid interaction pairs in in sil-
ico PDX Hi-C data were diminished proportionally to the percent
of mouse read contamination (10% or 30%), as compared with
those in pure human Hi-C data for the corresponding cell lines
(dashed lines in Fig. 3A and B). The removal of mouse reads from
in silico PDX Hi-C data did not markedly affect the cis/trans ratio
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Table 1: Summary of in silico and experimental PDX Hi-C data

Hi-C data Description Total reads
Proportion of mouse

reads (%)a
Optimal resolution

(kb)b

Baseline
GM12878 Human B-lymphoblastoids 486,848,169 0 7.0
HMEC Human mammary epithelial 456,577,383 0 7.9
KBM7 Human myelogenous leukemia 431,368,621 0 8.3
CH12-LX (rep 1) Mouse lymphoma cell line 45,594,869 100 N/A
CH12-LX (rep 2) Mouse lymphoma cell line 175,930,719 100 N/A

in silico PDX
GM12878 (10%) GM12878 + CH12-LX (rep 1) 532,443,038 8.56 7.0/7.1/7.0
GM12878 (30%) GM12878 + CH12-LX (rep 2) 662,778,888 26.54 7.0/7.1/7.0
HMEC (10%) HMEC + CH12-LX (rep 1) 502,172,252 9.08 7.9/7.9/7.9
HMEC (30%) HMEC + CH12-LX (rep 2) 632,508,102 27.81 7.9/7.9/7.9
KBM7 (10%) KBM7 + CH12-LX (rep 1) 476,963,490 9.56 8.3/8.3/8.3
KBM7 (30%) KBM7 + CH12-LX (rep 2) 607,299,340 28.97 8.3/8.3/8.3

Experimental PDX
UCD52 Library 1 Basal-like BRCA cell line 873,892,191 12.16/12.38 11.5/11.9/11.7
UCD52 Library 2 Basal-like BRCA cell line 708,069,622 25.78/29.14 8.9/9.1/9.0

aEstimated using Xenome/Combined alignment strategy, respectively.
bEstimated following Direct/Xenome/Combined alignment strategy, respectively.

Figure 1: PDX Hi-C data analysis workflow. In silico (controlled mixture of human and 10/30% mouse Hi-C reads) and experimental PDX Hi-C data (2 library preparation

strategies) were processed using 3 read alignment strategies (Direct: read alignment directly to the human genome, Xenome: human reads retrieved with Xenome
tool, and Combined: all reads aligned to the combined human-mouse genome, respectively). Three pipelines (Juicer, HiC-Pro, HiCExplorer) were used to obtain Hi-C
matrices. Hi-C data quality and runtime metrics were assessed following each processing step.

and long/short ratio (Fig. 3C and D). These results were consis-
tent across cell lines (Additional File 6: Figure) and suggest that,
while the Direct alignment strategy retains more mismapped
reads, the downstream Hi-C quality metrics perform similarly
to those from data with explicitly removed mouse reads.

Similar to the results obtained with in silico PDX Hi-C data, the
removal of mouse reads from experimental PDX Hi-C data did
not markedly affect quality metrics (Fig. 3), although more vari-
ability was observed (∼2–4%). Interestingly, although the align-
ment rate of data prepared with the Library 2 strategy was

lower than that of Library 1–prepared data (Fig. 3A), the pro-
portion of valid interaction pairs, cis/trans ratio, and, in partic-
ular, long/short ratio were higher (Fig. 3B–D). These results sug-
gest that the Library 2–prepared data contain more information
about intra-chromosomal long- and short-distance chromatin
interactions. In summary, these results indicate that the re-
moval of mouse reads does not substantially improve or change
the alignment quality of PDX Hi-C data, but the library prepara-
tion strategy has a significant effect.
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Figure 2: Proportions of human and mouse reads in experimental and in silico

PDX Hi-C data. Dashed lines indicate the 10% and 30% mouse read contami-
nation thresholds. Details of Xenome read separation statistics are collected in
Additional File 3: Table.

Evaluation of pipelines in terms of their ability to
recover information from PDX Hi-C data

Although removing mouse reads using either strategy did not
substantially affect the alignment quality of PDX Hi-C data
(Fig. 3A), we noted pipeline-specific differences (Fig. 3, Addi-
tional File 7: Figure), referred to by their names for brevity.
Specifically, Juicer produced a similar alignment rate as HiC-
Pro in in silico PDX Hi-C data. However, it recovered ∼15% more
alignable reads in experimental PDX Hi-C data compared to HiC-
Pro. On the other hand, HiCExplorer yielded ∼20% lower align-
ment rate for in silico PDX Hi-C data. Yet, HiCExplorer performed
nearly as well as Juicer in the alignment of experimental PDX
Hi-C data (Additional File 7: Fig. A). Similarly, Juicer recovered
up to 10% more valid interaction pairs in in silico PDX data as
compared to HiC-Pro and HiCExplorer (Additional File 7: Fig. B).
However, in experimental PDX Hi-C data, Juicer recovered nearly
twice as many valid interaction pairs as the HiC-Pro and out-
performed HiCExplorer by a ∼2% margin (Additional File 7: Fig.
B). These results indicate that Juicer can recover more alignable
reads and recover a higher proportion of valid interaction pairs.
These improvements were particularly pronounced when pro-
cessing experimental PDX Hi-C data.

A typical Hi-C experiment is expected to detect the ma-
jority of interactions within chromosomes (cis interactions) as
compared with between-chromosome (trans) interactions. This
should be reflected by a high cis/trans ratio. Juicer produced Hi-C
data with a higher cis/trans ratio than the HiC-Pro and HiCEx-
plorer pipelines. These results were consistent between in sil-
ico and experimental PDX Hi-C data (Fig. 3, Additional File 7:
Fig. C). Juicer yielded lower long/short ratios compared to the
other 2 pipelines (Fig. 3D), which reflects the fact that Juicer cap-
tured overwhelmingly more and most probably unwanted short-
distance cis interaction (Fig. 3C). These results were consistent in
in silico and experimental PDX Hi-C data (Additional File 7: Fig.
D). Interestingly, HiCExplorer gave the highest long/short ratios
in all in silico PDXs and in the experimental PDX using the Library
2 preparation strategy. Notably, all quality metrics were superior

in Hi-C data obtained using the Library 2 preparation strategy.
These results suggest that, altogether, HiCExplorer may offer the
most reliable information from PDX Hi-C data, and highlight the
importance of library preparation strategy.

The presence of mouse reads has a negligible effect on
the detection of TADs and chromatin loops

The most typical use of Hi-C data is to detect chromatin 3D
structures, such as Topologically Associating Domains (TADs)
and chromatin loops. Given that mouse read removal strate-
gies had negligible impact on Hi-C data quality, we used the Di-
rect alignment strategy for the following tests. We evaluated the
number of TADs and loops detected from data processed by the
3 pipelines. To focus on the data- and pipeline-specific differ-
ences, we used the same TAD/loop calling algorithms through-
out our work (see Methods). The number of TADs and loops
should be considered as a suggestive indicator of data quality
under the hypothesis that a deeper-sequenced high-complexity
Hi-C experiment would produce Hi-C matrices where more
TADs/loops can be detected.

Compared to baseline (pure human Hi-C data), the number of
cell-type–specific TADs and loops was nearly identical at the 10%
or 30% level of in silico mouse read contamination (Fig. 4, Addi-
tional File 8: Table). We also observed that TAD and loop bound-
aries detected from in silico PDX Hi-C data were highly overlap-
ping in a condition-specific manner, and this overlap was unaf-
fected by mouse read contamination (Additional File 9: Fig. A–C,
Additional File 10: Fig. A–C). These results were consistent irre-
spective of the pipeline and support the notion that mouse reads
do not markedly affect TAD and loop boundary detection.

Library preparation strategy has the largest effect on
TAD and loop detection

We observed nearly twice as many TADs and loops detected in
Library 2–prepared data than in Library 1–prepared data (Fig. 4),
paralleling our observation that Library 2–prepared data have
better quality metrics (Fig. 3). Using experimental Hi-C data, HiC-
Pro detected the fewest TADs but the most loops, while HiC-
Explorer detected the most TADs. Notably, the pipeline-specific
differences in the numbers of TADs and loops were most pro-
nounced for Library 1–prepared data (Fig. 4). These results sug-
gest that, with the optimal library preparation strategy, the dif-
ferences in pipelines are negligible, further emphasizing the im-
portance of library preparation strategy.

Similar to the analysis we did on in silico PDX Hi-C data, we
investigated the agreement between TAD and loop boundaries
detected from experimental PDX Hi-C data, processed with dif-
ferent pipelines. Given the same biological origin of experimen-
tal PDX Hi-C data, we expected a high overlap of boundaries also
between the 2 libraries. We found boundaries detected from data
prepared with the Library 2 strategy to be highly consistent irre-
spective of the pipelines (Additional File 9: Fig. D, Additional File
10: Fig. D). In contrast, boundaries detected from Hi-C data pre-
pared with the Library 1 strategy were most distinct and more
variable. Notably, Juicer and HiCExplorer boundaries were most
similar, while HiC-Pro boundaries were distinct from them (Ad-
ditional File 9: Fig. D, Additional File 10: Fig. D). These results
suggest that pipeline selection is less critical when working with
high-quality data (Library 2). Of note, Juicer and HiCExplorer
appear to detect concordant boundaries irrespective of data
quality.
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Figure 3: Quality metrics for selecting the optimal pipeline for processing PDX Hi-C data. All metrics are stratified by the pipeline (Juicer, HiC-Pro, and HiCExplorer)

and color-coded by the alignment strategy (green: Direct, blue: Xenome, red: Combined). (A) Alignment rate representing the proportion of all aligned reads. (B) The
proportion of valid interaction pairs as determined by each pipeline. (C) The ratio of cis interacting pairs (i.e., occurring on the same chromosome) vs. trans interacting
pairs (i.e., between chromosome interactions). (D) The ratio of long- vs short-interacting Hi-C contacts. Dashed lines correspond to the baseline alignment quality
metrics for human Hi-C data without mouse reads.

Finally, we investigated the enrichment of CTCF, a known
boundary mark, at TAD and loop boundaries. As expected,
co-localization enrichment of CTCF was highly significant (χ2

P-value < 2.225E−308) and similar irrespective of the initial
mouse read contamination level. However, cell-line– and library-
specific differences were more pronounced (Additional File 11:
Figure). Similarly, enrichment of CTCF signal was highly similar
(Additional File 12–13: Figure). We observed slightly higher vari-
ability in undersequenced KBM7 data and Library 1–prepared ex-
perimental PDX data, with less significant CTCF co-localization
and signal enrichment in those samples (Additional File 12–13:
Figure). These results suggest that boundaries supported by bio-
logical evidence can be detected irrespective of mouse read con-
tamination and pipeline, and the library preparation strategy is
essential for improved TAD/loop boundary detection.

Technical and runtime considerations

We compared the runtime and storage requirements for each
alignment strategy and pipeline. Removal of mouse reads with
either Xenome or Combined strategy resulted in smaller files
and, consequently, faster processing time (Fig. 5A). However,

when considering the additional time needed to remove mouse
reads (longest for the Combined strategy), processing of the orig-
inal data (Direct) was the fastest. Together with previous ob-
servations of the minimal effect of mouse read removal on Hi-
C data quality, these results indicate that extra computational
time used to remove mouse reads does not appear to be benefi-
cial for the quality of downstream results.

The removal of mouse reads requires considerable extra stor-
age space, with the Combined strategy requiring the most addi-
tional storage (Fig. 5B). Interestingly, the Juicer pipeline required
the largest storage space even when processing the original data
(Direct); however, it can be minimized by compressing text files
produced by it. Together with additional time requirements, ex-
tra space for removing mouse reads creates a significant com-
putational overhead with negligible benefits as compared with
the Direct alignment strategy.

The choice of tools for mouse read removal is an impor-
tant technical consideration requiring significant human time.
Xenome, a part of the Gossamer bioinformatics suite, has not
been updated since 5 January 2017 (as of 15 October 2020). It
requires dependencies that can only be installed using admin-
istrative privileges, which are rarely available for bioinformati-
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Figure 4: The library preparation strategy has the largest effect on TAD/loop detection. The number of TADs (A) and loops (B) are similar at different levels of mouse
reads and across pipelines in all in silico PDX Hi-C data, whereas experimental PDX Hi-C data produced variable results. Results for the Direct alignment strategy are
shown.

cians working in a high-performance computing environment.
Furthermore, Xenome requires creating its own genome index,
which also contributes to the storage and processing time, and
was not included in Fig. 5. The Combined strategy can be imple-
mented ad hoc, and the combined genomes and indexes can be
downloaded using Refgenie [33] (see Methods). However, the ex-
tra hard drive space and time required for mouse read removal
create an unnecessary human and computational burden and
can contribute to delays in a project. We recommend using the
Direct alignment strategy for the most optimal computational
processing of experimental PDX Hi-C data.

Discussion

We have assessed the effect of mouse read contamination on
the performance of 3 leading pipelines for Hi-C data process-

ing. Using quality control (QC) metrics at the alignment stage,
we showed that, unlike whole-exome and RNA-seq data from
PDX models, Hi-C PDX data are largely unaffected by mouse
read contamination. This is not unexpected because Hi-C data
processing pipelines include a series of filters to select valid
pairs [25]. It is highly unlikely for experimental PDX Hi-C data
to contain human-mouse chimeric reads, and even if such a
read pair occurs, the probability that it would be recognized
as a valid Hi-C contact (e.g., mapped in the proper orientation,
within a certain distance from the nearest restriction site) is
negligible. Our study confirms this reasoning and recommends
the Direct alignment of PDX Hi-C data to the graft (human)
genome.

Our results indicate that the Juicer pipeline may recover
more alignable reads and valid interaction pairs and achieves
better cis/trans but worse long/short interaction ratios. Given
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Figure 5: Removal of mouse reads carries a significant computational overhead. An example of runtime (A) and storage (B) resources required for processing PDX

Hi-C data to obtain Hi-C matrices. Only within-pipeline runtime comparisons are valid because each pipeline used different computational resources (see Methods).
Results for processing Library 2–prepared PDX Hi-C data are presented. Extra: accounting for time and storage space required to filter mouse reads. Main: time and
storage determined for processing human reads.

that Juicer retains more misaligned mouse reads within in sil-
ico PDX Hi-C data (Additional File 4: Table), it remains unclear
whether these reads represent true human chromatin interac-
tions in experimental PDX Hi-C data. This performance of Juicer
can be attributed to the use of the BWA-MEM aligner, which
can efficiently handle split-read alignment. In contrast, HiC-Pro
uses the bowtie2 aligner with the default “–end-to-end” map-
ping settings. The documentation for the HiCExplorer pipeline
discourages end-to-end alignment of Hi-C reads because the
alignment needs to accommodate for potential ligation junc-
tions. Consequently, we used the BWA-MEM aligner with HiC-
Explorer. Given that Juicer and HiCExplorer both detected sim-
ilar TAD/loop boundaries even in the poorer-quality Library 1–
prepared data (Additional File 9–10: Fig. D), both emerge as lead-
ing tools in our study. More generally, our results suggest the
use of BWA-MEM–based pipelines when processing experimen-
tal PDX Hi-C data.

Even though Juicer initially produced poor results in terms of
long/short ratio metric (Fig. 3D), this did not seem to affect the
final number of TADs and loops detected, as well as their bound-
aries. Between Juicer and HiCExplorer, we find Juicer the easi-
est to set up for running. On the other hand, HiCExplorer comes
with a comprehensive suite of tools for downstream analysis of
the Hi-C matrices with no need to change the Hi-C matrix for-
mat. Both tools perform well and we leave the choice to the user
on the basis of his/her experience to install and run the tools, as
well as the ability to change between different Hi-C matrix data
formats.

We identified library preparation strategy as a major determi-
nant of the downstream data quality. While differences in qual-
ity metrics between in silico PDX Hi-C datasets can be attributed
to the differences in sequencing depth (Additional File 1: Table),
differences in our experimental PDX Hi-C data can be directly
attributed to the library preparation strategies. Although our ex-
perimental PDX Hi-C data had nearly twice as many reads as the
in silico PDX Hi-C data (Table 1), their quality metrics were infe-
rior compared to in silico–constructed Hi-C data (Fig. 3). This was
most pronounced for Library 1–prepared data, which we spec-
ulate is due to the presence of nearly 40% read duplicates, as
compared to 12–15% duplicates in other datasets (Additional File
1: Table). However, the higher proportion of dangling ends, self-
circles, dumped reads, singletons, and so forth may have con-
tributed to the inferior quality of Library 1–prepared data (Addi-
tional File 5: Table). Similar to the ENCODE guidelines [34], our

observations suggest the importance of controlling duplicates in
Hi-C data.

Despite the lower number of sequencing reads and align-
ment rate, data obtained with the Library 2 preparation strategy
recovered more cis-interacting Hi-C contacts spanning longer
distances (cis/trans ratio and long/short ratio metrics in Fig. 3C
and Fig. 3D, respectively). Furthermore, the number and size
of TADs detected from the Library 2–prepared data was simi-
lar to that detected in in silico PDX Hi-C data (Fig. 4). This can
be attributed to multiple enzymes cutting the human genome
in more than 16M sites. In contrast, the single-enzyme Li-
brary 1 preparation strategy digests the genome in ∼7.2M sites.
Given that Hi-C data quality significantly affects downstream re-
sults, we suggest careful inspection of the shallow sequenced li-
brary before the deep-sequencing experiment, giving particular
weight to the metrics presented in Fig. 3. The choice of restric-
tion enzymes should be given primary consideration in design-
ing PDX Hi-C experiments.

According to the ENCODE guidelines [34], we expected to
recover ∼58% of sequenced reads as valid Hi-C interactions.
While our in silico PDX Hi-C data [27] almost always achieved
this threshold, our experimental PDXs did not meet these cri-
teria (∼28 and ∼45 for Library 1 and Library 2 preparation strate-
gies, respectively; Additional File 5: Table). Of note, other studies
report a much lower rate of valid Hi-C interactions. For instance,
the mean number of valid interactions across 93 Hi-C datasets
was 17.72±13.04 [35]. The overall lower percentage of valid inter-
actions in our experimental Hi-C data can be partially explained
by the fact that the genome of carboplatin-resistant UCD52 cells
may be affected by genome rearrangements. The presence of
duplications, deletions, and inversions is known to affect the
genome’s 3D organization [36] and may have negatively affected
the performance of our experimental PDX Hi-C data. Our results
suggest the need to consider the effect of large-scale genome
variation in the processing of PDX Hi-C data, in addition to the
standard Hi-C data quality metrics.

Methods
Generation of experimental PDX Hi-C data

UCD52 tumors were implanted in mice and once palpable
treated with a single dose of 40 mg/kg carboplatin, as previ-
ously described [4, 5]. Once the tumors began growing again,
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they were treated with another dose of carboplatin. This was re-
peated until the tumor was no longer responsive to carboplatin.
Xenograft tissue samples were processed by Phase Genomics
(Seattle, WA) and Arima Genomics (San Diego, CA). Data gener-
ated using Phase Genomics/Arima Genomics library preparation
strategy are referred to as “Library 1”/“Library 2,” respectively.
The following protocols detail each strategy, as provided by the
respective service providers.

Phase Genomics (Library 1) preparation strategy

Approximately 200 mg of xenograft tissue was finely chopped
and then crosslinked for 20 min at room temperature (RT) with
end-over-end mixing in 1 mL of Proximo Crosslinking solution.
The crosslinking reaction was terminated with a quenching so-
lution for 20 min at RT with end-over-end mixing. Quenched
tissue was rinsed once with 1× Chromatin Rinse Buffer (CRB),
resuspended in Proximo Animal Lysis Buffer 1, and then trans-
ferred to Dounce Homogenizer (Kontes) and homogenized with
12 strokes using the “A” homogenizer. Disrupted tissue in lysis
buffer was incubated 20 min at RT. Large debris was removed fol-
lowing a 1-min 500g spin. Lysate was recovered and transferred
to a clean tube and pelleted by spinning at 17,000g for 5 min.
The supernatant was removed and pellet washed once with 1×
CRB. After removing 1× CRB wash, the pellet was resuspended in
100 μL Proximo Lysis Buffer 2 and incubated at 65◦C for 10 min.
Chromatin was irreversibly bound to SPRI beads by adding 100
μL SPRI beads to lysate and incubating for 10 min at RT. Beads
were then washed once with 1× CRB. Beads were resuspended
in 150 μL of Proximo fragmentation buffer and 5 μL of Proximo
fragmentation enzyme (PN LS0027; 5,000 U/m Sau3AI cutting at
“GATC”) was added and incubated for 1 hour at 37◦C. The sam-
ple was cooled to 12◦C, and 2.5 μL of Phase Genomics Finishing
Enzyme was added (PN LS0030). Sample was incubated 30 min
at 12◦C, adding 6 μL of Stop Solution (PN LS0004) at the com-
pletion of the incubation. The beads were then washed with 1×
CRB and resuspended in 100 μL of Proximo Ligation Buffer sup-
plemented with 5 μL of Proximity ligation enzyme. The prox-
imity ligation reaction was incubated at RT for 4 hours with oc-
casional gentle mixing. After the ligation step, 5 μL of Reverse
Crosslinks enzyme (PN BR0012) was added and the reaction in-
cubated at 65◦C for 1 hour. After reversing crosslinks, the free
DNA was recovered by adding 100 μL of SPRI buffer to the re-
action. Beads were washed twice with 80% ethanol, air dried,
and proximity ligation products were eluted (Elution Buffer, PN
BR0014). DNA fragments containing proximity ligation junctions
were enriched with streptavidin beads (PN LS0020). After wash-
ing streptavidin beads twice with PG Wash Buffer 2 (PN BR0004),
once with PG Wash Buffer 1 (PN BR0016), and once with molec-
ular biology grade water, library was constructed using Proximo
library reagents (PNs LS0034, LS0035, and BR0017) amplified with
high-fidelity polymerase (PN BR0018), and size selected using
SPRI enriching for fragments between 300 and 700 bp. Pooled
libraries were sequenced on an Illumina NovaSeq 6000 instru-
ment using an S4 flow cell. Libraries were de-multiplexed using
unique dual indexes following standard Illumina methods.

Arima Genomics (Library 2) preparation strategy

Hi-C experiments were performed by Arima Genomics (San
Diego, CA) according to the Arima-HiC protocols described in
the Arima-HiC kit (P/N: A510008). After the Arima-HiC protocol,
Illumina-compatible sequencing libraries were prepared by first

shearing purified Arima-HiC proximally ligated DNA and then
size-selecting DNA fragments from ∼200 to 600 bp using SPRI
beads. The size-selected fragments were then enriched for biotin
and converted into Illumina-compatible sequencing libraries us-
ing the KAPA Hyper Prep kit (P/N: KK8504). After adapter ligation,
DNA was PCR amplified and purified using SPRI beads. The pu-
rified DNA underwent standard QC (qPCR and Bioanalyzer) and
was sequenced on the HiSeq X following the manufacturer’s pro-
tocols.

Construction of in silico PDX Hi-C data

Publicly available Hi-C data from the study by Rao et al. 2014 [27]
(GSE63525) were used to construct in silico PDX Hi-C data. Three
human and 1 mouse cell line Hi-C datasets were selected (Table
S1). To construct in silico PDX data containing a mixture of hu-
man and mouse reads, FASTA files from human and mouse cell
lines were concatenated to form Hi-C datasets containing ∼10%
and 30% mouse reads (Table 1). If read length differed between
human and mouse datasets, reads were trimmed from the 3′ end
to smallest read length using cutadapt (v2.7 [37]) before concate-
nation.

Removal of mouse reads from PDX Hi-C data

Three mouse read removal strategies were evaluated: Direct,
Xenome, and Combined (Fig. 1). In the Direct alignment strategy,
all reads were mapped to the human reference genome version
GRCh38/hg38 using only autosomal and sex chromosomes. In
the Xenome approach, PDX Hi-C reads were processed with the
Xenome tool [11] from the gossamer GitHub repository [38], and
human-only FASTA reads were kept. In the Combined strategy,
the combined human-mouse genome was created by concate-
nating autosomal and sex chromosomes from hg38 and mm10
genomes. Chromosome names were renamed with “hg38 ” or
“mm10 ” prefixes. Both species-specific and combined genomes,
as well as the corresponding bowtie2 and BWA indexes, are
available for download using refgenie v.0.9.3 [33]. Scripts to
download and organize refgenie’s assets are provided (see “Data
Availability” section).

Raw reads were first mapped with BWA-MEM -SP5 (v.0.7.17
[39]) to the combined genome, and the resulting BAM files were
then subsetted with samtools (v.1.3.1 [40]) to keep reads map-
ping to the hg38 chromosomes. bedtools bamtofastq (v.v2.17.0
[41]) was then applied to convert the hg38-BAM files back to
FASTQ format.

Processing human Hi-C data and PDX Hi-C data

All Hi-C data were processed with three pipelines with default
settings: (i) Juicer (v.1.6 [30]), (ii) HiC-Pro (v.3.0.0 [31]), and (iii) HiC-
Explorer (v. 3.5.1 [32]). Sites for Phase Genomics cutting enzyme
(GATC) were detected using the (i) generate site positions.py, (ii)
digest genome.py, and (iii) findRestSite scripts that come with
each tool, respectively. Sites for Arima Genomics cutting enzyme
(∧GATC, G∧ANTC) were obtained from [42] (used for HiC-Pro and
HiCExplorer) and generated with the generate site positions.py
for Juicer pipeline. The optimal data resolution was identi-
fied using Juicer’s script calculate map resolution.sh and set
to 10 kb to analyze 3D genome structures for all Hi-C
data.
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Switching between Hi-C file formats and matrix
normalization

Each pipeline adapts its own format for storing the data. Juicer
saves the contact matrices into a binary .hic format. HiC-Pro
stores results as a text file in the sparse data matrix .ma-
trix and genomic coordinate .bed formats. HiCExplorer uses an
HDF5-based binary .h5 file format. To compare data produced
by each pipeline, the data at 10-kb resolution were converted to
the HiCExplorer-compatible .h5 format. HiC-Pro raw text-based
contact matrices were directly converted to h5 format with
the HiCExplorer’s hicConvertFormat tool with the default set-
tings. Juicer’s toolbox was used to extract raw text-based contact
matrices with the following command: “juicer tools 1.13.02.jar
dump observed NONE file.hic chrom chrom BP 10000 output-
Name.txt”. The text files were then converted to HiC-Pro format
using a customized R script and converted to h5 format with the
HiCExplorer’s hicConvertFormat tool. All h5 files were then nor-
malized using the HiCExplorer’s hicCorrectMatrix tool on a per
chromosome basis using the Knight and Ruiz (KR) method.

Analysis of TADs and chromatin loops

HiCExplorer’s hicFindTADs tool was applied on the KR-
normalized matrices to calculate a genome-wide TAD separa-
tion score with “minDepth,” “maxDepth,” and “step” set to 30,
100, and 10 kb, respectively. “thresholdComparisons” and “delta”
were set to 0.05 and 0.01, and “fdr” method was chosen for “cor-
rectForMultipleTesting.”

Similarly, HiCExplorer’s hicDetectLoops tool was used to de-
tect chromatin loops with the following settings: “maxLoopDis-
tance” set to 2,000,000, “windowSize” set to 10, “peakWidth”
set to 6, “peakInteractionsThreshold” set to 10, “pValuePreselec-
tion” and “pValue” both set to 0.05.

CTCF co-localization (or overlap) enrichment was assessed
using GenomeRunner [43, 44]. Briefly, genomic coordinates of
TAD and loop boundaries were converted to the hg19 genome
assembly and tested for enrichment in the consolidated Tran-
scription Factor ChIP-seq data from ENCODE (wgEncodeRegTf-
bsClusteredV2 table in the UCSC genome browser). The χ2 test
was used to assess co-localization enrichment and enrichment
odds ratios were presented for across-condition comparisons.

CTCF signal was plotted using HiCExplorer’s computeM-
atrix and plotProfile tools with the default settings. The
ENCFF414WYX.bigWig CTCF track was downloaded from [47] on
14 December 2020.

Technical considerations

All jobs were run on a high-performance computer cluster under
the CentOS v.6.7 operating system and the PBS job submission
system PBSPro 12.2.1.140 292. The Juicer pipeline was run on 1
CPU; the other pipelines were run on 16 CPUs. Owing to adminis-
trative restrictions, only time and storage space were captured.
The processing scripts are available at the project home page
[45].

Data Availability

Accession numbers to download the publicly available Hi-C data
used in this study are listed in Table S1. Experimental PDX Hi-C
data generated in this study are available at the SRA via biopro-
ject number PRJNA668904. All codes necessary to reproduce the
analyses are available at the project home page [45]. Snapshots

of our code and other supporting data are openly available in the
GigaScience repository, GigaDB [46].

Availability of Source Code and Requirements

Project name: PDX Hi-C processing
Project home page: https://github.com/dozmorovlab/PDX-H

iC processingScripts
Operating systems(s): Mac/Linux
Programming language: Shell, R (≥4.0)
Other requirements: None
License: MIT
Any restrictions to use by non-academics: None

Additional Files

Additional File 1: Table. Datasets used in the present study. Se-
lected quality metrics were obtained using FastQC v.0.11.8.

Additional File 2: Figure. Correlation between Hi-C matri-
ces obtained from each replicate of experimental PDX samples.
Experimental PDX Hi-C data were processed through Xenome
to separate human and mouse reads. Human Hi-C matrices
showed very high correlation, most pronounced for Library 2
preparation strategy (A). As expected, mouse Hi-C matrices were
similar irrespective of library preparation strategy. Pearson cor-
relation coefficients were calculated for 1-Mb matrices (non-zero
elements only) and averaged across all chromosomes.

Additional File 3: Table. Xenome filtering statistics. The val-
ues represent the proportions of total reads in each PDX as indi-
cated.

Additional File 4: Table. The proportion of mouse reads
mismapped to the human genome in in silico PDX Hi-C data.
There was 10% and 30% initial mouse read contamination,
processed with Direct, Xenome, and Combined strategies, and
Juicer, HiC-Pro, and HiCExplorer pipelines, 0–100% range. The %
values are calculated with respect to the total number of reads
that define each PDX.

Additional File 5: Table. Summary statistics used to compare
the efficacy of the 3 Hi-C pipelines. Pipeline-specific alignment
statistics are shown in the corresponding worksheets. Statistics
shown in Fig. 3 are highlighted in red.

Additional File 6: Figure. Quality metrics assessed to select
the optimal pipeline for processing PDX Hi-C data. Observa-
tions using HMEC and KBM7 cell lines confirm the results shown
in Fig. 3. All metrics are stratified by the pipeline (Juicer, HiC-
Pro, and HiCExplorer) and color-coded by the alignment strat-
egy (green: Direct alignment; blue: Xenome selected alignment
of human reads; red: Combined human-mouse genome align-
ment strategy). (A) Alignment rate representing the proportion
of all aligned reads. (B) The proportion of valid interaction pairs
as determined by each pipeline. (C) The ratio of cis interacting
pairs (i.e., occurring on the same chromosome) vs trans interact-
ing pairs (i.e., between chromosome interactions). (D) The ratio
of long- vs. short-interacting Hi-C contacts. Dashed lines corre-
spond to the baseline alignment quality metrics for Hi-C data
without mouse reads.

Additional File 7: Figure. Comparison of information ex-
tracted from in silico and experimental PDX Hi-C data by the
alignment strategy. The same data as shown in Fig. 3 and Ad-
ditional File 6: Figure grouped by the mouse read removal strat-
egy (green: Juicer; blue: HiC-Pro; red: HiCExplorer). Dashed line:
threshold marking the ratios equal to 1.

https://github.com/dozmorovlab/PDX-HiC_processingScripts
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Additional File 8: Table. The number of TADs and loops de-
tected in each PDX Hi-C sample by each pipeline. Results for the
Direct alignment strategy are shown.

Additional File 9: Figure. Overlap between TAD boundaries
detected from PDX data processed by Juicer, HiC-Pro, and HiCEx-
plorer. Multi-dimensional scaling (MDS) plots of the (1 − Jaccard
overlap) distance matrices are shown. Pipeline-specific data are
shown in panels A–C. Panel D shows the overlap between TAD
boundaries detected in experimental PDX Hi-C data. Results for
the Direct alignment strategy are shown.

Additional File 10: Figure. Overlap between loop boundaries
detected from PDX data processed by Juicer, HiC-Pro, and HiCEx-
plorer. Multi-dimensional scaling (MDS) plots of the (1 − Jaccard
overlap) distance matrices are shown. Pipeline-specific data are
shown in panels A–C. Panel D shows the overlap between TAD
boundaries detected in experimental PDX Hi-C data. Results for
the Direct alignment strategy are shown.

Additional File 11: Figure. CTCF overlap enrichment odds ra-
tio. The CTCF enrichment odds ratios are shown at TAD (A) and
loop (B) boundaries detected from the in silico and experimental
PDX Hi-C data. The pipelines (X-axis) are color-coded as follows:
green: Juicer; blue: HiC-Pro; red: HiCExplorer. Results for the Di-
rect alignment strategy are shown.

Additional File 12: Figure. CTCF signal enrichment at TAD
boundaries. CTCF signal was calculated up to 25 kb upstream
and downstream from the TAD boundary (referred to as “center”)
and the mean values across all TAD boundaries are plotted for
each PDX tested. The pipeline-specific mean signals are color-
coded as follows: dark blue: HiC-Pro; light blue: HiCExplorer; yel-
low: Juicer. Results for the Direct alignment strategy are shown.

Additional File 13: Figure. CTCF signal enrichment at loop
boundaries. CTCF signal was calculated up to 25 kb upstream
and downstream from the TAD boundary (referred to as “center”)
and the mean values across all TAD boundaries are plotted for
each PDX tested. The pipeline-specific mean signals are color-
coded as follows: dark blue: HiC-Pro; light blue: HiCExplorer; yel-
low: Juicer. Results for the Direct alignment strategy are shown.
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