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Abstract

This article describes a theoretical and computational study of the dynamical assembly of a protein 

shell around a complex consisting of many cargo molecules and long, flexible scaffold molecules. 

Our study is motivated by bacterial microcompartments, which are proteinaceous organelles that 

assemble around a condensed droplet of enzymes and reactants. As in many examples of 

cytoplasmic liquid-liquid phase separation, condensation of the microcompartment interior cargo 

is driven by flexible scaffold proteins that have weak multivalent interactions with the cargo. Our 

results predict that the shell size, amount of encapsulated cargo, and assembly pathways depend 

sensitively on properties of the scaffold, including its length and valency of scaffold-cargo 

interactions. Moreover, the ability of self-assembling protein shells to change their size to 

accommodate scaffold molecules of different lengths depends crucially on whether the 

spontaneous curvature radius of the protein shell is smaller or larger than a characteristic elastic 

length scale of the shell. Beyond natural microcompartments, these results have important 

implications for synthetic biology efforts to target alternative molecules for encapsulation by 

microcompartments or viral shells. More broadly, the results elucidate how cells exploit coupling 

between self-assembly and liquid-liquid phase separation to organize their interiors.
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While the eukaryotic cytoplasm is organized by lipid-encased organelles, it is now clear that 

cells from all kingdoms of life employ other modes of compartmentalization, such as liquid-

liquid phase separation (LLPS)1-4 and proteinaceous organelles.5-7 For example, bacterial 

microcompartments are organelles that form by assembling a protein shell around a dense 

complex of enzymes and reactants in certain metabolic pathways.8-15 The best-studied type 

of microcompartment is the carboxysome, which assembles around a dense complex of the 

enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) and other proteins to 

facilitate the Calvin-Bensen-Bassham cycle in autotrophic bacteria.8,9,16,17

Other protein-shelled compartments are found in bacteria and archea (e.g. encapsulins18,19 

and gas vesicles18,20), and eukaryotes (e.g. vault particles21). Microcompartment function 

depends crucially on the amount and composition of encapsulated cargo, and the integrity of 

the surrounding shell. Thus, understanding the mechanisms that control cargo encapsulation 

and shell assembly are important to elucidate the normal biological functions of 

microcompartments, and to reengineer microcompartments as customizable nanoreactors for 

synthetic biology applications (e.g.12,22-35).

More broadly, there are strong parallels between the condensed cargo within a 

microcompartment and liquid-liquid phase-separated fluid domains. For example, the 

rubisco complex within carboxysomes has a similar structure and function as the pyrenoid, 

which is a liquid-phase separated domain consisting of rubisco and other components that is 

found within plant cells.36-39 Moreover, experiments and models suggest that 

microcompartment assembly proceeds by phase separation of the cargo, either prior to or 

during assembly of the outer shell.40-48 However, the protein shell of a microcompartment 

confers distinct advantages over uncoated liquid domains. In addition to functioning as a 

selectively permeable barrier,49-51 experiments suggest that the shell plays a structural role, 

influencing the size and morphology during microcompartment assembly.23,26,40,52-54 

Despite intense recent investigations into LLPS, we have yet to understand the role of LLPS 

in promoting or guiding self-assembly and cargo encapsulation, or conversely the role of 

assembly in promoting and regulating LLPS. Thus, models that describe coupled LLPS and 
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microcompartment assembly are needed to identify the factors that control microcompartent 

formation, cargo encapsulation, and function. From a practical perspective, condensation of 

cargo into fluid domains is a powerful approach to develop self-assembling and self-

packaging gene/drug delivery vehicles.55-65 Coupling such complexes to shell assembly 

could enable control of their size, amount of packaged cargo, and targeting capabilities.

Microcompartment shells are polydisperse (40-400 nm diameter), roughly icosahedral, and 

formed from pentameric, hexameric, and pseudo-hexameric (trimer-of-dimer) protein 

oligomers.8,9,17,53,66-70 Recently, Sutter et al. obtained atomic-resolution structures of small 

(40 nm diameter) empty microcompartment shells composed of pentamer, hexamer, and 

pseudo-hexamer proteins53 or smaller shells (~ 20 nm) composed of only pentamer and 

hexamer proteins.70 While these structures provide essential insight into microcompartment 

architectures, the effect of cargo on shell assembly, and the mechanisms that control cargo 

packaging, remain unclear. In many types of microcompartments, cargo coalescence and 

cargo-shell interactions are mediated by auxiliary microcompartment proteins called scaffold 

proteins. Scaffold proteins are typically flexible (e.g. the α-carboxysome scaffold (CsoS2) is 

an intrinsically disordered protein) and contain multiple interaction sites with cargo 

molecules.37,43,45 Thus, scaffolds drive cargo coalescence via weak multivalent interactions, 

paralleling mechanisms that drive liquid-liquid phase separation in cells.

Previous modeling studies have elucidated the assembly of empty icosahedral shells,71-97 the 

effect of an interior template such as a nanoparticle or RNA molecule on shell assembly,
78,84-86,98-122 and how the interplay between template curvature and shell elasticity can 

control its size.78,106,107 However, the many-molecule scaffold-cargo complex within a 

microcompartment does not have a specific size or morphology, and thus requires alternative 

models. Recent computational works investigated assembly of microcompartment shell 

subunits123,124 or assembly of shells around a single cargo species with direct pairwise 

attractions driving cargo coalescence and packaging.46-48 These studies showed that the 

cargo can influence the size of the assembled shell through a kinetic mechanism48 or a 

combination of kinetic and thermodynamic effects.46,47 However, there are no models for 

microcompartment assembly that account for the crucial role of scaffold molecules.

Therefore, in this work we develop a computational model for microcompartment assembly 

that explicitly accounts for flexible scaffold molecules and scaffold-mediated cargo 

coalescence and packaging. We are motivated by recent experiments that investigated how 

changing the length of the scaffold molecule affects the size of α–carboxysome shells,45,125 

but the model is sufficiently general to also provide insights into self-assembling delivery 

vehicles (e.g.55-64). In addition, we develop an equilibrium theory, which extends models for 

spherical micelles assembled from star or diblock copolymers,126-130 to describe variable 

packaging of the interior block, and an exterior shell with a preferred curvature radius 

(which may differ from the preferred size of the micelle).

Our models predict that shell sizes increase with scaffold length over a broad range, but 

there are minimal and maximal sizes beyond which the shell size becomes independent of 

scaffold length. Cargo packaging diminishes with increasing scaffold length for fixed 

scaffold-cargo valence (i.e. number of cargo interaction domains per scaffold molecule), 
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eventually leading to sparsely filled shells. However, increasing the scaffold-cargo valence 

can restore full shells.

A scaling analysis suggests that microcompartment properties are determined by the relative 

values of characteristic length scales set by: (i) the scaffold length, (ii) the spontaneous 

curvature of the protein shell, (iii) shell elasticity, and (iv) excluded volume. Our results 

show how these characteristic scales can be inferred from experimental measurements of the 

variation of shell size with scaffold length. Importantly, such measurements could reveal the 

role of shell spontaneous curvature in driving microcompartment closure, which is currently 

a key unresolved question.

Results and discussion

Computational results

To simulate scaffold-mediated microcompartment assembly, we extend a model with direct 

cargo-cargo and cargo-shell pair interactions47 to include scaffold proteins (section 

Computational model). Although we keep the model minimal to understand general 

principles, we are motivated by recent experiments on α–carboxysome assembly.45,125 The 

α–carboxysome scaffold, CsoS2, contains three linearly connected flexible domains which 

include binding sites for the cargo (rubisco) and the shell proteins. Although the N-terminal 

domain contains multiple binding sites for rubisco, it is not known which sites interact with 

shell proteins. In many other microcompartment types, the scaffold molecules contain 

‘encapsulation peptides’ at their C-terminal domains that interact with the shell, but these 

have not been identified for CsoS2. Given the current level of experimental uncertainty, we 

have started with a simple model for the scaffold: a flexible bead-spring polymer with three 

domains (section Computational model and Fig. 1). The domain at one end has multiple 

cargo interaction sites, the domain at the other end binds to shell subunits, and the middle 

domain has only repulsive interactions with cargo and shell proteins. In future work we will 

explore other arrangements of interaction sites on the scaffold. To minimize the number of 

parameters, we restrict the computational model to a single size of cargo particles and 

scaffold segments. Thus, the simulations do not account for the small excluded volume size 

of a CsoS2 segment relative to a rubisco holoenzyme. However, we analyze effects of 

varying excluded volume using the theoretical model described below. To further focus on 

scaffold-mediation, we restrict consideration to purely repulsive direct cargo-cargo and 

cargo-shell interactions, although attractive cargo-cargo and cargo-shell interactions have not 

been ruled out in the experimental systems.45,131

Natural microcompartment shells assemble from three classes of shell subunits (protein 

oligomers), each comprised of proteins with different sequences: pentamers, hexamers, and 

‘pseudo-hexamers’ (trimers of heterodimers). Based on atomic-resolution structures of small 

empty microcompartment shells,70 each subunit species has different preferred subunit-

subunit angles, but hexamers are the major species by mass in large shells. Our goal in this 

work is to focus on the influence of scaffold molecules on microcompartment size. To this 

end, we employ a minimal model for shell assembly which only includes only a single shell 

subunit species, which has hexamer symmetry but plays the role of both hexamers and 

pseudo-hexamers. Since AFM experiments have shown that microcompartment shell facets 
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assemble from pre-formed oligomers,132 we set the model hexamer as the basic assembly 

subunit (irreducible species) in our simulations.

Model subunits have attractive edge-edge interactions with a preferred angle that sets the 

intrinsic spontaneous curvature radius R0 of the shell. The spontaneous curvature of 

microcompartment shell proteins is not known. Hexamers may have zero spontaneous 

curvature, since systems of only hexamer proteins can form tubular structures or rolled 

sheets (rosettes) under some conditions,124,133-140 and assemble flat sheets on surfaces or 

interfaces.132,141 However, in the latter systems interfacial tension exerts a strong driving 

force favoring flat sheets. Moreover, recombinant expression of hexamers, pseudo-hexamers, 

and pentamers can result in small, icosahedral, empty shells53,70,142 implying that there is a 

net spontaneous curvature for at least some stoichiometries of microcompartment proteins. 

Given this uncertainty about spontaneous curvature, and since the subunits in our model 

account for both hexamers and pseudo-hexamers, we treat the spontaneous curvature radius 

R0 as a phenomenological parameter. We have also investigated the effect of R0 on 

microcompartment size in the case of assembly without scaffold proteins,47 allowing us to 

focus on the effects of scaffold properties here. Additional model details are in the Methods 

section.

To elucidate assembly pathways and outcomes, we performed dynamical simulations over a 

range of scaffold lengths Ls, cargo-binding domain lengths Lsc, shell spontaneous curvature 

radii R0, and binding affinities between scaffold-cargo, scaffold-subunit, and subunit-subunit 

pairs (εsc, εsh, εhh). Since empty microcompartment shells are rare in most natural systems, 

we consider subunit-subunit interaction strengths weak enough (εhh < 3.3 at R0 = 4.5, εhh < 

2.9 at R0 = 8.0, and εhh < 2.8 at R0 = 22) so that the presence of scaffold and cargo is 

required for nucleation. Moreover, previous computational and experimental studies have 

shown that assembly of well-formed shells requires moderate interaction strengths, since 

interactions which are too strong in comparison to the thermal energy lead to kinetic traps 

consisting of partial or incorrectly formed shells (e.g. 46,47,83,92,93,122,143-155). For most 

results in this work we maintain affinities (εsh = 2.5kBT, εsc = 1.0kBT) and a scaffold-cargo 

valence (number of cargo-binding sites, Lsc = 7) that are sufficiently moderate that our 

simulations avoid such kinetic traps. We present results for three values of the spontaneous 

curvature radius, R0 = 4.5, 8, and 22.0, which are respectively below, equal to, and above the 

size that is commensurate with the ‘wild-type’ scaffold length in our model, Ls = 24r* (see 

Methods).

Assembly pathways depend on scaffold-cargo interactions.—We find that the 

strength of scaffold-mediated cargo-cargo interactions strongly influences assembly 

pathways. Strong interactions (εsc ≳ 1.2 for the concentrations and wild-type cargo binding 

domain length used in our simulations) drive phase separation into a dilute phase and a high 

density liquid complex of scaffold and cargo molecules. This condition favors two-step 

assembly pathways (such as observed for assembly of β–carboxysomes40,41), in which the 

shell proteins adsorb onto the scaffold-cargo domain, and then cooperatively into ordered 

shell structures. For weaker scaffold-cargo interactions, we observe one-step assembly 

pathways with simultaneous scaffold-cargo coalescence and shell assembly (Fig. 2 A,B). To 

quantitatively assess the extent to which a pathway is one-step or two-step, we have 
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developed an order parameter that measures the number of adsorbed but unassembled 

subunits during a trajectory46 (SI Fig. S3D).

Here we are motivated by α–carboxysomes, for which experiments observe one-step 

pathways and that the rubisco does not undergo phase separation in the absence of shell 

proteins at physiological conditions.43,69,156 Therefore, for all further results we set εsc = 

1.0, which drives one-step assembly pathways for the wild-type scaffold and cargo-binding 

domain lengths.

In addition to classifying assembly pathways as one-step or two-step, we can further 

subdivide the one-step pathways into those that lead to full or empty shells. A set of 

snapshots from a typical assembly trajectory for each of these three categories is shown in 

Fig. 2A,B,C respectively, for (A) all scaffold domains at wild-type lengths and a 

commensurate shell spontaneous curvature radius R0 = 8, (B) a long middle domain and 

large preferred curvature R0 = 22, and (C) a long cargo binding domain and R0 = 22. Fig. 2 

(A) and (B) correspond to clear one-step assembly pathways (as is the case for most 

parameters considered in this work). Assembly begins with a small aggregate involving all 

the microcompartment constituents: shell subunits, scaffold, and cargo. Because we focus on 

weak binding affinities, all these interactions are required to stabilize small aggregates. 

Consequently, the shell grows concomitantly with further coalescence of scaffold and cargo, 

until shell closure terminates assembly. While the scaffold and cargo are essential for 

nucleating assembly in both cases, the scaffolds with longer middle domains (which do not 

attract cargo particles in the model) lead to a lower density of packaged scaffold and cargo 

(Fig. 2B) compared to the shorter middle domains (Fig. 2A).

In contrast, the higher valence cargo-binding domain (Fig. 2C) mediates cargo-cargo 

attractions that are nearly strong enough to drive phase separation, resulting in pathways 

closer to two-step assembly and full shells (SI Fig. S3D). This result is consistent with 

experimental observations that α-carboxysome scaffold and rubisco can phase separate 

without shell proteins under non-physiological conditions.37,45

Shell size depends on scaffold length.—We find that the shell size depends 

sensitively on scaffold length and shell spontaneous curvature. Motivated by the 

experiments, we vary the scaffold length above and below its wild-type length, with Ls = 24 

and Lsc = 7 model segments roughly corresponding to the wild-type values for the total 

scaffold length and cargo binding domain length (see SI section S2. Computational Model 

Details). Fig. 3A shows the mean size of assembled shells as a function of the middle 

domain length Lsm (with the other two domains at constant lengths Lsc = 7, Lsh = 7) for 

several values of R0. We identify two regimes, depending on whether the preferred size of 

the scaffold molecules (their end-to-end distance Rscaf in the absence of shell proteins, SI 

Fig. S2) is smaller or larger than the intrinsically preferred shell size R0. For small scaffold 

lengths, Rscaf < R0, shell size increases with scaffold length, consistent with experimental 

observations,125 until saturating at a value on the order of R0. In this limit, the number of 

encapsulated scaffold molecules (nscaf) relative to shell subunits (nshell), given by σs = nscaf/

nshell, decreases with increasing scaffold length (Fig. 3B). Finally, for Rscaf ≫ R0 shells are 

unable to close around scaffold molecules, leading to incomplete assembly (SI Fig. S7).
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Although the total amount of packaged cargo increases with scaffold length for small 

lengths, due to the increasing shell size, the volume fraction of packaged cargo and scaffolds 

decreases monotonically with scaffold length (SI Fig. S3A and B). That is, long scaffold 

middle domains lead to poor cargo loading, because the additional scaffold segments do not 

attract cargo but increase excluded volume in our computational model.

Longer cargo binding domains increase cargo loading.—Fig. 3C shows how 

cargo packaging depends on increasing the fractional length of the cargo binding domain, fsc 

= Lsc/Ls; i.e., increasing Lsc at fixed Ls. We see that packaging increases monotonically with 

fsc, but there is an inflection point at fsc = 0.3 beyond which shells are nearly full. This point 

corresponds to the cargo binding domain length beyond which phase separation and two-

step assembly pathways occur (SI Fig. S3D). We find that two-step pathways always lead to 

full shells, but the shell-size exhibits a very different dependence on parameters in 

comparison to the one-step cases we are focusing on. We plan to explore scaffold-mediated 

two-step assembly in detail in a future manuscript. This dependence on assembly pathways 

suggests that both thermodynamic and kinetic factors influence cargo packaging, as 

discussed further in the Discussion and Conclusions section.

Effect of binding affinity values.—Finally, the shell size is relatively insensitive to the 

subunit-subunit εhh and scaffold-subunit εsh affinities, provided they are strong enough to 

drive assembly and scaffold packaging, and weak enough to avoid kinetic traps and remain 

in the one-step regime (see SI Fig. S3D). For example, decreasing εhh leads to a small 

increase in shell size ( 20%) for spontaneous curvature radius R0 = 8.0 (SI Fig. S6), whereas 

increasing the scaffold length effects a three-fold increase in shell size for the same system 

(orange triangles in Fig. 3A). However, higher values of the scaffold-cargo affinity εsc ≳ 1.2 

lead to two-step assembly pathways.

Shell morphology.—In addition to size, scaffold properties influence shell morphologies. 

Simulations result in complete shells (other than the 12 five-fold vacancies required by 

topology) for most of the parameters we focus on here (SI Fig. S7). However, the shells are 

not perfectly icosahedral, as shown by measurements of shell asphericity and the magnitude 

of icosahedral order in SI Figs. S4 and S5 respectively. These results are consistent with the 

fact that natural microcompartments are predominately asymmetric;69,133 in fact, Kennedy 

et al.133 showed that protocols and techniques used to purify and image microcompartments 

with electron microscopy have overrepresented the degree of icosahedral symmetry.

As discussed below, these deviations from icosahedral symmetry likely reflect a 

combination of kinetic effects and energetic strain due to incompatibility between the 

preferred scaffold and shell sizes. In support of the latter effect, varying the scaffold far from 

the size that is commensurate with the preferred shell size leads to distinctive morphologies; 

in particular, elongated but complete shells (e.g. snapshot (Vb) in Fig. 3). Short scaffolds can 

also result in shells with octahedral symmetry or paired five-fold vacancies (SI Fig. S3), 

although these defects may be model-dependent because shells are strained far from their 

preferred size. Finally, as noted above, varying the scaffold even further from the preferred 

size leads to no assembly or incomplete shells.
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Equilibrium theory

Model

To further understand the interplay between scaffold and shell properties, we developed a 

simple equilibrium model (see SI section S1. Equilibrium Theory). Although kinetic factors 

may be important as noted above, the thermodynamic model captures key trends observed in 

the dynamical simulations.

We make the following simplifying assumptions; extensions to eliminate these 

approximations are straightforward. First, we restrict the theory to spherical shells as 

observed for most parameter values in the simulations. Second, cargo molecules are 

implicitly represented by a net driving force for scaffold packaging Δμ that accounts for 

scaffold-shell and scaffold-cargo attractive interactions, as well as the mixing entropy 

penalty for scaffold coalescence. We further assume that the coalesced cargo and scaffold-

cargo binding domains are concentrated in the shell interior, while the other end of the 

scaffold, the scaffold-shell binding domain, binds to the inner shell surface. Our model 

system can thus be thought of as a diblock copolymer spherical micelle (e.g.126-128,157-159), 

except that the stoichiometry of the interior/exterior block is annealed, and there is an 

exterior shell with a preferred curvature that may be incommensurate with the optimal size 

of the micelle within. We discuss below the implications of model predictions for alternative 

scaffold packaging geometries.

The free energy (per shell subunit) of a shell with radius R and ratio of scaffold/shell 

subunits σs is given by

fassem = fshell + σsfscaf + fent (1)

fshell = ghh + aκ
2

2
R − 2

R0

2
(2)

fscaf = kBT R
Rscaf

2
+ kBT Rscaf

R
2

+ Δμ + 3
2

kBTvσsNs
2

aR (3)

fent = kBTσs log σs + kBT (1 − σs) log(1 − σs) (4)

Here fshell gives the shell free energy, with the first term (ghh) the free energy per subunit due 

to subunit-subunit contacts (see SI section S1. Equilibrium Theory, Eq. S8), and the second 

term describing the bending energy due to deviations from the shell spontaneous curvature, 

with a the subunit area and κ the bending modulus. For simplicity, we neglect contributions 

from the 12 five-fold defects that are required by topology in real and computational 

microcompartments. Including these will not qualitatively change the results (see SI section 

S1. Equilibrium Theory and Ref. 47). Then the first two terms in fscaf give the entropic 

penalty for stretching or compressing scaffold molecules from Rscaf. The following two 

Mohajerani et al. Page 8

ACS Nano. Author manuscript; available in PMC 2022 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terms account for attractive scaffold-cargo and scaffold-shell interactions (Δμ), and excluded 

volume interactions, with ν as the scaffold segment excluded volume. Finally, fent represents 

the mixing entropy of encapsulated scaffolds. The equilibrium shell size and scaffold 

loading are obtained by minimizing the total free energy of the system. In the 

thermodynamic limit, the distribution of shell sizes will be strongly peaked around the size 

that minimizes the free energy per subunit of the shell complex (see SI section S1. 

Equilibrium Theory and Refs.47,160).

Comparison of theory with computational results

The solid lines in Fig. 3A,B show the theory results, with the parameters aκ = 12.5 kBT r∗2

and ν = 0.065 r∗3 calculated from simulations and Δμ as a fitting parameter chosen by eye. 

We set Rscaf = lkNs
1 ∕ 2 with lk the statistical segment length, since the theory separately 

accounts for chain stretching and excluded volume (as in the Flory approximation161).

We find that the theory qualitatively captures the main features observed in the simulation 

results. In particular, the shell size increases with scaffold length, until saturating near R0 for 

long scaffolds, where excluded volume limits scaffold packaging. However, for simulations 

with R0=22, longer scaffolds undergo limited coalescence in the center of the shell, causing 

the shell size to saturate at smaller scaffold lengths than predicted by the theory.

Scaling analysis, and the small excluded volume limit

Eq. (1) predicts that the system behavior depends on several characteristic length scales. In 

addition to the shell spontaneous curvature radius R0 and scaffold size Rscaf, we obtain 

length scales from the scaffold excluded volume, Rexc ~ (Nsν)1/3, and the shell elastic 

energy, RE = 2aκ ∕ kBT . Specifically, RE is the radius for which a closed shell with no 

spontaneous curvature R0 = ∞ to would have a bending energy of kBT per subunit. Different 

scaling forms can be deduced from Eq. (1) depending on the relative magnitudes of these 

lengths.

Since our model is most applicable to biological microcompartments in the limit of small 

excluded volume (see discussion), we focus here on the limit of small excluded volume, ν 
→ 0. In SI section S1. Equilibrium Theory we present a detailed derivation of these 

expressions and further analysis for finite excluded volume.

Fig. 4 shows the shell size calculated as a function of scaffold length and shell spontaneous 

curvature with ν = 0, by minimizing Eq. (1). The dashed black lines encompass the region 

with significant scaffold packaging for Δμ = −10kBT; the full dependence of scaffold 

packaging on parameters is shown in SI Fig. S1. We see that the range of accessible shell 

sizes depends crucially on the relative sizes of the preferred shell curvature and the elastic 

length scale. For R0 > RE the shell size is highly tunable with scaffold length, varying over 

orders of magnitude, while only small deviations from the preferred shell curvature are 

possible in the opposite limit R0 < RE. This predicted trend may be a way to experimentally 

probe R0 in microcompartment systems.
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Scaling analysis.—Further insight can be obtained from a simple scaling analysis. First, 

minimizing the free energy with respect to σs gives

σeq ≈ 1 ∕ 1 + efscaf(Req) ∕ kBT . (5)

Eq. (5) shows that scaffold/cargo packaging diminishes as the shell size deviates from the 

preferred scaffold size Rscaf, but that scaffold can be packaged over a greater range of shell 

sizes by increasing ∣Δμ∣. Second, we obtain simplified expressions for the shell size and 

packaging depending on the relative characteristic scales as follows.

Small intrinsic shell curvature, R0 ≫ RE.—In this limit the optimal shell size becomes 

asymptotically independent of shell spontaneous curvature, and minimizing the free energy 

results in an optimal shell size

Req ≈ Rscaf 1 + 1
σeq

RE
Rscaf

2 1 ∕ 4
for R0 ≫ RE, (6)

which can be further simplified in two limits:

Req ≈
Rscaf 1 + 1

σeq

RE
2Rscaf

2
≈ Rscaf for Rscaf ≫ RE

(RscafRE)1 ∕ 2 σeq
−1 ∕ 4 for Rscaf ≪ RE

(7)

Thus, the shell size depends on a competition between the preferred scaffold size and the 

tendency of the shell proteins to disfavor curvature: the shell size tracks the scaffold size Req 

≈ Rscaf for long scaffolds, but adopts the geometric mean of the scaffold size and shell 

elastic length for short scaffolds. These scaling estimates are compared against the full free 

energy in Fig. 5A.

However, Eq. (5) shows that scaffold packaging will exponentially diminish for large 

deviations from Rscaf. Therefore, we estimate upper and lower bounds on the scaffold-driven 

changes in shell size by noting that shell bending energy must be compensated by the free 

energy of scaffold packaging:

Req
max ≈

R0RE
RE − (Δμeff ∕ kBT )1 ∕ 2R0

, for (Δμeff ∕ kBT )1 ∕ 2 < RE
R0

∞, for (Δμeff ∕ kBT )1 ∕ 2 ≥ RE
R0

(8)

Req
min ≈ R0RE

RE + (Δμeff ∕ kBT )1 ∕ 2R0
≈ RE ∕ (Δμeff ∕ kBT )1 ∕ 2, for R0 ∞

(9)
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with Δμeff = −(Δμ + 2kBT)σeq – fent the effective confinement free energy per shell subunit, 

since fscaf ≈ Δμ + 2kBT for R ≈ Rscaf, and

σeq ≈ 1 ∕ 1 + eΔμ ∕ kBT + 2 . (10)

The packageable range of scaffold lengths can then be determined by combining Eqs. (8), 

(9) and (7) (Fig. 4C). Outside of these bounds, scaffold packaging decreases exponentially, 

resulting in either no assembly or assembly of empty shells with sizes near R0. Alternatively, 

for small scaffolds, if the scaffold-shell energy is sufficient to drive scaffold packaging 

without cargo, the scaffold can form a layer in the vicinity of the shell surface (Fig. 4B). 

That scenario is not accounted for in the theoretical model.

Importantly, in any of these scenarios, the microcompartments will saturate at a minimum 
shell size with decreasing scaffold length (Eq. (9)), which is an experimentally testable 

prediction.

High intrinsic shell curvature, R0 < RE.—In this regime the preferred curvature of the 

shell proteins influences the assembled shell size, so we must consider the full free energy 

Eq. 1. Then, the limits in which the preferred scaffold size is larger or smaller than R0 result 

in

Req ≈
R0 1 + σeq (Rscaf ∕ RE)2 , for Rscaf ≫ R0

R0 1 − σeqR0
4

Rscaf
2 RE

2 , for Rscaf ≪ R0
(11)

showing that the shell size depends on the competition between the shell spontaneous 

curvature and scaffold size, with their relative importance determined by the shell bending 

modulus (via RE). As above, there are bounds on the range of scaffold lengths that can be 

efficiently packaged, which increase with ∣Δμ∣. Since the shell bending energy dominates in 

this limit, the shell size exhibits only small deviations from R0 (Fig. 5B), and the extent of 

scaffold incorporation is determined by the competition between the packaging driving force 

Δμ and the scaffold confinement free energy fscaf, resulting in:

Rscaf
min ∕ max ≈ R0

1
Δμeff ∕ kBT − 1 ± 2σeq

R0
RE

2 −1 ∕ 2
. (12)

The range of shell sizes (Req
min, Req

max) can then be determined by combining Eqs. (10)-(12). 

Consistent with the numerical solution (Fig. 4D), the range of accessible shell sizes is 

considerably smaller than in the large R0 limit (Fig. 4C).

Conclusions

We have theoretically and computationally investigated the equilibrium behavior and 

dynamical assembly pathways of a system in which polymeric scaffold molecules drive 

Mohajerani et al. Page 11

ACS Nano. Author manuscript; available in PMC 2022 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



coalescence of many cargo particles, and their packaging within an assembling protein shell. 

While motivated by bacterial microcompartments, we have employed minimal models 

allowing for generic conclusions about such multicomponent assemblies. Thus, in addition 

to elucidating the behaviors of natural and reengineered bacterial microcompartments, our 

results suggest design principles for tailoring the size, morphology, and loading of synthetic 

or biomimetic systems such as delivery vehicles.

We find that the shell size and the amount of packaged cargo are determined by several 

characteristic length scales: the preferred sizes of the protein shell and the scaffold, the 

scaffold excluded volume size, and a characteristic elastic length scale of the shell (which 

depends on its rigidity). In our computational model, we have considered a relatively low 

bending rigidity of the shell (motivated by experimental observations on bacterial 

microcompartments), and scaffold excluded volume plays a significant role. In this case, 

results depend on whether the preferred scaffold size is either smaller than or larger than the 

spontaneous curvature radius. In the limit of small scaffold molecules, assembly driving 

forces are dominated by stretching of the scaffold between the cargo-filled interior and the 

surface of the protein shell, leading to shells which are smaller than the spontaneous 

curvature radius (provided that the scaffold-shell interactions and scaffold-mediated cargo-

cargo interactions are stronger than shell bending elasticity). In the opposite limit of long 

scaffold molecules, scaffold packing becomes a dominant contribution, leading to decreased 

scaffold-cargo packaging and a shell size that roughly saturates at the spontaneous curvature 

radius and/or elongated shells.

Our simulations also demonstrate that the amount and morphology of packaged cargo 

depends on the strength and geometry of scaffold-cargo interactions. Multivalent scaffold-

cargo interactions are essential for achieving full shells, while the scaffold length and 

distribution of cargo binding sites on the scaffold influence the morphology of the packaged 

cargo. When cargo-binding sites are limited to one end of long scaffold molecules, with 

scaffold-shell interactions at the other end, we observe a tri-layer micelle-like complex, with 

an interior core of cargo, surrounded by a layer of scaffold, and finally the shell on the 

exterior. In contrast, longer scaffold-cargo binding domains or shorter scaffolds lead to a 

nearly uniform distribution of cargo and scaffold in the shell interior.

Because our primary objective was to qualitatively understand scaffold-mediated shell 

assembly, we did not tune the computational model parameters to match a specific biological 

system, and the computational model likely overestimates the scaffold excluded volume 

compared to bacterial microcompartments. For example, the α-carboxysome scaffold 

(CsoS2) accounts for only 12% by mass of a wild-type α-carboxysome,162 compared to 

70% in our model. Moreover, while we have included very weak scaffold inter-segment 

attractions in our model, stronger inter-segment attractions among CsoS2 residues could 

further reduce the effective excluded volume.

Therefore, we also developed a more tractable, though simplified, equilibrium theoretical 

model that facilitates more direct comparisons against experiments. Using this model, we 

have explored a wide parameter range, including the effect of reducing the excluded volume. 

The theoretical analysis suggests that the ability of a scaffold to modulate shell size depends 
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crucially on whether the protein shell spontaneous curvature radius is large or small 

compared to its elastic length scale. In the regime of a large spontaneous curvature radius, 

shell size is extremely malleable and can be tuned over a wide range by varying scaffold 

length. In contrast, shell proteins with a small preferred curvature radius exhibit only small 

size fluctuations, and relatively poor packaging of scaffold molecules with incommensurate 

sizes. In both regimes, the range of scaffold lengths that can be packaged effectively, and 

correspondingly the range of accessible shell radii, increase with the free energy driving 

force for scaffold incorporation. This important control parameter depends on the scaffold 

concentration and the valence and affinity of the scaffold-cargo and scaffold-shell domains.

Testing against experiments.

Since our models are general, these predictions could be tested in a variety of biological or 

synthetic systems. For example, testing in bacterial microcompartments will be enabled by 

the modular nature of microcompartment scaffold molecules: the CsoS2 scaffold of the α-

carboxysome can be represented as a tri-block co-polymer, with the cargo-binding domain in 

the N-terminal block, and shell-binding sites in the C-terminal block. Our results could thus 

be compared against experiments in which mutagenesis45 is used to change the length of the 

middle domain (Fig. 3A,B) or the cargo-binding domain (Fig. 3C), although we note that the 

presence of shell binding sites in the middle block has not been ruled out.

Importantly, our results suggest a path to assess the magnitude and importance of the 

spontaneous curvature, a key unresolved question in microcompartment assembly. In 

particular, recent experiments on recombinant systems exhibit assembly of small (~ 20 – 30 

nm) empty microcompartment shells, suggesting a small shell spontaneous curvature radius. 

Yet, other experiments observe extensive flat sheets of hexamers,124,132-141 suggesting the 

possibility of a low or zero spontaneous curvature. In this regard, both the simulations and 

theoretical model predict that shells with a small spontaneous curvature radius exhibit only 

narrow fluctuations in size when presented with scaffold in molecules of different lengths, 

whereas shells with a large spontaneous curvature radius can assemble over a wide range of 

sizes to accommodate scaffolds with different lengths. In the small spontaneous curvature 

radius regime, our results suggest that preferred shell curvature plays a key role in driving 

shell closure, whereas in the large curvature radius regime scaffold properties (this work) 

and cargo properties (Refs.47,48) are important for shell closure.

One readily testable prediction from our model is that there is a minimum accessible shell 

size. Reducing scaffold lengths below this limit will either lead to a saturating shell size with 

diminished scaffolding packaging, or abrogation of shell assembly.

Kinetic and thermodynamic effects drive deviations from icosahedral symmetry.

Previous equilibrium elasticity studies of shells have identified local minima as a function of 

size at a series of ‘magic number’ sizes, for which the structures have icosahedral symmetry 

or other high symmetries (e.g.71-73,89,106,107,121,122,163-165). Yet, the assembly products in 

our simulations are predominately asymmetric, consistent with the structures of natural 

microcompartments.133 This lack of symmetry can be explained by three factors, the first 

kinetic and the other two thermodynamic. First, trajectories in our simulations and 
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experimental systems begin from a highly out-of-equilibrium condition of dispersed 

subunits, and thus are not guaranteed to approach equilibrium on the finite timescales of 

experiments and our simulations.154 It is well-known that overly strong interactions lead 

assembly into kinetic traps consisting of incomplete shells, due to free subunit starvation, or 

shells that cannot close due to defects (e.g.46,47,83,92,93,122,143-155,166). In this work we focus 

on moderate binding affinities, and thus (except for very short or long scaffolds) most 

simulations lead to complete shells with the 12 five-fold defects required by topology. 

However, once a shell is complete, reorganization of its components is slow in comparison 

to assembly timescales, and thus diffusion of defects or changing the number of subunits to a 

size that is compatible with icosahedral symmetry does not occur on experimentally relevant 

timescales. Further, we find that switching from one-step two-step assembly pathways is 

correlated to an increase in cargo loading (Fig. 3C) suggesting that kinetic effects influence 

cargo encapsulation. However, the relatively strong agreement between our equilibrium 

theory and the dynamical simulation results (Fig. 3A,B) suggests that the assembly products 

are near equilibrium for the moderate binding affinity parameter sets we have focused on.

In addition to kinetic effects, there are (at least) two sources of elastic strain that may 

suppress icosahedral symmetry. First, scaffolds with preferred sizes that are much smaller or 

larger than the shell spontaneous curvature radius lead to incomplete assembly. More 

moderate incompatibilities between preferred scaffold and shell size lead to complete but 

asymmetric shells, such as elongated shells (Figs. 3 and S4). Second, formation of 

icosahedral structures from more than 60 asymmetric subunits requires multiple subunit 

species and/or elastic strains. Because our minimal model includes only a single subunit 

species, there are necessarily strains even in symmetric ground states. However, natural 

microcompartments also have far fewer shell protein species than the number of distinct 

local symmetry environments (the triangulation number T167). Even a small shell with 

diameter d ~ 100 nm has T = 75, and the triangulation number grows as T ∝ d2. Thus natural 

microcompartments shells must have some degree of elastic strain.

Coupling of assembly to liquid-liquid phase separation (LLPS).

While the discussion above focuses on the effect of a phase separating domain on the size 

and morphology of the assembling shell, our results demonstrate that the coupling between 

assembly and LLPS is bidirectional. Shell assembly can control both the onset of LLPS and 

the nature of its aggregation behavior. In particular, for low scaffold-cargo valences, shell 

assembly is required for nucleation and subsequent coalescence of the cargo domain. For 

larger scaffold-cargo valences, the cargo-scaffold complex domain nucleates spontaneously, 

but will undergo unbounded growth (until depleting cargo or scaffold) unless restrained by 

shell assembly. Thus, coupling to protein assembly can qualitatively change liquid domain 

formation from macrophase separation to self-limited assembly (aggregation). However, we 

reiterate that the preferred size of the domain is controlled by properties of both the shell and 

the encapsulated cargo.

Outlook.—Finally, our results suggest additional physical ingredients that will be important 

to study for understanding biological microcompartments or guiding the design of synthetic 

delivery vehicles. First, increasing the rigidity of the scaffold molecules would diminish the 
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range of variation of shell sizes. This trend can be seen from the equilibrium scaling of the 

shell size in Eqs. (7) and (11), since the unperturbed scaffold size increases with its rigidity. 

Second, combining direct cargo-cargo interactions with scaffold mediation could enhance 

cargo packaging within assembling shells. This proposition is based on our observation in 

this work that increasing effective scaffold-mediated cargo interactions promotes cargo 

loading, and is consistent with observations from previous models with cargo coalescence 

driven only by direct cargo-cargo pair interactions.46 Third, although we observe qualitative 

agreement between our dynamical simulation results and the equilibrium theory, kinetic 

effects likely play important roles in some parameter regimes. For example, we have 

primarily focused on parameters that lead to one-step assembly pathways as observed for α-

carboxysomes, but we anticipate that kinetic effects will become more important in the case 

of two-step assembly pathways. Thus, models such as developed here, combined with 

experiments on different microcompartment systems and solution conditions, are needed to 

fully understand the interplay between thermodynamics and kinetics in scaffold-mediated 

shell assembly and cargo packaging.

Methods

Computational model

Our computational model extends a previous model for assembly of a shell around fluid 

cargo46,47 to include scaffold molecules and scaffold-mediated cargo-cargo and cargo-shell 

interactions. To focus on the effect of scaffold-mediated cargo interactions, we do not 

include direct cargo-cargo and cargo-shell attractive interactions, and we consider only one 

shell subunit species, which represents both hexamer and pseudo-hexamer proteins.

Scaffolds.—In carboxysome systems, attractions between rubisco particles are mediated 

by auxiliary proteins (e.g. the intrinsicallly disordered protein CsoS2 in α–

carboxysomes43,45 and the protein CcmM in β–carboxysomes40). The α–carboxysome 

scaffold molecule, CsoS2, contains three linearly connected flexible domains, with the C-

terminal domain containing multiple binding sites for the cargo molecule rubisco. While 

there is not yet clear experimental evidence for the location of the shell binding sequences, 

in β-carboxysomes and other microcompartments, shell-cargo attractions are mediated by an 

‘encapsulation peptide’ sequence in the N-terminal domain of the scaffold.23,31,40,168,169 

Motivated by these characteristics, we model the scaffold as a flexible bead-spring polymer 

with three linearly connected domains: a scaffold-cargo binding domain at one end with 

multiple cargo interaction sites, a scaffold-shell binding domain at the other end with 

multiple shell subunit binding sites, and a middle domain that has only repulsive interactions 

with cargo and shell proteins. Based on experimental evidence, we include weak attractive 

interactions between pairs of scaffold beads.

The interactions between various molecule types are modeled as follows, with further details 

given in SI section S2. Computational Model Details.

Scaffold-cargo interactions.—Attractive interactions between cargo particles and the 

‘cargo-interacting’ beads (type ‘SC’) in scaffolds are modeled by a Lennard-Jones potential 

with well-depth parameter εsc.

Mohajerani et al. Page 15

ACS Nano. Author manuscript; available in PMC 2022 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scaffold-shell interactions.—Attractive interactions between subunits and scaffolds are 

modeled by a Morse potential with well-depth parameter εsh, between beads in ‘shell 

interacting’ beads in polymers (blue beads in Fig. 1C) and Bottom pseudoatoms on subunits 

(type ‘BH’). We also add a layer of ‘Excluders’ in the plane of the ‘Top’ pseudoatoms, 

which account for shell-scaffold and shell-cargo excluded volume interactions.

Subunit-subunit interactions.—Interactions between edges of BMC shell proteins are 

primarily driven by shape complementarity and hydrophobic interactions.53 To mimic these 

short-ranged directionally specific interactions, each model subunit contains ‘Attractors’ on 

its perimeter that mediate subunint-subunit attractions. Complementary Attractors on nearby 

subunits have short-range interactions (modeled by a Morse potential, Eq. S28 in SI section 

S2. Computational Model Details). Attractors that are not complementary do not interact. 

The arrangement of Attractors on subunit edges is shown in Fig. 1, with pairs of 

complementary Attractors indicated by cyan double-headed arrows. The subunit-subunit 

binding affinity is proportional to the well-depth of the Morse potential between 

complementary Attractors, given by εhh.

To control the shell spontaneous curvature and bending modulus, each subunit contains a 

‘Top’ (type ‘TH’) pseudoatom above the plane of Attractors, and a ‘Bottom’ pseudoatom 

(type ‘BH’) below the Attractor plane. There are repulsive interactions (WCA interactions, 

Eq. S27) between Top-Top, Bottom-Bottom, and Top-Bottom pairs of pseudoatoms on 

nearby subunits. The relative sizes of the Top and Bottom pseudoatoms set the preferred 

subunit-subunit binding angle (and thus the spontaneous curvature R0), while the interaction 

strength (controlled by the well-depth parameter εangle) controls the shell bending modulus 

κ. The Top-Bottom interaction ensures that subunits do not bind in inverted orientations.79 

Since the subunit-subunit interaction geometries are already controlled by the Attractor, Top, 

and Bottom pseudoatoms, we do not consider Excluder-Excluder interactions.

Effects of simplifying the shell stoichiometry.—To focus on the effects of scaffold 

properties on microcompartment assembly, we have employ a minimal shell protein model 

with only a single hexameric subunit species with spontaneous curvature, meant to represent 

both hexamers and pseudo-hexamers. We neglect pentamers based on our previous 

computational study47 and experiments on assembly of α–carboxysome systems in the 

absence of pentamer proteins.170,171 In previous simulations, we found that the 

stoichiometric ratio of pentamers to hexamers affects the size of assembled shells, and one 

can expect that the stoichiometric ratio of pseudo-hexamers plays a role as well. However, 

based on their mass percentage in purified BMCs, pentamers are likely present in cells at 

very low stoichiometric ratios compared to other subunit species. We found that a system of 

only hexamer subunits can assemble shells with morphologies similar to those obtained at 

low stoichiometric ratios of pentamers, except that the shells in the hexamer-only system 

each contain 12 vacancies. Despite these vacancies, the entire scaffold remains inside 

complete shells due to scaffold-cargo and scaffold-subunit interactions on the two end-

domains of the scaffold molecules. Moreover, if pentamers are introduced after assembly, 

they can fill in these vacancies leading to complete shells.47
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These computational results are consistent with experimental observations on assembly of 

α–carboxysomes in the absence of pentamer proteins. Cai et al.170 showed that deleting the 

pentamer proteins (CsoS4) in H. neapolitanus resulted in structures that were predominantly 

similar to those assembled with pentamers, although there were some elongated shells. 

Function was impaired, but could be restored by adding pentamers to the system after 

assembly. More recently, Long et al.171 performed recombinant experiments in tobacco 

plants, showing that expressing only the scaffold (CsoS2) and hexamer protein (CsoS1A) 

from Cyanobium marinum PCC7001 α–carboxysomes is sufficient to obtain shells with 

normal appearance and at least partial function. However, while these results suggest that 

eliminating pentamers has only a minor effect on α–carboxysome assembly, deleting 

pentamers (and in some cases pseudo-hexamers) in other types of microcompartments (β–

carboxysomes and Pdu) led to more significant structural aberrations, including elongated 

shells.124,133-140,171-176 Overexpressing hexamers also resulted in elongated structures,40 

although that may be caused by in part by the increased hexamer/pseudo-hexamer 

stoichiometry. Intriguingly, experiments suggest that α–carboxysomes assemble by one-step 

assembly pathways whereas β–carboxysomes and Pdu microcompartments follow two-step 

pathways, suggesting that pentamers may have different effects depending on the assembly 

pathway.

Note that curvature in our model arises only due to angles between the rigid body subunits, 

whereas the experimental structure of Tanaka et al.177 suggests the possibility of intra-

subunit bending for pseudo-hexamers. While we plan to explore this possibility in a future 

work, this additional degree of freedom should not qualitatively change the dependence of 

shell size on scaffold properties, which is the focus of this work.

Simulations

We simulated assembly dynamics using the Langevin dynamics algorithm in HOOMD 

(which uses GPUs to efficiently simulate dynamics178), and periodic boundary conditions to 

represent a bulk system. The subunits were modeled as rigid bodies.179 Each simulation was 

performed in the NVT ensemble, using a set of fundamental units180 with the unit length 

scale r* defined as the cargo particle diameter, and energies in units of the thermal energy, 

kBT. The simulation time step was 0.005 in dimensionless time units, and we performed 2 × 

108 timesteps in each simulation, except the maximum simulation time was increased to 4 × 

108 for Ls >= 40 and R0 = 22 (because longer timescales were required for the large shells 

that assemble at those parameters).

Systems.

Each system included 2300 shell subunits, 2000 cargo particles, and 213 scaffold molecules 

in a cubic box with side length 120r*. To avoid overlaps in the initial condition, simulations 

were initialized by placing subunits and cargo particles on a grid, with scaffolds in extended 

configurations in between. Initial subunit orientations were random. For systems near the 

threshold for cargo-scaffold phase separation (Lsc > 7), we eliminated correlations imposed 

by the grid by performing an initial dynamics with excluded volume interactions only (all 

attractive interactions turned off) for 5 × 106 timesteps. The attractive interactions were 
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turned on after completion of this initialization dynamics. For other parameter sets, this 

initial dynamics protocol was not needed since memory of the initial condition was lost 

before any assembly began.

Sample sizes.

We performed a minimum of 10 independent trials at each parameter set, and performed 

additional trials if needed so that at least 10 complete shells formed amongst all trials at a 

given parameter set. In particular, simulations with a large spontaneous curvature radius and 

long scaffolds, R0 = 22 and Ls > 40, result in large shells, and thus fewer shells per 

simulation in comparison to other parameter sets, even though the fraction of subunits in 

shells is similar.

Connecting simulation nondimensional units to physical values.

Although the model is designed to be generic, we are particularly motivated by α-

carboxysomes. We can approximately map our computational model to carboxysomes by 

setting the cargo diameter (the unit length scale in the model) to that of the rubisco 

holoenzyme, implying r* ≈ 13 nm. However, to enable tractable simulation of long assembly 

timescales, we have set the size ratios of subunit/cargo and scaffold bead/cargo to be larger 

than the ratios of these proteins relative to rubisco. In particular, our model subunits have a 

side length of r* and are thus about three times larger than carboxysome hexamers (side-

length ≈ 4 nm). To represent the carboxysome system as closely as possible despite this 

approximation, we have set the bending modulus of the computational model to obtain a 

characteristic elastic length scale RE = 2aκ ∕ kBT  similar to that of carboxysomes. 

Nanoindentation measurements on β-carboxysome shells obtained κ ≈ 25kBT181 (smaller 

than that for a typical viral capsid), resulting in an elastic length scale of RE ≈ 47 nm. 

Correspondingly, we set the computational bending modulus to about 5 – 10kBT (see SI 

section S2. Computational Model Details), and thus RE ≈ 38 – 54 nm (using a subunit area 

a ≈ 2.5r∗2).

We perform a similar approximate mapping for the model scaffold molecule, by attempting 

to match its end-to-end vector (when unconfined) to that of a CsoS2 molecule. The model 

scaffold behaves as a self-avoiding polymer with a statistical segment length of about one 

segment, or lk ≈ 0.5r*, and thus has a end-to-end vector Rscaf ≈ lkNs
0.58r∗, with Ns = Ls/lk 

(see SI Fig. S2), with a proportional radius of gyration. Since most of the CsoS2 sequence is 

thought to be intrinsically disordered, we assume that it also behaves as a self-avoiding 

polymer. The Halothiobacillus neapolitanus CsoS2 molecule studied in mutagenesis 

experiments has 869 amino acids. While its radius of gyration has not been reported, the 

Prochlorococcus CsoS2 with a similar sequence length (792 amino acids) has a radius of 

gyration of ~ 70 nm.43 To match this value, we assign the wild-type length of the model 

scaffold to be Ls = 24r* (48 beads).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Description of the computational model. (A) Bottom and (B) side views of shell subunits. 

Each subunit contains ‘Attractors’ (cyan spheres) on its perimeter, and a ‘Top’ (ochre sphere, 

‘TH’ ) and a ‘Bottom’ (white sphere, ‘BH’ ) in the center above and below the subunit plane. 

Interactions between Attractors drive subunit assembly, while Top-Top and Bottom-Bottom 

repulsions control the subunit-subunit angle and spontaneous curvature radius of the shell 

R0. (C) Scaffolds are bead-spring polymers with three domains: scaffold-cargo binding 

domain (yellow) beads have attractive interactions with cargo particles, middle domain 

(green) beads have no attractive interactions with cargo or shell subunits, and scaffold-

subunit binding domain (dark blue) beads have attractive interactions with subunit Bottom 

pseudoatoms ‘BH’. The contour length of the scaffold with Ns beads is denoted as Ls, while 

the lengths of the domains are Lsc, Lsm, and Lsh, respectively. Excluder atoms (orange 

pseudoatoms in the plane of the ‘Top’) experience excluded volume interactions with the 

cargo and scaffold beads. (D) Example of a complete shell with spontaneous curvature 

radius R0 = 22, with encapsulated cargo and scaffold molecules with Ls = 64 (Lsc = 7, Lsm = 

50, Lsh = 7). All lengths in this article are given in units of r*, the cargo diameter (the 

rubisco diameter in carboxysome is ≈13 nm), and energies are in units of the thermal energy 

kBT.
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Figure 2: 
Snapshots from simulation trajectories illustrating typical assembly pathways and products 

(Animations corresponding to these trajectories are provided in the SI, videos S8). (A) One-

step assembly pathway leading to full shells: Coalescence of the cargo and scaffold occurs 

concomitantly with shell assembly. The mean size of assembled shells (defined as the radius 

of gyration of shell subunits) is R = 6.3 ± 0.5. Parameter values are: shell spontaneous 

curvature radius R0 = 8.0, scaffold contour length Ls = 24 (Lsm = 10, Lsc = 7), and subunit-

subunit interaction strength εhh = 2.85 (all lengths and energies are given in units of r* and 

kBT respectively). (B) One-step assembly with sparse cargo loading, with mean shell size R 
= 18 ± 3.6, for R0 = 22, Ls = 64 (Lsm = 50, Lsc = 7 ), and εhh = 2.65. (C) Two-step assembly 

pathway: The scaffold and cargo phase separate prior to shell assembly, due to increased 

valence of the scaffold-cargo binding domain fsc = 0.42. The shell size is R = 10.66 ± 0.60. 

Parameter values are: R0 = 22, Ls = 64 (Lsm = 30, Lsc = 27), and εhh = 2.65. For (A)-(C), the 

scaffold-shell and scaffold-cargo interaction strengths are εsh = 2.5 and εsc = 1.0. Snapshots 

are shown at different scales for clarity.
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Figure 3: 
(A) The mean shell radius as a function of the scaffold length calculated from Brownian 

dynamics simulations (symbols) and the equilibrium theory (Eq. 1, lines). Results are shown 

for different shell spontaneous curvature radii: R0 = 4.5(●), 8.0(▲), 22.0(■). Example 

snapshots of assembled shells are shown to the left, taken from simulations with (I): R0 = 

22, Ls = 14, (II): R0 = 8, Ls = 24, (III): R0 = 22, Ls = 34, and (IV): R0 = 8, Ls = 74, (Va,b): 

R0 = 22, Ls = 64. (B) Dependence of scaffold packaging on scaffold length and shell 

spontaneous curvature. The scaffold surface density (or ratio of packaged scaffold molecules 

to shell subunits, σs ≡ nscaf/nshell) is shown for the same parameter values as in (A). In (A) 

and (B) the length of the middle domain of the scaffolds Lsm is varied, with fixed shell-

interacting and cargo-interacting domain lengths Lsh = 7 and Lsc = 7. The lines correspond 

to numerical minimization of Eq. 1, with respect to Ls ∼ Rscaf
2  and σ, with the scaffold 

chemical potential as an adjustable parameter set to Δμ = −2.5kBT. Other theory parameters 

are taken from the simulations: the scaffold bead excluded volume v = 0.065r∗3 and 

aκ = 12.5kBT r∗2 (with a the subunit area and κ the bending modulus, which was 

approximately determined in Ref. 47). (C) Dependence of the volume fraction of 

encapsulated particles (cargo and scaffolds) on the fractional length of cargo-binding domain 

of scaffolds fsc = Lsc/Ls, for R0 = 22, Ls = 64, and Lsh = 7. Snapshots of the interior of shells 

Mohajerani et al. Page 30

ACS Nano. Author manuscript; available in PMC 2022 March 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assembled at different parameter values are shown on the right: (Va): fsc = 0.11, (VI): fsc = 

0.27, (VII): fsc = 0.58. Other parameter values for (A), (B) and (C) are as follows. Shell 

subunit-subunit affinities: εhh = 3.15 at R0 = 4.5, εhh = 2.85 at R0 = 8.0 and εhh = 2.65 at R0 

= 22; scaffold-shell interaction εsh = 2.5, and scaffold-cargo interaction εsc = 1.0.
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Figure 4: 
(A) Shell radius as a function of the shell spontaneous curvature radius R0 and scaffold 

unperturbed size Rscaf (normalized by the shell elastic energy length scale RE), calculated by 

numerically minimizing Eq. 1, with scaffold chemical potential Δμ = −10kBT, RE = 30, 

subunit area a = 2.5r∗2, and excluded volume parameter ν = 0. The dashed line encompasses 

parameter values that lead to efficient scaffold packaging (see SI Fig. S1 for the amount of 

packaged scaffold as a function of these parameters). Outside of this region σs ≈ 0, leading 

to assembly of nearly empty shells (with a surface layer of scaffold and cargo) with sizes 

approximately equal to R0, incomplete shells, or no assembly. The heat map in this region 

corresponds to the size of the complete but nearly empty shells. (B) Examples of incomplete 

assemblies that form in the dynamics simulations with overly short (top) or long (bottom) 

scaffold molecules. Parameters are (top) R0 > 300 and Ls = 34, (bottom) R0 = 4.5 and Ls = 

84. Other parameters are as in Fig. 3. (C) The minimum and maximum shell radius 

(normalized by the shell elastic energy length scale RE) that lead to assembly and cargo 

packaging, predicted by the theory for varying the scaffold length as a function of the 

scaffold packaging driving force Δμ, for fixed shell spontaneous curvature R0 = 50. The left 

y-axis shows the shell size, while the right y-axis shows the corresponding scaffold length, 

showing that the shell size closely tracks the scaffold preferred size in this regime. The 

symbols correspond to maximum and minimum shell sizes obtained by numerically 

minimizing Eq. 1, and the lines show the asymptotic results (Eq. 7). For scaffold lengths 

above the maximum length, shells would be either incomplete or empty, whereas below the 

minimum length, shells will either be incomplete or have low packaging of scaffold and 

cargo. (D) The minimum and maximum shell radius (normalized by RE) in the high intrinsic 
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shell curvature regime (R0 < RE), calculated by numerically minimizing Eq. 1 (symbols) and 

from the asymptotic analysis Eq. (11) (lines) for R0 = 8, RE = 30, and ν = 0. Other 

parameters in (C) and (D) are the same as in (A).
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Figure 5: 
Dependence of shell size on the scaffold preferred size Rscaf calculated from the asymptotic 

analysis, (lines, Eqs. (7) and (11), compared against numerical minimization of Eq. 1 

(symbols). Results are shown in (A) and (B) respectively for shell spontaneous curvature 

radius values that are large or small compared to the shell elastic length scale: (A) R0 = 300 

and (B) and R0 = 1, with RE = 30. Other parameter values are a = 2.5r∗2, Δμ = −10kBT, and ν 
= 0.
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Table 1:

Computational model parameters and variables

parameter / variable symbol

shell radius R

surface density of encapsulated scaffolds σs

shell spontaneous curvature radius R0

total length of scaffold Ls

length of scaffold shell binding domain Lsc

length of scaffold cargo binding domain Lsh

length of scaffold middle domain Lsm

number of segments in scaffold Ns

scaffold statistical segment length lk

excluded volume of a scaffold segment ν

subunit area a

shell bending modulus κ

number of subunits in a shell nshell

number of encapsulated scaffolds in a shell nscaf

subunit-subunit interaction εhh

scaffold-subunit interaction εsh

scaffold-cargo interaction εsc
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