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Abstract

Background: An assumption in many analyses of longitudinal patient-reported outcome (PRO) data is that there is
a single population following a single health trajectory. One approach that may help researchers move beyond this
traditional assumption, with its inherent limitations, is growth mixture modelling (GMM), which can identify and
assess multiple unobserved trajectories of patients’ health outcomes. We describe the process that was undertaken
for a GMM analysis of longitudinal PRO data captured by a clinical registry for outpatients with atrial fibrillation (AF).

Methods: This expository paper describes the modelling approach and some methodological issues that require
particular attention, including (a) determining the metric of time, (b) specifying the GMMs, and (c) including
predictors of membership in the identified latent classes (groups or subtypes of patients with distinct trajectories).
An example is provided of a longitudinal analysis of PRO data (patients’ responses to the Atrial Fibrillation Effect on
QualiTy-of-Life (AFEQT) Questionnaire) collected between 2008 and 2016 for a population-based cardiac registry
and deterministically linked with administrative health data.

Results: In determining the metric of time, multiple processes were required to ensure that “time” accounted for
both the frequency and timing of the measurement occurrences in light of the variability in both the number of
measures taken and the intervals between those measures. In specifying the GMM, convergence issues, a common
problem that results in unreliable model estimates, required constrained parameter exploration techniques. For the
identification of predictors of the latent classes, the 3-step (stepwise) approach was selected such that the addition
of predictor variables did not change class membership itself.

Conclusions: GMM can be a valuable tool for classifying multiple unique PRO trajectories that have previously
been unobserved in real-world applications; however, their use requires substantial transparency regarding the
processes underlying model building as they can directly affect the results and therefore their interpretation.

Keywords: Growth mixture modelling, Patient-reported outcomes, Clinical registry

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: jae-yung.kwon@twu.ca
1School of Nursing, University of British Columbia, Vancouver, Canada
2School of Nursing, Trinity Western University, 22500 University Drive, V2Y
1Y1 Langley, BC, Canada
Full list of author information is available at the end of the article

Kwon et al. BMC Medical Research Methodology           (2021) 21:79 
https://doi.org/10.1186/s12874-021-01276-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-021-01276-z&domain=pdf
http://orcid.org/0000-0002-0336-7348
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jae-yung.kwon@twu.ca


Background
A common challenge facing health researchers is how to
examine and respond to the variability in patient-
reported outcome (PRO) responses to treatment over
time, particularly in heterogeneous clinical populations
with complex real-world data. For example, unobserved
subgroups of patients may exist within the clinical popu-
lation, which may exhibit variability in their treatment
responses and have different health trajectories. This
heterogeneity is typically masked when group means are
considered. Identification of multiple PRO trajectories
and their risk factors could have significant clinical im-
plications, which (if better understood) could inform tai-
lored interventions and patient education strategies (i.e.,
based on the characteristics of, and appropriate for, the
subgroups). One promising approach that can be used
to identify multiple unique PRO trajectories in heteroge-
neous clinical populations is Growth mixture modelling
(GMM; a.k.a. latent variable mixture models), which is
suitable when subgroups of patients with different trajec-
tories are expected and grouping variables are not
known a priori. This is an expository paper that demon-
strates the use of GMM and the steps that were taken in
an analysis of longitudinal PRO data captured by a clin-
ical registry for outpatients with atrial fibrillation (AF).
There are many approaches available for the modelling

of patients’ trajectories of change in their PRO or health
status (e.g., multilevel modelling (MLM) and latent
growth modelling (LGM)). However, an important limi-
tation of these techniques is that relevant group differ-
ences in the clinical population must be specified, a
priori (e.g., demographic or clinical differences). Yet,
there may be unobserved subgroups of trajectories asso-
ciated with differences that are not known and thus not
possible to specify a priori (e.g., as defined by various
demographic and clinical differences, and interactions
among them). More important, these models take a
variable-centred approach, which presumes that people
are a medium through which predictor variables affect
outcomes and assume that trajectories are similarly ex-
perienced by all individuals (an assumption that under-
lies most clinical research) [1]. While these types of
analyses provide a single set of parameters that may re-
veal general health improvements over time (e.g.,
whether a treatment, on average, works for most
people), they can mask subgroups of trajectories within
a clinical population, and therefore may not be represen-
tative of all patients [2]. Since clinical populations typic-
ally include diverse people with different demographic
and clinical factors affecting their health trajectories, it is
unlikely that all patients would be adequately repre-
sented by a single health trajectory. Accordingly, import-
ant subgroups of patients may emerge with distinct
patterns of change not known a priori if an appropriate

analytical approach is applied. Thus, flexible modelling
approaches are needed that could provide more nuanced
pictures of subgroups of patients within heterogeneous
clinical populations.
GMM is considered to be a person-centred method

because it is predicated on the assumption that people
are the agents that affect the outcomes of interest with
predictor variables deemed to be properties of those
people, and also on the assumption that trajectories are
different across individuals or subsets of individuals [1].
GMM works by assigning individuals who share similar
patterns of scores into unobserved subgroups called la-
tent classes. These latent classes are based on probabil-
ities in which each individual receives fractional
membership in all classes to reflect varying degrees of
precision in their classification [3]. GMM extends the
LGM approach because it incorporates a categorical la-
tent variable, which represents mixtures of subgroups
where membership is not known a priori but is inferred
from the data. In this way, latent classes represent sub-
groups of individuals who follow approximately the same
trajectory. For example, patients can be classified into
different latent subgroups with different trajectories of
change with their own initial status (intercept) and rate
of change (slope). GMM also extends the MLM ap-
proach because the slope loadings are constrained to
allow for nesting of time observations within individuals,
which allows each individual’s slope to represent the
unique times at which their assessments were completed
(see Fig. 1).
The Yi0 – Yi2 represents the outcomes at the varying

time points for individual i. These variables are used as
indicators of latent variables that represent different as-
pects of individuals’ change known as latent growth fac-
tors. There are two latent variables (sometimes called
random coefficients). The first is the latent intercept,
which represents the level of the outcome when time is
zero (baseline), and thus the intercept factor loadings
are all fixed to one as a constant. The second is the la-
tent slope, which represents the change in the outcome
over time. The slope loadings are fixed to reflect the
time since initial baseline status. The slope loadings are
labelled as ti0 – ti2 to reflect the individually varying
times. In a basic GMM, each individual has an estimated
intercept and slope, which are allowed to vary across in-
dividuals. This variability across individuals is estimated
as the variance of the latent intercept and slope and is
depicted as a double-headed arrow that points to the
same variable. The intercept and slope are shown to co-
vary and modelled in the figure to show how individuals’
start or baseline values relate to their rate of change.
The latent variables also have means to reflect the aver-
age of all individuals’ intercepts and slopes. In addition,
individuals have their own deviations from those means
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at each time point known as residual/error variances,
which are depicted as εi0-εi2.
While GMM is a good modelling choice when sub-

groups of patients with different trajectories are ex-
pected and grouping variables are not known a priori, its
flexibility comes at a price because all relations between
observed and latent variables have to be specified [4].
We offer guidelines and recommendations for (a) deter-
mining the metric of time, (b) specifying the GMM, and
(c) including predictors of the latent classes.

Methods
We present lessons learned from our experience in analys-
ing repeated PROs collected for a population-based clin-
ical registry of outpatients with AF. More detail of the
methods employed is provided elsewhere [5]. In brief, the
study relied upon data derived from a retrospective cohort
of outpatients who had been referred, between 2008 and
2016, to five AF clinics (for new-onset and persistent AF
in need of complex anticoagulation/ablation therapy) in a
province in western Canada and who provided data for
the clinical registry. The AF clinics’ registry database [6]
was deterministically linked to administrative health data,
including Consolidation files (a central demographics file)
[7], Discharge Abstracts Database (Hospital Separations)
(data on discharges, transfers and deaths of in-patients
and day surgery patients from acute care hospitals in the
province) [8], the Medical Services Plan (public insurer)
payment files (data on medically necessary services pro-
vided by fee-for-service practitioners to individuals

covered by the provincial universal insurance program)
[9], PharmaNet files (data on all prescriptions for drugs
and medical supplies dispensed from community pharma-
cies and prescriptions dispensed from hospital outpatient
pharmacies for patient use at home) [10], and Vital Statis-
tics – Deaths (includes all deaths registered in the prov-
ince) [11].
The primary PRO measure was the Atrial Fibrillation

Effect on QualiTy-of-Life (AFEQT) questionnaire [12],
which is composed of 20 items that assess four domains:
symptoms (4 items), daily activities (8 items), treatment
concerns (6 items), and treatment satisfaction (2 items).
The analyses were conducted on the patients’ summary
score that incorporates the responses of the first three
domains. The collection of the AFEQT questionnaire
varied throughout the follow-up period (the enrolled pa-
tients had up to 10 visits to the clinics over a maximum
5-year period) depending on the complexity of the pa-
tients’ management, clinic wait times, and individual pa-
tients’ decisions about whether to complete the
questionnaire at each visit. This paper focuses on some
of the challenges encountered while using GMM with
longitudinal PRO data stored in a clinical registry.

Results
Determining the metric of time
The first step in preparing for the longitudinal analysis
was to use various graphical techniques including flow-
charts, time series and smooth curve plots to get an
overview of the PRO data collection. Because the

Fig. 1 Growth mixture model with three continuous outcomes
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patients could have more than one completed question-
naire in the registry, each Study ID could have more
than one entry. Thus, the flowchart describes the inclu-
sion of unique questionnaires, not unique individuals
(see Fig. 2).
While GMM is a good modelling choice when sub-

groups of patients with different trajectories are ex-
pected and grouping variables are not known a priori, its
flexibility comes at a price because all relations between
observed and latent variables have to be specified [4].
We offer guidelines and recommendations for (a) deter-
mining the metric of time, (b) specifying the GMM, and
(c) including predictors of the latent classes.

The AFEQT questionnaire dataset (n = 16,005 com-
pleted questionnaires) was linked to the eligible cohort
of patients based on their unique identification number
(StudyID), resulting in 14,408 questionnaires (some
questionnaires could not be linked to a patient (n = 1,
597)). After excluding questionnaires based on the inclu-
sion criteria (must not have been completed before the
initial consultation (n = 2,121) or after 2017 (n = 1,803)),
and removing any duplicates (n = 31) or questionnaires
with data entry errors (n = 27), 10,426 PRO question-
naires were available for analysis.
To determine the time metric to be used to fit the

model, we plotted the individual time intervals of the

Fig. 2 Flowchart of the eligible clinical registry cohort’s completed AFEQT questionnaires available for analysis. Note. “n” refers to number of AFEQ
T questionnaires completed (not Study IDs or individuals)
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repeated PRO measures for 40 randomly selected pa-
tients (see Fig. 3).
The uppermost lines in Fig. 3 show 13 of the 40 pa-

tients who had two or more questionnaires completed;
the figure reveals that the remaining patients completed
only one questionnaire at varying times, including from
the time of their initial consultation to more than 3
years after the initial consultation. These graphs repre-
sent an informative picture of the timing of the repeated
measures and provide a view that is not readily apparent
from conventional descriptive statistics of study data.
The traditional approach to modelling time is either to
use the number of follow-up visits (tied to the frequency
of PRO measures completed) or as the time intervals be-
tween the initial measurement and subsequent assess-
ments (tied to the dates when the PRO measures were
completed). However, Fig. 3 shows that the first PRO
measure completed was not directly tied to the initial
consultation and the intervals between the PRO measure
completions were not of equal duration (e.g., every 6
months).

To further examine each of the time metrics, we plot-
ted the trend of the AFEQT summary scores by the
number of follow-up visits and by time in years (see
Figs. 4 and 5, respectively).
There was a general upward trend in the PRO scores

(blue line) over the number of follow-up visits with the
95 % confidence intervals (shaded area) widening as the
data points became increasingly sparse.
However, when the PRO scores were plotted against

continuous time in years, the opposite trend was ob-
served: there was a rapid improvement in scores until an
inflection point at about one-year of follow-up with a
gradual decrease over time from then on. There are sev-
eral possible explanations for these marked differences,
including the individual variation in length of time be-
tween each visit and the variation in the number of visits
for each person. In longitudinal analyses of PROs cap-
tured in clinical registries, it may be difficult to com-
pletely separate the number of follow-up visits from the
time elapsed. For example, changes in the PRO ques-
tionnaire scores may have been influenced by both

Fig. 3 Number of PRO questionnaires completed by 40 randomly selected patients by time (in years)
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clinic-related processes, when the patients followed a
certain treatment protocol, and time-related processes,
when the sicker patients may have been followed by the
clinic for a longer period of time. Thus, the metric of
time had to account for the individually varying times of
observation, which refers to the situation in which the
patients were followed at different intervals (e.g., 3
weeks→10 weeks→4 months), rather than evenly spaced
intervals (e.g., every 6 months). To align what we were
observing in practice to the method of analysis, the
model had to represent both the variability in the fre-
quency and the timing of the measurement occurrences.

Specifying growth mixture models
To begin an initial examination of a GMM, a series of
models are specified and subsequently estimated. Ac-
cording to Gilthorpe et al. [13], the selection of a suit-
able GMM with the “correct” number of latent classes is
heavily influenced by the method used to parameterise
the random effects within the model. For example, one
approach is to freely estimate the growth factor vari-
ances and covariances for each latent class (referred to
as unrestricted GMM). In contrast, an extreme form of
model parsimony is to constrain all the growth factor
variances to be equal, referred to as latent class growth
analysis (LCGA) [49]. To identify the best baseline
model prior to GMM specification, we conducted

several single-group LCGAs using four time points.
These included intercept-only, linear, and quadratic
models (see Table 1). The intercept-only model repre-
sented the initial (baseline) levels of the AFEQT ques-
tionnaire scores, whereas the linear model included the
linear change in the AFEQT questionnaire scores (i.e., a
slope). For the quadratic model, an additional latent
variable was added to the linear model to estimate a
nonlinear pattern.
Because the slope loadings varied across individuals,

traditional SEM goodness-of-fit statistics or the mixture
model statistical comparison tests such as the Lo-
Mendell-Rubin Test (LMRT) [14] and the Bootstrap
Likelihood Ratio Test (BLRT) [15] were not available.
Instead, the comparative fit of the models was primarily
assessed using the Akaike’s information criterion (AIC),
the Bayesian information criterion (BIC), and the sample
size adjusted BIC (SABIC). Among the fit indices, the
general principle of selecting the preferable GMM is to
choose the lowest BIC and SABIC values (lower values
indicate better model-data fit) because the associated
model provides greater accuracy in identifying the latent
classes compared with the model represented by the best
AIC [16]. In Table 1, the BIC and SABIC for the LCGA
models suggested that the quadratic model better fit the
data than the intercept-only or linear model. This base-
line quadratic model was used to estimate the GMM by

Fig. 4 Smooth curve of AFEQT questionnaire scores by number of follow-up visits
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freely estimating all the parameters (i.e., the latent
means, variances/covariances, and residuals). However,
the 2-class quadratic GMM resulted in a poorer model
fit than the baseline 1-class model, which indicated that
the model was not appropriate for the given data. Part of
the issue in fitting the 2-class quadratic GMM may have
been insufficient sample size, especially in the amount of
data available for the last of the four time points because
studies have shown that small samples can lead to con-
vergence issues, improper solutions, and the inability to
identify meaningful subgroups [3, 17]
What constitutes an “adequate” sample size is difficult

to determine because it depends on the specification of
the model, the distribution of the variables, the amount
of missing data, and the strength of the relationships
among the variables [18]; in general, large sample sizes
(≥ 500) are often deemed most appropriate for complex
mixture models [19]. In our dataset, the second follow-

Fig. 5 Smooth curve of AFEQT questionnaire scores with the number of questionnaires administered, over time in years

Table 1 Likelihood statistics for GMM models of change with
four time points

-2LL df AIC BIC SABIC

LCGA

Intercept-only -46,156.95 6 92,325.90 92,367.36 92,348.32

Linear -46,065.15 9 92,148.29 92,210.52 92,181.92

Quadratic -45,910.73 13 91,847.46 91,937.35 91,896.04

GMM – quadratic

1-class -45,910.73 13 91,846.46 91,937.35 91,896.04

2-class -45,910.73 27 91,875.47 92,062.16 91,976.36

Note. LCGA Latent class growth analysis, GMM Growth mixture model, LL Log-
likelihood, df degrees of freedom, AIC Akaike’s information criterion,
BIC Bayesian information criterion, SABIC Sample size adjusted BIC
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up visit (T2) met this criterion with a sample size of 1,
285; there was a large reduction for the third visit (T3)
with a sample size of 401. Although it is not unusual to
have declining samples in longitudinal studies [20], due
in part to early discharge from a clinic or through attri-
tion, we narrowed our analysis to three time points (T0-
T2) to ensure better identification of the trajectories and
meaningful subgroups of patients.
Although we were limited to the linear GMM (due to

having only three time points), many combinations of
constraints were still possible (e.g., fixing the intercepts,
slopes, residual variances or a combination of all three),
which could have affected the selection and interpret-
ation of the GMMs. A recent study has shown that pla-
cing certain constraints on variance parameters across
classes or over time can strongly influence model per-
formance [21]. To address the issue of model specifica-
tion, we applied the three recommended GMM
parameterisations of Gilthorpe et al. [13]: (a) unre-
stricted random effects, (b) restricted random effects
(random intercepts only and no covariances), and (c) re-
stricted random effects plus AR1 (an autoregressive
structure). The unrestricted random effects model is
specified to freely estimate all parameters, including the
latent means of the intercept and the slope, variances,
and covariances. However, such free estimation can lead
to convergence issues and thus some constraints are typ-
ically applied. The restricted random effects model may
aid convergence by constraining the slope variance to
zero. In contrast, the restricted random effects plus AR1
is modelled because specifying constraints can lead to
autocorrelation issues; this is a more parsimonious
model. In other words, rather than assuming that each
observation of the PRO scores was independent of the
others, the autoregressive structure recognises that
closely timed repeated measures are more strongly cor-
related than measures that are timed further apart. The
final GMM (3-class restricted standard model) was se-
lected based on the smallest information criteria (i.e.,
BIC and SABIC).

Including predictors of latent classes
Once the final GMM was determined, we examined the
predictors that explained the variability in the subgroups’
identified trajectories (the latent classes). There are two
general approaches regarding how to include predictors
or covariates and the outcomes of the latent classes in
GMM: a one-step (joint model estimation) approach and
a three-step (stepwise estimation) approach. The one-
step approach uses a joint model that combines the la-
tent class model with a latent class regression model
such that the latent classes are conditioned on the covar-
iates [22]. While the one-step approach may result in
improved accuracy if the correct covariates are included

(e.g., smaller standard errors), the most obvious disad-
vantage is that the inclusion of covariates may affect the
type of classes found as well as class membership [23].
For example, both the latent class model and the latent
class regression model need to be re-estimated each time
a covariate is added. This may not only be impractical in
most exploratory studies with many covariates but may
cause the latent class variable to lose its meaning be-
cause it is no longer based on the original indicator vari-
ables [23].
To address this issue, the three-step approach was de-

veloped to independently evaluate the relationships be-
tween the latent classes and the predictor variables, such
that the addition of predictor variables into the model
does not change class membership itself [22, 23]. This
approach involves first estimating the GMM using only
latent class indicator variables (e.g., the AFEQT ques-
tionnaire scores) without covariates. In the second step,
the most likely latent classes are created based on the
posterior probabilities obtained in the prior step. In the
third step, the latent classes are regressed on the pre-
dictor variables with multinomial logistic regression
while adjusting for classification uncertainty in the sec-
ond step [22]. To apply the three-step approach, we used
the R3STEP method in Mplus version 8.3 [24] to con-
duct both bivariable and multivariable logistic regression
analyses. The advantage of using the R3STEP is that the
three-step procedure is implemented automatically ra-
ther than having to perform each step manually. The
limitation of this approach is that the R3STEP does not
allow for hierarchical (i.e., stepwise) regression models
because model fit occurs only at the level of the GMM,
which means that the fit indices will be the same regard-
less of the predictor variables entered. This is necessary
to hold the class proportions fixed at the values identi-
fied when each predictor is entered into the model. In
the case with GMM, the predictor variables explain
complex relationships between both within-class vari-
ation as well as the probability of class membership. We
then followed the variable selection approach recom-
mended by Hosmer and Lemeshow [25] with modifica-
tions based on the identified health trajectories. For
example, the univariate analysis for each of the variables
compared one group, serving as a referent, to each of
the other groups to identify predictors of latent class or
subgroup membership.

Discussion
One of the major issues in identifying and estimating
our model was selecting an appropriate time metric be-
cause the interpretation of the parameters (i.e., the inter-
cepts and slopes) and subsequently how the trajectories
actually looked depended on this very choice. In longitu-
dinal studies, and in registries that routinely collect PRO
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data in particular, individuals are often assessed at differ-
ent time points and the number of assessments for each
individual may vary, resulting in an unbalanced design
[26]. Simulation studies have shown that ignoring indi-
vidual differences in time points can lead to biased esti-
mates in the baselines (intercepts) and rates of change
(slopes) in the trajectories [27, 28]. In our study, we
found that how we coded time could affect the results.
For example, had we coded the time metric as the num-
ber of follow-up visits, the health trajectories would have
shown subgroups of patients with rapid improvements
over time. In contrast, if we had coded the time metric
as a continuous variable in years elapsed to the last
measurement, the health trajectories would have shown
a subgroup of patients whose health status was appar-
ently decreasing over time. However, it was obvious that
ignoring the spacing of the observations would not have
accurately represented the underlying processes of the
clinical practice whereby the patients had different num-
bers of follow-up visits at varying time intervals. Studies
have shown that the length of the follow-up period and
the spacing in between time points affect the number of
trajectories that can be found [29, 30]. Therefore, the
usefulness of the model depends not only on transpar-
ently reporting the underlying time-related processes
but also on how the time metric in the model is
specified.
The next step was to include the covariates/predictors

to predict class membership. While there is general
agreement that incorporating covariates is beneficial in
providing more accurate parameter estimates and recov-
ering the correct number of classes [31, 32], there has
been little consensus about when these covariates should
be included. Some researchers argue that covariates of
latent group membership should be included when de-
ciding on the number of latent classes [33, 34], while
others advocate that they be included only after the
number of classes has been identified [35, 36]. This de-
bate has played an important role in the development of
many new analytic techniques in handling covariates, in-
cluding variations of the 1-step (joint model estimation)
approach that supports the former argument and the 3-
step (stepwise estimation) approach that supports the
latter. Although the 1-step approach provides more ac-
curate parameter estimates when appropriate covariates
are included, most researchers prefer using the 3-step
approach for several reasons. The first is that the con-
struction of a growth trajectory and examining how co-
variates affect these trajectories are often seen as two
different steps in the analysis [37]. For example, the la-
tent classes that we identified were based on the differ-
ent trajectories (outcomes), and the covariates were
based on individual characteristics. It would be difficult
to argue that these covariates should be included at the

same time as the data used to identify the patient sub-
groups as a means of examining the predictive validity of
the latent class classification. Another problem with the
1-step approach is that simultaneously including a large
number of covariates in a single step may be too cum-
bersome due to the sparseness of the frequencies and
the increased computation time [38]. However, the 3-
step approach is not without its own challenges because
it does not account for the classification errors that may
systematically underestimate the association between po-
tential predictors and class membership [23, 37, 39]. In
our study, we used a modified 3-step BCH method that
uses a weighting procedure to account for this possible
classification error, which has been shown to provide
less biased estimates [22].
While acknowledging many possible methods and

modelling specifications that would be difficult to verify
outside of the artificial context of simulation studies, ar-
ticulating the methods and the rationale underlying each
modelling decision should be given more standing when
using GMM because such decisions could potentially
change the results (and therefore their interpretation).
From this perspective, our contribution to the field is in
illustrating how researchers could bring more transpar-
ency to the method of analysis and in highlighting issues
related to model building with regards to using GMM.

Conclusions
The use of GMM has the potential to provide valuable
information to identify and assess differences in health
trajectories, which could lead to tailored subgroup-
specific clinical interventions. We found that meaningful
longitudinal analyses of PRO data stored in clinical
registries need to align closely with patient-centred ap-
proaches by accounting for unobserved subgroups of pa-
tients and the variability in the frequency and timing of
relevant measurement occurrences. However, in analys-
ing these PRO data using GMM, further modelling is-
sues need to be considered (e.g., the selection of
appropriate time metrics, specifying growth parameters,
and when to include covariates to predict class member-
ship) that could potentially lead to different conclusions.
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