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Comprehensive analyses of competing
endogenous RNA networks reveal potential
biomarkers for predicting hepatocellular
carcinoma recurrence
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Abstract

Background: Hepatocellular carcinoma (HCC) is one of the most common and deadly malignant tumors, with a
high rate of recurrence worldwide. This study aimed to investigate the mechanism underlying the progression of
HCC and to identify recurrence-related biomarkers.

Methods: We first analyzed 132 HCC patients with paired tumor and adjacent normal tissue samples from the
Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). The expression profiles
and clinical information of 372 HCC patients from The Cancer Genome Atlas (TCGA) database were next analyzed
to further validate the DEGs, construct competing endogenous RNA (ceRNA) networks and discover the prognostic
genes associated with recurrence. Finally, several recurrence-related genes were evaluated in two external cohorts,
consisting of fifty-two and forty-nine HCC patients, respectively.

Results: With the comprehensive strategies of data mining, two potential interactive ceRNA networks were
constructed based on the competitive relationships of the ceRNA hypothesis. The ‘upregulated’ ceRNA network
consists of 6 upregulated lncRNAs, 3 downregulated miRNAs and 5 upregulated mRNAs, and the ‘downregulated’
network includes 4 downregulated lncRNAs, 12 upregulated miRNAs and 67 downregulated mRNAs. Survival
analysis of the genes in the ceRNA networks demonstrated that 20 mRNAs were significantly associated with
recurrence-free survival (RFS). Based on the prognostic mRNAs, a four-gene signature (ADH4, DNASE1L3, HGFAC
and MELK) was established with the least absolute shrinkage and selection operator (LASSO) algorithm to predict
the RFS of HCC patients, the performance of which was evaluated by receiver operating characteristic curves. The
signature was also validated in two external cohort and displayed effective discrimination and prediction for the
RFS of HCC patients.

Conclusions: In conclusion, the present study elucidated the underlying mechanisms of tumorigenesis and
progression, provided two visualized ceRNA networks and successfully identified several potential biomarkers for
HCC recurrence prediction and targeted therapies.
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Background
Liver cancer was reported to be the sixth most common
cancer and the fourth leading cause of cancer-related death
in the world according to global cancer statistics in 2018
[1]. In the United States, approximately 42,030 people are
diagnosed with liver cancer, and 31,780 die annually ac-
cording to the latest cancer statistics in 2019 [2]. Hepatocel-
lular carcinoma (HCC) is the main type of primary liver
cancer, comprising 75–85% of cases [3]. Despite the fact
that the diagnostic approaches and therapeutic efficacy of
HCC have gradually improved, the majority of patients with
HCC are still diagnosed at an advanced stage with severe
hepatic dysfunction due to the asymptomatic nature of the
disease. Accordingly, the 5-year overall survival (OS) and
recurrence-free survival (RFS) rates of advanced-stage HCC
patients remain extremely low, and approximately 70% of
HCC patients experience recurrence or extrahepatic metas-
tasis within 5 years [4, 5]. Considering the poor outcomes,
many researchers have sought to identify prognostic factors
based on clinicopathological and molecular features to help
increase life expectancy and improve quality of life. How-
ever, more reliable biomarkers associated with the molecu-
lar mechanisms that mediate prognosis remain to be deeply
explored for early diagnosis and optimized therapy.
It has been reported that less than 2% of the total gen-

ome encodes protein-coding genes, so research on non-
coding RNA transcripts, including long noncoding
RNAs (lncRNAs), microRNAs (miRNAs) and circular
RNAs (circRNAs), has become increasingly popular [6].
In recent years, emerging evidence has indicated that
lncRNAs, which consist of more than 200 nucleotides,
play a vital role in a large variety of biological processes,
including genetic transcription, chromosome modifica-
tion, cell cycle, cell differentiation and migration [7–9].
Numerous studies have shown that miRNAs, which con-
sist of approximately 22 nucleotides, may participate in
tumor initiation, progression, and invasion by post-
transcriptionally downregulating target gene expression
by complementation to miRNA response elements
(MREs) on messenger RNA (mRNA) [10–12]. Moreover,
the competing endogenous RNA (ceRNA) hypothesis
proposed by Salmena et al. [13] depicted a molecular
biological regulatory mechanism for posttranscriptional
regulation in which ceRNAs can act as miRNA sponges
and inhibit miRNA function by competitively binding to
MREs on a target mRNA. Thereafter, numerous experi-
ments have validated the hypothesis that this type of in-
direct regulatory mechanism is involved in
tumorigenesis and progression [14–16]. Several studies
on ceRNAs have reported valuable factors for predicting
the OS of HCC patients [17–19]; however, the molecular
biological mechanisms underlying the occurrence, pro-
gression, recurrence and metastasis of HCC have not yet
been fully illuminated, especially the molecular

mechanisms that mediate recurrence, which remain un-
clear and require further investigation.
In this study, microarray and sequencing data were

collected from a large sample size of patients with HCC
in the Gene Expression Omnibus (GEO) and The Can-
cer Genome Atlas (TCGA) databases and applied to
identify differentially expressed genes (DEGs) in HCC.
Two predictable ceRNA networks, including the ‘upreg-
ulated’ network and the ‘downregulated’ network, were
then constructed based on the ceRNA hypothesis.
Twenty mRNAs involved in the ceRNA networks were
identified as recurrence-related genes. Furthermore,
LASSO-penalized regressions were utilized to screen the
recurrence-related genes and successfully establish a
prognostic signature consisting of ADH4, DNASE1L3,
HGFAC and MELK. More importantly, a quantitative
real-time PCR method was adopted to verify this signa-
ture in an external cohort, which showed good predict-
ive performance. These comprehensive analyses aimed
to reveal the underlying molecular regulatory mecha-
nisms of HCC tumorigenesis and progression and de-
velop a prognostic signature that can be used to predict
the RFS of HCC patients.

Materials and methods
Data retrieval and mining
Three microarray datasets, GSE64041 [20], GSE76427
[21] and GSE77509 [22], were obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/). Consider-
ing that small sample sizes are one of the most challen-
ging factors in microarray analysis, datasets consisting of
at least 20 samples were chosen for download. To pro-
vide more reliable results, only HCC patients with paired
tumor and adjacent normal tissue samples in the dataset
were employed to screen the DEGs. Finally, a total of
132 HCC patients, including 60, 52, and 20 pairs of sam-
ples from GSE64041, GSE76427, and GSE7509, respect-
ively, were selected. We also downloaded the RNA
sequencing (RNA-seq) and microRNA sequencing
(miRNA-seq) data of 372 HCC patients, containing 371
RNA-seq and 372 miRNA-seq data points of tumor
samples and 50 RNA-seq and 50 miRNA-seq data points
of adjacent normal samples, from the TCGA database
(https://portal.gdc.cancer.gov/). All datasets in the
current study were obtained from public databases, in-
cluding the GEO and TCGA databases, which allowed
researchers to download data for scientific purposes;
thus, ethics approval was not required. A flowchart of
the data collection process and method implementation
is presented in Fig. 1.
Forty-nine paired HCC tumor tissues and adjacent

normal tissues were obtained between January 2015 and
April 2016 from the First Affiliated Hospital of Chong-
qing Medical University (the TFAHCQMU cohort). All
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of the diagnoses were confirmed by two experienced pa-
thologists. This research was approved by the Ethics
Committee of the First Affiliated Hospital of Chongqing
Medical University. All the clinicopathological features
of the HCC patients with complete recurrence survival
time from the TCGA cohort and the TFAHCQMU co-
hort are presented in Supplementary Table S1.

Analysis of DEGs
The Limma package for R software (version 4.0.2) [23]
was adopted for the normalization and log base 2

transformation of microarray data from the GEO data-
base and the identification of preliminary differentially
expressed mRNAs (DEmRNAs) based on the following
significance cutoff levels: adjusted P-value< 0.01 and
|log2 fold change (FC)| > 1. Similarly, in the TCGA data-
base, the DESeq2 package (version 1.26.0) for R software
was used to analyze the DEmRNAs, differentially
expressed lncRNAs (DElncRNAs) and differentially
expressed miRNAs (DEmiRNAs) with adjusted P-value<
0.01 and |log2FC| > 1 set as the cutoff criteria. Intersec-
tions of uniformly upregulated and downregulated

Fig. 1 Flowchart of data collection and method implementation in this study
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mRNAs in the two databases were used for further func-
tional analyses.

Functional enrichment analysis
The Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID; version 6.8; http://david.
ncifcrf.gov/) [24] was applied to perform the Gene
Ontology (GO) functional annotations, including mo-
lecular function (MF), biological process (BP) and cellu-
lar component (CC) terms, of the intersecting
DEmRNAs. The KEGG Orthology Based Annotation
System (KOBAS; version 3.0; http://kobas.cbi.pku.edu.
cn/) was used to evaluate the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment of
the DEmRNAs. The Search Tool for the Retrieval of
Interacting Genes (STRING; version 11.0; https://string-
db.org/) [25] database was adopted to construct the
protein-protein interaction (PPI) network, which was
then visualized by Cytoscape (version 3.7.1) [26] soft-
ware. GO functional annotations, KEGG pathways and
PPI network, the analyses of which were based on the
DEmRNAs, were considered significantly enriched when
P-value< 0.01, false discovery rate (FDR) < 0.01and the
combined score of ≥0.4, respectively.

Construction of the ceRNA network
The intersections of uniformly upregulated and down-
regulated DEmRNAs were taken as described previously.
DElncRNAs and DEmiRNAs were selected to construct
the ceRNA networks. The lncRNA-miRNA interactions
were predicted using miRcode (version 11.0; http://www.
mircode.org/). The miRNA-mRNA interactions were
predicted by the cooperative utilization of TargetScan
(version 7.2; http://www.targetscan.org) and miRanda
(version 6.0; http://www.miranda.org/). Cytoscape soft-
ware was finally applied to establish and visualize the
interactive ceRNA networks based on the predicted
lncRNA-miRNA and miRNA-mRNA interactions. To
better understand the potential functions and values of
the DEmRNAs in the regulatory ceRNA networks, GO
functional annotation, KEGG pathway enrichment and
PPI network analyses were performed.

Survival analysis
Kaplan-Meier survival analysis was utilized to assess the
RFS related to the genes in the ceRNA networks with
the gene expression profiles of tumor tissues and clinical
information of HCC patients from the TCGA database.
A log-rank test, dividing all samples into high and low
expression groups based on the median expression level
of each gene, was performed using R software (version
4.0.2) to evaluate the differences in RFS. According to
the log-rank test results, P-value< 0.05 was considered to
indicate a statistically significant difference. Genes were

then regarded as recurrence-related. To better under-
stand the relationship between the recurrence-related
genes, “ggExtra” R softwre package was applied to
analyze the expression correlation. Pearson correlation
analysis was performed with P-value< 0.05 being set as
significant difference.

Generation of a prognostic signature
Based on the identified recurrence-related genes,
LASSO-penalized Cox regression were performed using
R software (version 4.0.2) to screen the candidate
mRNAs to establish a multigene prognostic signature
with TCGA clinical information. The risk score (RS) was
calculated using the sum of the identified recurrence-
related gene expression values weighted by the coeffi-
cients derived from the LASSO-penalized Cox regression
model. The prognostic RS for each patient could be cal-
culated by the following formula: RS = (β1 × expression
of gene1) + (β2 × expression of gene2) + ... + (βn × ex-
pression of genen). All the samples were categorized into
a high-risk group and a low-risk group according to the
median value of the RS.

Performance of the prognostic signature
To evaluate the discrimination and prediction abilities of
the RS system, the Kaplan-Meier survival analysis results
were assessed in R software, time-dependent receiver op-
erating characteristic (ROC) curve analysis was con-
ducted, and the area under the ROC curve (AUC) was
calculated. Moreover, a nomogram was build to investi-
gate the probability of 1-, 2-, 3-, and 5-RFS of HCC. The
potential relationships between the prognostic four-gene
signature and other clinicopathological features were
further investigated. P-value< 0.05 was considered to in-
dicate statistical significance.

External validation of the prognostic signature
Expression at the level of mRNA between paired HCC
tumor tissues and adjacent normal tissues of the four
genes in the signature was validated in two external co-
horts, one consisting of 49 HCC patients from TFAH
CQMU and the other 52 HCC patients from GSE76427
dataset in the GEO database [21]. Expression at the level
of protein between HCC tumor tissues and normal tis-
sues of the four genes in the signature was validated in
the Human Protein Atlas (http://www.proteinatlas.org)
online database. The risk score for each included patient
was calculated with the same prognostic gene-signature
based model. Likewise, the Kaplan-Meier curve and the
ROC curve were used to evaluate the predictive per-
formance of the prognostic gene signature. The potential
relationships between the prognostic four-gene signature
and other clinicopathological features were also
analyzed.
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Independence assessment
Univariate and multivariate Cox regression analyses were
successively performed with forwarding stepwise proced-
ure to investigate whether the prognostic gene signature
or other clinicopathological features, including age, gen-
der, tumor grade, vascular invasion, cirrhosis, and AJCC
stage, could be independent factor. P-value< 0.05 were
considered as statistically significant.

Establishment of a predictive nomogram
The widely-used nomogram, including all independent
factors identified by aforementioned multivariate Cox re-
gression analysis, was constructed and used to predict
1-, 2-, 3-, and 5-year RFS of HCC patients. Performance
of the nomogram was assessed by discrimination and
calibration. The concordance index was calculated to as-
sess the discrimination of the nomogram and the cali-
bration curve of the nomogram was plotted to observe
the nomogram prediction probabilities.

Real-time PCR
Forty-nine pairs of resected HCC tumor tissues and ad-
jacent normal tissues were preserved at − 80 °C until
mRNA extraction by TRIzol (Invitrogen, Carlsbad, CA).
Then, GoScript (Promega, Madison, WI) was utilized to
perform reverse transcription. Finally, quantitative real-
time polymerase chain reaction (qRT-PCR) with TB
Green Premix Ex Taq II (Takara, Tokyo, Japan) was ap-
plied to analyze the gene expression level, which was
normalized to the GAPDH expression level and quanti-
fied using the 2-ΔΔCT method. The primers are listed in
Supplementary Table S2.

Statistical analysis
The gene expression differences between the tumor tis-
sues and adjacent normal tissues of patients in the
TFAHCQMU cohort were compared using paired Stu-
dent’s t-tests. Differences in categorical variables, such
as the relationships between the prognostic signature
and other clinicopathological features, were assessed
using the Chi square test. Statistical analysis was con-
ducted using IBM SPSS Statistics (version 25.0) and R
software (version 4.0.2).

Results
Identification of DEGs
After integrative analysis of three GEO datasets, a total
of 120 DEmRNAs were obtained, including 14 upregu-
lated and 106 downregulated mRNAs. The number of
DEmRNAs identified from each dataset is shown in vol-
cano plots (Fig. 2a-c). In the TCGA database, we ob-
tained 1984 DEmRNAs (1166 upregulated and 818
downregulated), 233 DElncRNAs (169 upregulated and
64 downregulated) and 186 DEmiRNAs (163

upregulated and 23 downregulated) (Fig. 2d-f). Heat-
maps of the top 200 DEmRNAs based on adjusted P-
values were created. Overall, 233 DElncRNAs and 186
DEmiRNAs are shown in Figs. S1, S2 and S3. After the
convergence of uniformly upregulated and downregu-
lated mRNAs in both the GEO and TCGA databases,
116 DEmRNAs (14 upregulated and 102 downregulated)
were identified and used for further study (Fig. 2g and
Fig. 2h).

Functional enrichment analysis
We performed GO functional annotations, KEGG path-
way enrichment and PPI network analyses for 116
DEmRNAs using the DAVID, KOBAS and STRING da-
tabases, respectively. As a result of GO functional ana-
lysis, DEmRNAs were significantly enriched in 18 terms
(P-value< 0.01), such as ‘extracellular exosome’, ‘extracel-
lular region’, ‘extracellular space’ and ‘oxidation-reduc-
tion process’ (Fig. 3a). In terms of KEGG pathway
analysis, the DEmRNAs were markedly enriched in
‘metabolic pathways’, ‘retinol metabolism’ and ‘chemical
carcinogenesis’ terms (FDR < 0.01) (Fig. 3b). After the re-
moval of the isolated and partially connected nodes, the
PPI network containing a total of 101 nodes and 654 in-
teractions was formulated according to a combined
score > 0.4 (Fig. 3c).

Construction of the ceRNA network
To obtain the target miRNAs of lncRNAs, the miRcode
database was searched according to the 233 DElncRNAs,
including 169 upregulated and 64 downregulated
lncRNAs. To obtain the target mRNAs of miRNAs, mi-
Randa and TargetScan were searched according to the
186 DEmiRNAs, including 163 upregulated and 23
downregulated miRNAs. First, downregulated DElncR-
NAs interacting with upregulated DEmiRNAs were re-
trieved from the miRcode database on the basis of their
competitive relationship. Subsequently, downregulated
DEmRNAs were searched in the miRanda and TargetS-
can databases according to upregulated DEmiRNAs be-
cause the mRNAs were negatively regulated by the
miRNAs. As a result, 4 downregulated DElncRNAs cap-
able of interacting with 12 upregulated DEmiRNAs and
the corresponding 67 downregulated DEmRNAs were
chosen to establish a visualized ceRNA network, named
the ‘downregulated’ ceRNA network (Fig. 4a). Similarly,
6 upregulated DElncRNAs, 3 downregulated DEmiRNAs
and 5 upregulated DEmRNAs were selected to construct
another visualized ceRNA network, called the ‘upregu-
lated’ ceRNA network (Fig. 4b). More details about
lncRNA-miRNA and miRNA-mRNA interactions in-
volved in the ceRNA networks are shown in the Table 1
and Table 2, respectively. To better understand the po-
tential functions of the DEmRNAs in the regulatory
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ceRNA networks, we conducted GO functional annota-
tion, KEGG pathway enrichment and PPI network ana-
lyses. The results are displayed in Fig. S4a, Fig. S4b and
Fig. S4c.

Screening of prognostic genes
According to the Kaplan-Meier analysis and log-rank test,
a total of 20 DEmRNAs (ADH4, APOA5, CAP2, C7,
CDKN3, CLEC1B, CRHBP, DNASE1L3, FCN3, HGFAC,
INMT, LCAT, MELK, PLAC8, SLC10A1, SLE38A4, SERP
INA4, STAB2, TAT, and UBE2T) involved in the ceRNA
networks were identified as recurrence-related genes (P-

value< 0.05, Fig. 5, See more details in Table S3). Based on
the gene expression data retrieved from the TCGA data-
base, 4 of the 20 DEmRNAs (CAP2, CDKN3, MELK and
UBE2T) were upregulated in tumor tissues, and the
remaining DEmRNAs were upregulated in adjacent nor-
mal tissues (Fig. S5). Interestingly, all four upregulated
DEmRNAs were positively associated with recurrence,
and all sixteen downregulated DEmRNAs were negatively
associated with recurrence. In summary, the four upregu-
lated DEmRNAs were found to be risk factors, and the
sixteen downregulated DEmRNAs were protective factors.
Combining the expression levels with survival analysis,
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Fig. 2 Volcano plots of DEGs in both databases. Volcano plots of DEGs in the GEO database: a GSE64041; b GSE76427; c GSE77509; Volcano plots
of DEGs in the TCGA database: d DEmRNAs; e DElncRNAs; f DEmiRNAs; g The intersection of upregulated DEmRNAs between the TCGA and GEO
databases; h The intersection of downregulated DEmRNAs between the TCGA and GEO databases
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however, they may all play harmful roles in tumorigenesis
and progression. The expression correlation between
genes identified as recurrence-related was shown in Fig. 6.

Establishment of the prognostic signature
Lasso-penalized Cox regression analysis using the
“glmnet” R software package was conducted to select
prognostic genes for formulate a multigene signature to
predict RFS in patients with HCC. As a result, the best
prognostic signature consisting of 4 DEmRNAs (ADH4,
DNASE1L3, HGFAC and MELK) was established based
on the minimum value of cross-validation error (Fig. 7a
and Fig. 7b). The final RS formula was as follows: RS =
(− 0.0037 × expression of ADH4) + (− 0.3131 × expression
of DNASE1L3) + (− 0.0519 × expression of HGFAC) +
(0.4626 × expression of MELK). The HCC patients were
divided into the high-risk group and the low-risk group
based on the median RS of the prognostic signature. The
distributions of the RS, recurrence status and gene

expression levels based on the prognostic signature be-
tween the low-risk and high-risk groups are shown in
Fig. 7c. Patients with high RSs had shorter RFS times
and were more likely to experience relapse. Note that
the coefficients of three genes (ADH4, DNASE1L3 and
HGFAC) were negative in this formula and one (MELK)
positive, indicating that ADH4, DNASE1L3 and HGFAC
might be protective factors and MELK risk factors,
which is in accordance with previous survival analysis.

Predictive performance in the TCGA cohort
There were 322 HCC patients with complete recurrence
information, and 136 patients (42.24%) relapsed during
the follow-up period. The basic clinical features of the
HCC patients in the TCGA cohort are shown in Table S1.
Kaplan-Meier analysis indicated that patients in the high-
risk group had shorter RFS times than those in the low-
risk group (P-value< 0.0001) and were more likely to ex-
perience relapse (Fig. 8a). The time-dependent AUCs of
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Fig. 3 Functional annotation, pathway enrichment and PPI network analyses of the DEGs identified from the GEO and TCGA databases. a GO
functional annotation; b KEGG pathway enrichment analysis; c PPI network, pink nodes represent upregulated genes, and green nodes represent
downregulated genes; the node size is positively associated with the number of genes the node/gene can interact with
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the prognostic signature for HCC in the TCGA cohort
were 0.812, 0.751, 0.751 and 0.779 for 1-year, 2-year, 3-
year, and 5-year RFS, respectively (Fig. 8d). The nomo-
gram of the signature showed valuable and reliable prob-
ability for predict the RFS of HCC (Fig. 9). The potential
relationships between the prognostic four-gene signature
and other clinicopathological features was explored. The

results indicated that the prognostic signature was signifi-
cantly correlated with American Joint Committee on Can-
cer (AJCC) stage and vascular invasion (Table 3).

External validation of the signature
In the GSE76427 dataset, 20 HCC patients (38.46%) re-
curred during the follow-up period. In the TFAHCQMU

Fig. 4 The lncRNA-miRNA-mRNA competing endogenous RNA networks for hepatocellular carcinoma. a The downregulated competing
endogenous RNA network, including 4 downregulated lncRNAs, 12 upregulated miRNAs and 67 downregulated mRNAs; b The upregulated
competing endogenous RNA network, including 6 upregulated lncRNAs, 3 downregulated miRNAs and 5 upregulated mRNAs. Diamonds
represent lncRNAs; rectangles represent miRNAs; ellipses represent mRNAs; red indicates upregulated genes, and green represents
downregulated genes
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cohort, 19 HCC patients (38.77%) experienced relapsed.
The basic clinical features of the HCC patients in the
TFAHCQMU cohort are shown in Table S1. Kaplan-Meier
analysis indicated that patients in the low-risk group had
longer RFS times and were less likely to relapse in both the
GSE76427 dataset and the TFAHCQMU cohort (Fig. 8b
and Fig. 8c). The time-dependent AUCs of the prog-
nostic signature for HCC in the GSE76427 dataset
and the TFAHCQMU cohort were 0.710, 0.700, 0.700
and 0.677 for 1-year, 2-year, 3-year, and 5-year RFS
(Fig. 8e), 0.887, 0.854, 0.854 and 0.936 for 1-year, 2-
year, 3-year, and 5-year RFS (Fig. 8f), respectively.
The potential relationships between the prognostic
four-gene signature and other clinicopathological fea-
tures in the TFAHCQMU cohort indicated that the
prognostic signature was significantly correlated with
American Joint Committee on Cancer (AJCC) stage
and vascular invasion (Table 3). The diagram of gene
expression at mRNA level showed that there was a
significant difference between HCC tumor tissues and
paired adjacent normal tissues (Fig. 10a and Fig. 10b).
Gene expression at protein level between HCC tumor
tissues and normal tissues was representatively dem-
onstrated in Fig. 10c.

Table 1 DEmiRNAs that is targeted by specific DElncRNAs in
the ceRNA network

DElncRNA DEmiRNA

up-regulated down-regulated

LINC00482 miR-214

MEG3 miR-195,miR-214,miR-424

SNHG1 miR-195,miR-424

SNHG3 miR-214

SNHG7 miR-214

SNHG12 miR-195,miR-424

down-
regulated

up-regulated

FAM99A miR-205

FAM99B miR-205

LINC00261 miR-182,miR-204,miR-216b,miR-301b,miR-338,miR-454

MAGI2-AS3 miR-93,miR-204,miR-216a,miR-216b,miR-372,miR-373,
miR-425

Abbreviation: DElncRNAs, differentially expressed lncRNAs; DEmiRNAs,
differentially expressed miRNAs

Table 2 DEmRNAs that is targeted by specific DEmiRNAs in the ceRNA network

DEmiRNA DEmRNA

down-
regulated

up-regulated

miR-195 CAP2,UBE2T,GPC3,MELK,CDKN3

miR-214 MELK

miR-424 CAP2,UBE2T,GPC3,MELK,CDKN3

up-regulated down-regulated

miR-93 GHR,PDGFRA,LCAT,ALDH8A1,CYP39A1,GPD1,PCK1,COLEC10,MT1F,CXCL14, GLYAT,CYP3A4,TAT,C8A,KMO,SLC22A1,HGFAC,AKR1D1,
NNMT,MT1G,CNDP1

miR-182 SLC10A1,F9,GHR,LYVE1,PDGFRA,SLCO1B3,FCN3,CYP8B1,CLEC4G,COLEC10, IGF1,CYP1A2,GLYAT,TAT,MBL2,SLC38A4,DCN,NNMT

miR-204 AFM,GHR,LYVE1,PDGFRA,UGT2B10,CRHBP,C7,PCK1,COLEC10,MT1F,CXCL14,GLYAT,FCN2,TAT,KMO,SLC22A1,CYP2C8,ALPL,DBH,DNAS
E1L3,MFAP4,EPHX2, NNMT,CNDP1

miR-205 LECT2,GLYATL1,C7,COLEC10,MT1F,GLYAT,FCN2,C8A,KMO,CYP2C8,DBH, SLC38A4,DCN,DNASE1L3,FETUB,SERPINA4,CNDP1

miR-216a F9,GHR,AGXT2,LYVE1,PDGFRA,CYP2C9,LCAT,CYP39A1,GLYATL1,GPD1, PLAC8,C7,CYP8B1,COLEC10,OIT3,MT1F,IGF1,CYP1A2,GLYAT,FCN2,
CYP3A4, KMO,MBL2,PROZ,HGFAC,STAB2,DBH,APOF,CLEC1B,SLC38A4,MFAP4,EPHX2,NNMT,SERPINA4,INMT,UGT2B10,ALDH8A1,TAT,C8A,
DPT

miR-216b F9,AGXT2,LYVE1,SLCO1B3,UGT2B10,ALDH8A1,BHMT,C7,CYP8B1,COLEC10, IGF1,GLYAT,FCN2,TAT,C8A,KMO,DPT,CYP2C8,MBL2,IGFBP3,
EPHX2,NNMT, CNDP1

miR-301b PDGFRA,GYS2,SLCO1B3,LCAT,UGT2B10,GLYATL1,PLAC8,C7,COLEC10,IGF1, CXCL12,GLYAT,FCN2,MBL2,SRPX

miR-338 APOA5,LYVE1,SLCO1B3,GPD1,PLAC8,COLEC10,IGF1,TAT,C8A,KMO,MBL2, OGDHL,HGFAC,DBH,ADH4,NNMT

miR-372 F9,APOA5,UGT2B10,ALDH8A1,BHMT,CRHBP,THRSP,GLYATL1,GPD1,PLAC8, COLEC10,CXCL14,GLYAT,C8A,SLC22A1,CYP2C8,MBL2,HGFAC,
AKR1D1,SRPX,CNDP1

miR-373 F9,APOA5,UGT2B10,ALDH8A1,BHMT,CRHBP,THRSP,GLYATL1,GPD1,PLAC8, COLEC10,CXCL14,GLYAT,C8A,SLC22A1,CYP2C8,MBL2,HGFAC,
AKR1D1,SRPX,CNDP1

miR-425 BHMT,CYP8B1,COLEC10,IGF1,GLYAT,C8A,KMO,MBL2,OGDHL,IGFBP3, AKR1D1,SLC38A4,DNASE1L3,NNMT

miR-454 PDGFRA,GYS2,SLCO1B3,LCAT,UGT2B10,GLYATL1,PLAC8,C7,COLEC10,IGF1, CXCL12,GLYAT,FCN2,MBL2,SRPX

Abbreviation: DEmiRNAs, differentially expressed miRNAs; DEmRNAs, differentially expressed mRNAs
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Independence assessment
Univariate and multivariate Cox regression analyses were
successively carried out to assess the independence of prog-
nostic factors for RFS in HCC patients. The results indi-
cated that the prognostic signature and AJCC stage
were independent risk factors for RFS in both the
TCGA dataset and the TFAHCQMU cohort by multi-
variate Cox regression analysis (P-value< 0.05). Table 4
shows the results of univariate and multivariate Cox

regression analyses of the four-gene signature and
other prognostic factors for RFS in the TCGA cohort
and TFAHCQMU cohort.

Establishment of a predictive nomogram
The nomogram, which included all independent factors
identified by multivariate Cox regression analysis, was
established. The results indicated that 1-, 2-, 3-, and 5-year

Fig. 5 Kaplan-Meier curves of twenty genes associated with recurrence-free survival. The order of Kaplan-Meier curves of prognostic genes is as
follows: ADH4, APOA5, CAP2, C7, CDKN3, CLEC1B, CRHBP, DNASE1L3, FCN3, HGFAC, INMT, LCAT, MELK, PLAC8, SLC10A1, SLE38A4, SERPINA4,
STAB2, TAT, and UBE2T
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RFS increased when risk scores declined, which is consist-
ent with our previous findings, confirming the prognostic
value of this risk nomogram. Combining the four-gene

signature and clinicopathological feature (AJCC stage), the
nomogram showed valuable and reliable predictive per-
formance (Fig. 11).

Fig. 6 Co-expression of the 20 recurrence-related genes in HCC patients from the TCGA database. Pearson correlation analysis was performed
with p < 0.05 being set as significant difference. a Total co-expression pattern between the 20 genes; b Representative co-expression genes with
good correlation
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Discussion
HCC, which has high morbidity and mortality world-
wide, is the main pathological type of liver cancer. Surgi-
cal treatments, the major interventional measures, can
effectively improve the prognosis of early HCC patients;
however, a large number of HCC patients are diagnosed
at an advanced stage and are thus unsuitable for such
treatments and eventually experience recurrence and
metastasis. It remains a clinical challenge to identify pa-
tients who are at an early stage and predict patients who
are at risk for recurrence after undergoing resection for
HCC. Therefore, studies on the underlying molecular
mechanisms of the tumorigenesis and progression of
HCC are needed to identify reliable markers that can be
used to assess the risk of recurrence and guide the devel-
opment of personalized therapeutic strategies. As a re-
sult, HCC could be diagnosed at earlier stages, and such
at-risk patients could receive close surveillance and
novel interventional treatments. Moreover, for patients
who are not at-risk but exceed the Milan criteria, liver
transplantation may become the alternative choice of
treatment.

Nevertheless, neither the widely accepted Barcelona
Clinic Liver Cancer (BCLC) staging system nor the
AJCC staging system for HCC includes molecular infor-
mation, which can act as a complement to optimize
therapeutic strategies and improve the clinical prognosis
of HCC. Emerging evidence demonstrates that ceRNAs
involved in signaling pathways are of significance in the
tumorigenesis and progression of HCC, indicating that
molecular markers based on the ceRNA network are
equally important in the prediction of HCC recurrence.
Comprehensive analyses of large-scale microarray data

and high-throughput sequencing data from public data-
bases are often used to explore molecular biological
mechanisms and identify potential molecular markers to
help diagnose and predict prognosis. Gene signatures
have allowed the accurate prediction of prognosis, and
many studies have addressed prognostic prediction in
HCC using array-based gene expression profiling. For
example, Hoshida et al. [27] studied tissues from 307
HCC patients and discovered and validated a gene ex-
pression signature associated with OS with the use of a
Cox regression model. As a result, they found that the

R
is

k 
sc

or
e 

S
ur

vi
va

l t
i m

e 
(y

ea
rs

)

low-risk group high-risk group

   Non-recurrence

   Recurrence

c

C
oe

ffi
ci

en
ts

P
ar

tia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

Log(Lambda)

Log(Lambda)

a

b

Fig. 7 Construction of the prognostic signature for HCC based on the TCGA database. a LASSO regression coefficient profile of the 20
recurrence-related genes; b LASSO deviance profile of the 20 recurrence-related genes; c From top to bottom are the risk score distribution,
recurrence status distribution, and heat map of genes in the prognostic signature between the low-risk and high-risk groups

Yan et al. BMC Cancer          (2021) 21:436 Page 12 of 21



gene expression profiles of the surrounding nontumor
liver tissues were highly correlated with OS not only in a
training set of 82 Japanese patients but also in an inde-
pendent group of 225 patients from the United States
and Europe. Villanueva et al. [28] assessed 287 HCC pa-
tients undergoing resection and tested genome-wide ex-
pression platforms using tumor (n = 287) and adjacent
nontumor tissues to identify independent predictors of
tumor recurrence based on Cox modeling. Finally, they
developed a composite prognostic model for HCC recur-
rence that can predict early and overall recurrence in pa-
tients with HCC and complement findings from clinical
and pathological analyses.
Certainly, many studies have explored some possible mo-

lecular regulatory pathways and feasible prognostic signa-
tures of HCC to predict RFS, but few of them have
constructed corresponding prognostic signatures based on
ceRNA regulatory networks or validated the signature with
other independent cohorts. Lv et al. [29], for instance, con-
structed a lncRNA-based classifier based on the expression
profiles of seven lncRNAs (AL035661.1, PART1,
AC011632.1, AC109588.1, AL365361.1, LINC00861, and
LINC02084) to predict early recurrence in HCC after cura-
tive resection but did not establish a ceRNA network for
HCC. Ye et al. [30] utilized Cox-penalized regression to de-
velop a novel four-lncRNA (WARS2-IT1, AL359878.1,

AL357060.1, and PART1) expression-based RS system for
predicting the RFS of patients with HCC. Unfortunately,
the RS systems were not further verified experimentally. Li
et al. [31] partially compared the 1-year recurrence group
(n = 56) with the nonrecurrence group (n = 60) of HCC pa-
tients from the TCGA database and constructed a hsa-mir-
150-5p-centric ceRNA network and two effective prognos-
tic nomogram models for predicting recurrence. Similarly,
they failed to validate the results in an external cohort.
In the present study, three datasets with paired samples

from studies on HCC were downloaded from the publicly
available GEO database. The published original studies,
from which the data were obtained, are as follows.
Makowska et al. [20] found that gene expression profiling
of HCC biopsies has limited potential to direct therapies
that target specific driver pathways but can identify sub-
groups of patients with different prognoses. Grinchuk et al.
[21] developed a prognostic stratification approach to iden-
tify common oncogenic pathways and significant prognos-
tic variables in HCC patients with resectable primary
tumors. Yang et al. [22] discovered and characterized an ex-
panded landscape of lncRNAs based on high-throughput
sequencing technology and bioinformatics analysis of
matched samples from HCC patients.
To fully investigate the information of these datasets,

multistep processing and integrated analyses were

GSE76427 cohort TFAHCQMU cohort

TCGA cohort GSE76427 cohort TFAHCQMU cohort

TCGA cohorta b c

d e f

Fig. 8 Performance and validation of the prognostic signature for HCC in different cohorts. Kaplan-Meier curves for the low-risk and high-risk
groups: a The TCGA database; b The GSE76427 dataset; c The TFAHCQMU cohort; Time-dependent ROC curves for predicting HCC recurrence by
the risk score: d The TCGA database; e The GSE76427 dataset; f The TFAHCQMU cohort
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applied to reveal prognostic genes. Combined with the
results of the TCGA database, a total of 116 dysregu-
lated mRNAs (14 upregulated and 102 downregulated)

were identified as DEGs and used for subsequent ana-
lyses (Fig. 3). In the GO functional analysis, the DEGs
were predominantly enriched in extracellular areas and

Fig. 9 Nomogram of the prognostic signature for predicting HCC RFS at 1-, 2-, 3-, and 5-year in the TCGA database (n = 322)

Yan et al. BMC Cancer          (2021) 21:436 Page 14 of 21



oxidation-reduction processes. With respect to KEGG
pathway enrichment analysis, the DEGs were mainly
enriched in metabolic-related pathways, which is in ac-
cordance with the findings of a previous study [32]. The
visualized PPI network showed that the interactions be-
tween the DEGs were almost separately enriched in up-
regulated and downregulated genes. Subsequently, two
biologically predicted ceRNA networks were constructed
by comparing three RNA levels (lncRNAs, miRNAs and
mRNAs) based on the competitive relationships of the
ceRNA hypothesis to elucidate the interactions and
regulatory mechanisms of the DEGs. The upregulated
ceRNA network consisted of 6 upregulated DElncRNAs,
3 downregulated DEmiRNAs and 5 upregulated DEmR-
NAs, and the downregulated network included 4 down-
regulated DElncRNAs, 12 upregulated DEmiRNAs and
67 downregulated DEmRNAs. A total of 20 DEmRNAs
involved in the ceRNA networks were found to be
closely associated with recurrence by the Kaplan-Meier
analysis and log-rank test using the gene expression pro-
files and survival information from the TCGA database,
among which four upregulated DEmRNAs were risk fac-
tors and sixteen downregulated DEmRNAs were pro-
tective factors. Combining the expression levels with
survival analysis, however, they all may play harmful

roles in tumorigenesis and progression. Based on the 20
recurrence-related DEmRNAs, we adopted the LASSO-
penalized regression method to successfully establish a
four-gene signature (ADH4, DNASE1L3, HGFAC and
MELK), which was assessed by time-dependent ROC
curve analysis and presented a clear relationship with
RFS. The AUCs of the prognostic signature for HCC in
the TCGA cohort were 0.812, 0.751, 0.751 and 0.779 for
1-year, 2-year, 3-year, and 5-year RFS, respectively. The
AUCs in the GSE76427 validation cohort were 0.710,
0.700, 0.700 and 0.677 for 1-year, 2-year, 3-year, and 5-
year RFS, respectively. The AUCs in the TFAHCQMU
validation cohort were 0.887, 0.854, 0.854 and 0.936 for
1-year, 2-year, 3-year, and 5-year RFS, respectively. Uni-
variate and multivariate Cox analyses also proved that
the RS system was a significant independent predictor
for the RFS of patients with HCC. Therefore, the present
study screened several recurrence-related mRNAs and
developed a prognostic signature with datasets from the
TCGA database that was further verified by using two
independent external validation cohorts from GSE76427
and TFAHCQMU.
Certain recurrence-related genes identified in the

present study have been reported to be cancer-related
genes. More importantly, all the four genes included in

Table 3 Relationship between the prognostic four-gene signature and other clinicopathlogical features in the TCGA cohort and the
TFAHCQMU cohort

Clinicopathological variables TCGA cohort TFAHCQMU cohort

Low risk High risk P-value Low risk High risk P-value

Age 0.655 0.108

< 60 72 76 19 13

≥60 89 85 6 11

Gender 0.012* 0.675

Male 121 100 20 18

Female 40 61 5 6

Cirrhosis 0.862 0.308

Negative 64 51 13 9

Positive 41 31 12 15

AJCC stage 0.016* 0.049*

I-II 124 106 24 18

III-IV 28 46 1 6

Tumor grade 0.758 0.928

I-II 103 101 18 17

III-IV 56 59 7 7

Vascular invasion 0.028* 0.004**

Negative 105 81 22 12

Positive 40 54 3 12

TCGA, The Cancer Genome Atlas; TFAHCQMU, the First Affiliated Hospital of Chongqing medical university;
The median of the four-gene signature score was used as the cut-off values to divide HCC patients into the high-risk group and the low-risk group
Chi square test was used for comparison between two groups
*P-value< 0.05, **P-value< 0.01,***P-value< 0.001
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the prognostic signature were also reported to be associ-
ated with the prognosis of HCC. Alcohol dehydrogenase
4 (ADH4) is an important member of the ADH family
that metabolizes a wide variety of substrates, including
ethanol and retinol. Wei RR et al. [33] found that the ex-
pression of ADH4 at both the mRNA and protein levels
was markedly reduced in HCC tumor tissues. Similar to
that in our study, HCC patients with lower ADH4 ex-
pression had shorter survival time, and multivariate Cox

analysis showed that ADH4 expression was an inde-
pendent predictor of prognosis. Liu XY et al. [34] com-
prehensively analyzed the prognostic implications
related to ADH family genes in HCC using bioinfor-
matic methods. As a result, they found that the expres-
sion of ADH4 was significantly downregulated in HCC
tissues compared to normal tissues. Moreover, they
identified ADH4 as an independent factor for the sur-
vival of HCC patients. In addition, high expression of
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Fig. 10 Gene expression of ADH4, DNASE1L3, HGFAC, and MELK. Expression at mRNA level between paired HCC tumor tissues and adjacent
normal tissues: a In the GSE76427 dataset; b In the TFAHCQMU cohort; c Expression at protein level between HCC tumor tissues and normal
tissues from the Human Protein Atlas (http://www.proteinatlas.org) online database
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ADH4, along with several other ADHs, was found to be
significantly associated with an improved prognosis in
HCC patients, and negatively regulates oncogenic signal-
ing pathways. Luo J et al. [35] recently reported that the
expressions of key alcohol-metabolizing enzymes are re-
pressed in alcoholic hepatitis patients and revealed a
new regulationary mechanism for ADH genes that the
non-canonical positive regulation of miR-148a on
ADH4. In short, miR-148a promotes ADH4 expression
by directly binding to the coding sequence of ADH4 and
increasing the mRNA stability via an AGO1-dependent
manner proved by in vitro experiments using HepG2
cells, in turn, the secondary structure of ADH4 tran-
script affected the target accessibility and binding of
miR-148a-3p, which provides new idea for the miRNA-
mediated mechanisms underlying the expressions of
alcohol-metabolizing enzymes. Deoxyribonuclease 1 like
3 (DNASE1L3) expression levels were significantly
downregulated in numerous types of gastrointestinal
cancer, and especially in HCC. Chen QY et al. [36] dem-
onstrated that DNASE1L3 expression levels were fre-
quently downregulated in tumor tissues compared with
normal tissues, and were identified to be significantly as-
sociated with tumor size, thrombus formation, overall
survival and disease-free survival of HCC patients. In
addition, the ectopic expression of DNASE1L3 sup-
pressed cell growth and inhibited the PI3K/AKT signal-
ing pathway activation following C3a receptor agonist

treatment. Zhang JJ et al. [37] established a comprehen-
sive mRNA-miRNA-lncRNA triple ceRNA network, in
which all RNAs, including DNASE1L3, were significantly
linked to prognosis of patients with hepatocellular car-
cinoma. Wang S et al. [38] proved that DNASE1L3 is
downregulated in both mRNA and protein levels in
HCC tissues, compared with adjacent normal tissues. Pa-
tients with positive DNASE1L3 expression had signifi-
cantly longer overall survival, compared with patients
with negative expression. Moreover, Multivariate COX
analysis revealed that positive DNASE1L3 expression,
along with higher differentiation, is an independent
prognostic factor. Hepatocyte growth factor activator
(HGFAC), an activator of hepatocyte growth factor
(HGF), has been previously reported to be involved in
liver regeneration in response to injury and several types
of cancers. Yin et al. [39] reported that HGFAC expres-
sion at the transcriptional and translational levels was
decreased in liver cancer compared with normal tissues
and patients with lower HGFAC expression level suf-
fered shorter OS time. Fukushima T et al. [40] reviewed
current knowledge regarding HGFAC-mediated proHGF
activation and its roles in tissue regeneration and repair.
Hepatocyte growth factor (HGF) is secreted as an in-
active precursor (proHGF) and requires proteolytic acti-
vation to initiate HGF-induced signaling, while HGF
activator (HGFAC) is a serum activator of proHGF and
produces robust HGF activities in injured tissues. Xia

Table 4 Univariate and multivariate Cox regression analyses of the four-gene signature and other prognostic factors for recurrence-
free survival in TCGA cohort and TFAHCQMU cohort

Univariate analysis Multivariate analysis

Recurrence-free survival HR 95%CI P-value HR 95%CI P-value

TCGA cohort

Age (≥60 vs < 60) 1.080 0.770–1.514 0.656 – – –

vGender (male vs female) 1.062 0.734–1.536 0.750 – – –

Cirrhosis (positive vs negative) 1.422 0.930–2.176 0.104 – – –

AJCC stage (III-IV vs I-II) 2.493 1.718–3.616 < 0.001*** 2.776 1.736–4.440 < 0.001***

Tumor grade (III-IV vs I-II) 0.981 0.685–1.405 0.917 – – –

Vascular invasion (positive vs negative) 1.730 1.177–2.541 0.005** 1.113 0.741–1.672 0.606

Signature (high-risk vs low-risk) 3.107 1.783–5.951 < 0.001*** 2.553 1.154–5.782 < 0.001***

TFAHCQMU cohort

Age (≥60 vs < 60) 1.213 0.469–3.134 0.995 – – –

Gender (male vs female) 1.012 0.381–1.821 0.316 – – –

Cirrhosis (positive vs negative) 1.478 0.571–3.826 0.311 – – –

AJCC stage (III-IV vs I-II) 3.954 1.186–9.415 0.016* 2.598 1.546–7.109 0.042*

Tumor grade (III-IV vs I-II) 1.592 0.615–4.11 0.129 – – –

Vascular invasion (positive vs negative) 2.012 0.785–5.162 0.064 – – –

Signature (high-risk vs low-risk) 5.023 3.422–9.836 < 0.001*** 3.289 2.821–8.481 0.002**

RFS,recurrence-free survival; TCGA, The Cancer Genome Atlas; TFAHCQMU, the First Affiliated Hospital of Chongqing medical university; CI,confidence interval;
HR,hazard ratio
*P-value< 0.05, **P-value< 0.01, ***P-value< 0.001

Yan et al. BMC Cancer          (2021) 21:436 Page 17 of 21



a

b

I+II

III+IV

Fig. 11 The integrated Nomogram consists of the four-gene signature and AJCC stage for predicting HCC RFS at 1-, 2-, 3-, and 5-year in the
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et al. [41] previously performed gene expression profile
analysis on HCC samples and identified maternal embry-
onic leucine zipper kinase (MELK) highly overexpressed,
which was correlated with early recurrence and poor
overall survival. They therefore further explored the
functional roles of MELK and demonstrated that silen-
cing MELK inhibited the cell growth, invasion, stemness
and tumorigenicity of HCC cells by inducing apoptosis
and mitosis, suggesting that MELK is a promising mo-
lecular target for therapeutic strategies against HCC
[42]. Zhang X et al. [43] analyzed the therapeutic effect
of targeted inhibition of MELK, named OTSSP167, on
Glioblastoma multiforme (GBM). As a result, they found
that OTSSP167 significantly inhibited cell proliferation,
colony formation, invasion, and migration of GBM cells.
Furthermore, OTSSP167 effectively prolonged the sur-
vival of tumor-bearing mice and inhibited tumor cell
growth in in vivo mouse models. The treatment of
OTSSP167 also reduced protein kinase B (AKT) phos-
phorylation levels, thereby disrupting the proliferation
and invasion of GBM cells. In conclusion, MELK inhib-
ition suppresses the growth of GBM by blocking AKT
signals. Targeted inhibition of MELK may thus be po-
tentially used as a novel treatment for not only GBM,
but also other diseases. However, the remaining
recurrence-related genes identified in the current study
need further investigation and exploration.
In contrast to previous studies, the present study has sev-

eral strengths. First, we used large-scale microarray and se-
quencing data of HCC patients from both the GEO and
TCGA databases. Second, we included paired samples from
three GEO datasets to eliminate errors among different pa-
tients since each gene expression level varied substantially
in different patients. Third, compared with previous studies
that constructed only one mixed ceRNA network, we sep-
arately constructed two predictable ceRNA networks by
comparing three RNA levels (lncRNAs, miRNAs and
mRNAs) based on the competitive relationships of the
ceRNA hypothesis. Fourth, we not only established a prog-
nostic signature but also conducted independent external
validations, which guaranteed that the results were reason-
able and reliable. The results presented in this paper were
based on sufficient samples, rigorous processes and appro-
priate methodology, but this study inevitably has several
limitations. First, a larger group of samples and longer
follow-up period should be used. Second, although the
AUCs for the RS of recurrence were more than 0.7, they
were still relatively low. Finally, further in-depth study on
the molecular mechanisms of the identified ceRNA net-
works needs to be performed to verify our work.

Conclusions
In conclusion, the present study identified a number of
cancer-specific and recurrence-related genes by performing

an integrated analysis of large-scale gene expression profiles
from the GEO and TCGA databases. The two predictive
lncRNA-miRNA-mRNA ceRNA networks may provide
guidance for further studies on the tumorigenesis and pro-
gression mechanisms underlying HCC. The prognostic sig-
nature established by this paper shows promising prospects
in clinical application and can probably help with early
diagnosis and guide personalized treatments.
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