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Abstract

Background: Preweaned rumen development is vital for animal health and efficient fermentation. In this study, we
integrated ruminal transcriptomic and metagenomic data to explore the dynamics of rumen functions, microbial
colonization, and their functional interactions during the first 8 weeks of life in goats.

Results: The dynamic rumen transcriptomic and microbial profiles both exhibited two distinct phases during early
rumen development. The differentially expressed genes of the rumen transcriptome between the two phases
showed that the immune-related response was enriched in the first phase and nutrient-related metabolism was
enriched in the second phase, whereas the differentially expressed genes of the rumen microbiome were enriched
in bacteriocin biosynthesis and glycolysis/gluconeogenesis activities. The developmental shift in the rumen
transcriptome (at d 21) was earlier than the feed stimulus (at d 25) and the shift in the rumen microbiome (at d 42).
Additionally, 15 temporal dynamic rumen gene modules and 20 microbial modules were revealed by coexpression
network analysis. Functional correlations between the rumen and its microbiome were primarily involved in rumen
pH homeostasis, nitrogen metabolism and the immune response. Rumen gene modules associated with the
microbial alpha diversity index were also enriched in the immune response process.

Conclusions: The present study touched the critical developmental process of rumen functions, microbial
colonization and their functional interactions during preweaned development. Taken together, these results
demonstrated that rumen development at the first phase is more likely a programmed process rather than
stimulation from feed and the microbiome, while the shift of rumen metagenomes was likely regulated by both
the diet and host. The intensive functional correlations between rumen genes and the microbiome demonstrated
that synergistic processes occurred between them during early rumen development.
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Background

Ruminant livestock has a complex digestive system that
allows them to convert human-indigestible plant bio-
mass into high-quality products such as milk and meat,
due to complex microbiomes residing in the rumen.
Promoting rumen functional development has always
been a crucial target of neonatal livestock management
[1]. The establishment of rumen function and its micro-
biota during postnatal development can be influenced by
the changes in feeding management, such as weaning
and diets [2]. The influences have impact on health and
whole life performance of adult ruminants [1, 3, 4]. Pre-
vious studies have revealed that the significant physio-
logical changes occurred in young ruminants can be
divided into three phases, which are the non-ruminant
stage from birth to 3 weeks old, the transition stage dur-
ing weeks 3-8 and the rumination stage after 8 weeks
[5-7]. The process from non-ruminant to ruminant is a
key stage in the establishment of the microbiome, and
the development of rumen immunity and growth [8, 9].

A detailed and systematic understanding of the mo-
lecular genetic mechanisms underlying early rumen de-
velopment (rumen functions, microbial colonization and
their functional interactions) will help in accelerating re-
search towards achieving production efficiency and im-
provement of ruminants. Previous dynamic molecular
studies throughout birth to adult age have characterized
the gene expression differences [8], microbial diversity
and taxonomic abundance of the rumen [10, 11]. How-
ever, most of these studies have focused on either rumen
transcription [8] or rumen microbial community com-
position [10, 12] without information of microbial meta-
bolic functions. To our knowledge, only few studies have
been examined on both these two facets during the
rumen development, which mainly focused on limited
stages (wk 1, 3, or 6) [13].

To fill this gap and to explore the gene expression
patterns, microbial community and succession during
early development, we collected rumen wall tissues tran-
scriptomic and microbial metagenomic data from rumen
of 21 goats at seven different time points (d 1, d 7, d 14,
d 21, d 28, d 42, and d 56). We furthermore explored
the functional correlations between the rumen and its
microbiomes. This study provides a clearer understand-
ing of rumen functional development, microbial
colonization and their functional interactions in young
ruminants that occur during the establishment from
non-ruminant to ruminant, which may provide a mean
to manipulate this process in the future to improve effi-
ciency and productivity of ruminants.

Results
The growth performance phenotypes including rumen
anatomical features, the pH, fermentation parameter and
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morphological development of the 21 goats were deter-
mined previously [14, 15]. From day O to day 56, rumen
pH fluctuated at a range of 5.35~6.28. The papilla
height of the dorsal sac rumen increased rapidly from
day 28 [14]. The ratio of rumen net weight to full stom-
ach net weight increased from 29.34% at d 0 to 52.53%
at d 56 [15]. Taken together, the 28-day-old was a crit-
ical point of gastrointestinal tissue morphological devel-
opment and its development extent was close to that of
28-56 days [14, 15].

Dynamic gene expression during early rumen
development

In the current study, we collected rumen tissues from d
1 to d 56 and sequenced their transcriptomes to reveal
the gene expression patterns during early rumen
development. From the 21 rumen wall tissue samples,
1,010,353,294 raw reads (~ 151.53 Gbp) were obtained
with an average of 48,112,062 + 5,053,215 raw reads per
sample (7.21 + 0.76 Gbp, Additional file 1: Table S1). After
quality control, 954,703,530 clean reads (~126.61 Gbp)
with an average of 45,462,073 + 5,090,014 reads per sam-
ple (6.03+0.73 Gbp, Additional file 1: Table S1) were
retained for further analysis. Both principal component
analysis (PCA) and unsupervised hierarchical clustering
analysis revealed that the gene transcriptional profiles
were divided into two phases: the first phase (d 1-14) and
the second phase (d 21-56) (Fig. 1a; Additional file 1: Fig.
S1). The analysis of similarities (ANOSIM) also supported
the significant differences between the two phases (P =
0.001) (Fig. 1b). Furthermore, we identified 2084 differen-
tially expressed genes (DEGs) between each pair of time-
points in total (Fig. 1c). Gene ontology (GO) enrichment
analysis of DEGs between d 1 vs. d 7 was enriched in the
immune system process (adjusted P = 4.86 x 10™ >, GeneR-
atio [genes involved in the specific enriched GO term /
total differentially expressed genes] =55/852, Add-
itional file 1: Table S2). DEGs between d 7 vs. d 14 were
enriched in response to cytokine (adjusted P =2.93 x 10”2,
GeneRatio = 20/285, Additional file 1: Table S3). However,
DEGs between d 14 vs. d 21 were enriched in the mono-
carboxylic acid metabolic process (adjusted P =2.04 x
103, GeneRatio = 15/358, Additional file 1: Table S4) and
lipid metabolic process (adjusted P =4.31 x 10~ *, GeneRa-
tio =28/358,) as well as in the immune system process
(adjusted P=2.11 x 10~ ®, GeneRatio = 33/358). And DEGs
between d 21 vs. d 28 were involved in cell-substrate junc-
tion (adjusted P=234x10"° GeneRatio = 24/458,
Additional file 1: Table S5). DEGs between d 28 vs. d 42
were involved in the carboxylic acid metabolic process
(adjusted P=9.48x10"> GeneRatio =32/791, Add-
itional file 1: Table S6) and for d 42 vs. d 56 we found
some enriched categories related to the regulation of
blood pressure (adjusted P =2.67 x 10~ %, GeneRatio = 11/
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Fig. 1 Developmental dynamics revealed by the rumen transcriptome. a From the host rumen transcriptome, two stages were identified that
transition earlier than the microbial gene abundance of metagenomics by PC1 of PCA analysis and unsupervised hierarchical clustering analysis.
The black arrow represented the granulated feed has been added at d 25. b ANOSIM test of rumen transcriptomes between the two phases. If
the median line of the “combined” group (including data for samples collected during both Phase 1 and Phase 2) was higher than the median
lines for the two separate phases, the grouping was considered reasonable, and if the R value was greater than 0, there was a significant
difference between the groups. In contrast, an R value less than 0 indicated that the difference within groups was greater than that between
groups. ¢ Barplots showing the numbers of upregulated DEGs (colored in orange) and downregulated DEGs (colored in blue) between every two
time-points. d GO analysis of rumen DEGs during the first phase (colored in orange) and the second phase (colored in blue). Only terms with

535, Additional file 1: Table S7). The functional enrich-
ment analyses also indicated two phases during early
rumen development. GO and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of the
rumen DEGs between two mentioned phases also showed
that functional enrichment was transformed from involv-
ing intense immune responses to enhanced nutrient
metabolism-related biological process (Fig. 1d; Add-
itional file 1: Table S8—11). Meanwhile, KEGG enrichment

analysis also showed that the rumen DEGs were involved
in vascular smooth muscle contraction pathway in the
second phase (Additional file 1: Table S11). We thus refer
to the first and second stages as the immune and meta-
bolic phases, respectively.

To provide a clearer picture of gene expression dy-
namic patterns and gene interaction relationships in the
rumen, a weighted gene co-expression network analysis
(WGCNA) was performed on the identified DEGs above.



Pan et al. BMC Genomics (2021) 22:288

We identified 15 gene expression modules (defined as
R1-R15 host modules) that exhibited distinct temporal
expression patterns with aging and biological process
(Fig. 2a; Additional file 1: Table S12). The age-related
up-regulation of these pathways included monocarbox-
ylic acid metabolic, cornification, and ammonium ion
metabolic (R2, R4, and R8, respectively; Fig. 2b), which
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were intercorrelated. We also identified two modules
(R10 and R12) that were involved in defense response to
virus and cell division, respectively, which exhibited in-
crease with time in the immune phase and then showed
declining trend in the metabolic phase (Fig. 2c; Add-
itional file 1: Figs. S2 and 3). And genes in module R15
that were involved in positive regulation of nervous
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Fig. 2 WGCNA of postnatal rumen development transcriptomes. a Relationship of gene modules among gene expression of DEGs between each
pair of time-points (modules are named by colors). b Gene expression modules (R2) showed up-regulation during the early development of the
rumen. The barplots indicate the enriched gene ontology terms. ¢ Gene expression modules (R10) showed increasing during the immune phase
and decreasing during the metabolic phase. d Gene expression modules (R15) showed declining during the early rumen development. In each
module, n indicates the number of genes in the module. The expression regression line was generated using the Loess curve-fitting method, and
P values indicate the significance of Spearman’s rank correlation coefficient between the eigengene and age. The eigengene is a central gene
whose expression pattern can represent the whole module
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system development and response to peptide, showed
declining trends following the early rumen development
(Fig. 2d; Additional file 1: Figs. S2 and 3).

Microbial communities and function successions during
early rumen development

In this study, to further reveal the microbial (prokary-
otic) colonization patterns during early rumen develop-
ment, metagenomic samples from the corresponding
rumen contents were collected and sequenced from d 1
to d 56 (average of 5.62 Gbp per sample) (Add-
itional file 1: Table S13). However, the metagenomic
data at d 1 was contaminated by the massive host DNA
(99.80%), then samples of d 1 were excluded in the
further analysis. We then obtained 923,801,897 raw
reads (~129.05 Gbp) from the 17 rumen metagenome
samples, with an average of 54,341,288 + 4,951,973 raw
reads per sample (7.59 +£0.69 Gbp, Additional file 1:
Table S13). After quality control, 776,364,309 clean
reads (~89.04 Gbp) with an average of 45,668,489 + 5,
258,962 reads per sample (5.24+0.82 Gbp) were
retained for further analysis. After de novo assembly, we
generated 639,641 contigs (>200bp in length), with an
average of 37,626 + 11,799 contigs (N50 length, 2775 +
1444 bp, Additional file 1: Table S14) and 30,692 * 10,
095 scaffolds per sample (N50 length, 6735 +4108 bp,
Additional file 1: Table S15). Subsequently, our gene
prediction results showed a total of 1,320,084 non-
redundant genes with an average length of 723 bp for
open reading frame (ORF) per each sample (Add-
itional file 1: Table S16). Out of these genes that were
derived from the rumen microbiota, 62.9, 59.4 and
38.3% were classified into the NR, EggNOG and KEGG
Orthology (KO) database, respectively.

Based on these classifications, a total of 57 bacterial
phyla and 1 archaeal phylum were identified, accounting
for an average of 77.00% of the reads in the current study.
At the phylum level, Bacteroidetes (60.24 + 11.51%) were
detected as predominant bacteria, followed by Firmicutes
(29.09 + 10.07%), Proteobacteria (4.07 +3.36%), Spiro-
chaetes (1.28 +1.20%), Fusobacteria (0.75+ 1.51%) and
Actinobacteria (0.56 +0.24%) (Additional file 1: Fig. S4).
Moreover, the archaeal phylum Euryarchaeota also
accounted for 0.11 + 0.07% of the reads. Besides, the rela-
tive decrease was gradual in Proteobacteria, and the de-
crease of Fusobacteria was significant from d 7 to d 14.

At the genus level, a total of 635 genera were identi-
fied. And the Prevotella (24.36 +20.48%), Bacteroides
(18.2 £ 10.63%), Porphyromonas (3.78 + 5.11%), Clostrid-
ium (3.63 +1.99%), Ruminococcus (2.69 +1.77%) and
Oscillibacter (2.05+1.71%) were the most highly pre-
sented genera among the early rumen development
(Additional file 1: Fig. S5). Also, it should be noted that
the high proportion of standard errors should be due to
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the developmental dynamics of time points and hetero-
geneity among samples induced by the limited sample
size within each time point.

According to the KEGG functional categories, a total
of 269 KEGG pathways were observed in our study,
which belonged to six level-1 KEGG functional categor-
ies, including “metabolism” (59.40 + 0.02%), “organismal
systems” (1.63 + 0.15%), “human diseases” (0.70 + 0.05%),
“environmental information processing” (10.28 + 1.22%),
“genetic information processing” (25.27 +1.12%) and
“cellular processes” (2.72 +0.38%). At the third level of
KEGG functions, “ko02000: transporters (5.41 + 0.97%)”,
“ko03400: DNA repair and recombination proteins”
(5.11 £ 0.34%) and “ko00051: Fructose and mannose me-
tabolism” (3.84 + 0.71%) were abundant during the early
rumen development. Moreover, the pathway “ko00500:
Starch and sucrose metabolism” (2.37 + 0.52%) was the
most abundant at d 42 (Additional file 1: Table. S17).

In this study, differences in microbial community com-
position were estimated using PCA and unsupervised
hierarchical clustering analysis. Similarly, two distinct mi-
crobial establishment phases were discerned by PCA and
unsupervised hierarchical clustering analysis of the gene
abundance profile: the first phase prevailing was before d
28 and the second one was between d 28 and 56 (Fig. 1a
and Additional file 1: Fig. S6). And the significant differ-
ences between the two phases of microbiomes were also
supported by the ANOSIM analysis (P =0.001) (Fig. 3a).
The microbial diversity index showed a peak at the transi-
tion from one phase to the other (Fig. 3b). The rumen mi-
crobial composition and relative abundances at genus
level, were also shifted dramatically from being dominated
by Bacteroides spp. and Oscillibacter spp. during d 7 ~d
28 to Selenomonas spp., Prevotella spp. and Ruminococcus
spp. during d 42 ~d 56 (Fig. 3b). KEGG and KO abun-
dance analyses showed that the bacteriocin biosynthesis
was decreased following the transition to the second phase
(adjusted P=3x10"2), while glycolysis/gluconeogenesis
activities and oxidative phosphorylation were increased
(adjusted P =3.50 x 10" ® and P =5.93 x 10”, respectively)
(Additional file 1: Table S18). Importantly, fatty acid me-
tabolism and oxidative phosphorylation for supplying en-
ergy in the rumen were also accordingly upregulated
during the second phase (adjusted P=2.73x10"°, for
both) (Additional file 1: Table S18).

Furthermore, we performed WGCNA analysis to ex-
plore the dynamic patterns of the rumen microbial taxo-
nomic abundance at genus level. We identified 20
modules (defined as M1-M20 microbial modules) that
exhibited distinct temporal dynamic patterns (Fig. 4a-d;
Additional file 1: Fig. S7; Additional file 2: Table S19).
The abundances of Ruminococcus, Bifidobacterium,
Streptococcus, Bacillus, Aminobacterium, and Methylo-
ceanibacter showed an increasing tendency in microbial
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modules M7, M8, and M12 (Fig. 4b; Additional file 1:
Fig. S8). In modules M18-M20, the abundances of
Coprobacillus and Spirochaeta showed an increase in the
immune phase and then a decrease in metabolic phase
(Fig. 4c; Additional file 2: Table S19). Interestingly,
rumen fluid contains relatively high numbers of spiro-
chetes of fermenting polymers such as xylan, pectin, and
arabinogalactan, which serves as fermentable substrates
for the spirochetes, whereas cellulose did not [17].
Therefore, this result confirmed the increasing cellulose
in rumen is accompanied by the decreased abundance of
non-cellulosic bacteria in the second phase.

Correlation between the host transcriptome and its
microbiomes

To explore the potential host-microbiota interactions,
we then calculated the Spearman’s correlation coefficient
between the first eigenvector from the PCA of each
rumen gene expression module and each microbial
genus module, which were identified above. The result
of unsupervised hierarchical clustering analysis found
three clusters depend on their association patterns (Add-
itional file 1: Fig. S9). Among of these three clusters, the
first one consisting of Lacticigenium, Bacteroides, Acti-
nobacillus, Ruminiclostridium, Klebsiella, and Propioni-
bacterium was positively correlated with the expression
of the host modules (R5 (7 = 136), R13 (n = 68) and R15
(n=303)) involved in the regulation of cell adhesion,
epidermis development, and PPAR signaling pathway
(Additional file 1: Figs. S2 and 3; Additional file 2:
Table S19). The second cluster contains genera
mainly from Methanoculleus, Fibrobacter, Actinospica,
and Prevotella, that was negatively correlated with the

expression of the genes in host modules R6 (n = 247),
R7 (n=73) and R14 (n=113), which involved in T-
cell activation, cellular response to lipid and leukocyte
degranulation, respectively (Additional file 1: Figs. S2
and 3; Additional file 2: Table S19).

To dissect the functional correlations between the
rumen and its microbiota, we then evaluated the Spear-
man’s correlation coefficient between the first eigen-
vector from the PCA of each host module and the
abundance of the microbiota KEGG pathway at the same
time point during rumen development from d 7 to d 56
(Fig. 5). We found that genes in the R4 module (1 =417)
enriched in urogenital system development were posi-
tively correlated with microbial glycosaminoglycan bio-
synthesis and bacterial chemotaxis, and negatively
correlated with microbial lysine degradation and folate
biosynthesis pathway (Fig. 4). Also, genes in R2 module
(n =104) enriched in ammonium ion metabolic process
were positively correlated with microbial glycolysis/glu-
coneogenesis, microbial pentose phosphate pathway and
vitamin B6 metabolism (Fig. 5), and negatively correlated
with pentose and glucuronate interconversions, micro-
bial nitrogen metabolism and cyanoamino acid metabol-
ism. The results from enrichment analysis of module
R14 revealed 113 genes were enriched in IL17 signaling
and regulation of innate immune response pathways
(Additional file 1: Fig. S2), and showed a persistently
high expression pattern during rumen development. The
expression of genes in this module was positively corre-
lated with the KEGG pathway abundance of microbes
enriched in the penicillin and cephalosporin biosynthesis
pathways, which act as the antibiotic competition among
microbiota within the rumen ecosystem. Meanwhile, the
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are named by colors). b Rumen microbial modules at the genus level (M7) showed increasing during early rumen development. ¢ Rumen
microbial modules at the genus level (M18) showed increasing in immune phase and decreasing in metabolic phase during early rumen
development. d Rumen microbial modules at the genus level (M1) showed declining in immune phase during early rumen development. In each
module, the expression regression line was generated using the Loess curve-fitting method. The eigengene is a central rumen microbial genus
whose dynamic abundance pattern can represent the whole module. The networks indicate the correlation between genera by calculating the

Spearman’s correlation coefficient between the microbial
diversity index and the first eigenvector from the PCA of
each host module was calculated (Additional file 1: Table
S$20). The microbial diversity index was significantly
positively correlated with genes in module R13 (P value <
0.05), which was related to “PPAR signaling pathway”

(adjusted P value = 1.26 x 10" 7), and negatively correlated
with modules R7-R9 that involved in “immunoglobulin
production in mucosal tissue” (adjusted P value = 5.41 x
10~ %), “response to interferon-gamma” (adjusted P value =
3.88 x 1077) and “pyruvate transport” (adjusted P value =
8.33 x 10~ *) pathways (Additional file 1: Fig. S3).
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Discussion

This study collectively revealed insights into the functional
development and interactions that occurred between the
rumen and its microorganisms during pre-weaned rumen
development. Both gene expression and microbial abun-
dance profiles of the rumen were divided into two stages.
Most interestingly, the shift of transcriptional profiles be-
tween d 14 and d 21 in rumen was earlier than that of the
microbiome (d 28 - d 42) and granule diet introduction (d
25), suggesting that the first stage of rumen development
most likely underwent programmed process rather than
stimulating effects by feed and microbiome. Meanwhile,

we found that the step-by-step establishment of a strong
immune capacity in the rumen occurs prior to a shift in
functional focus toward nutrient metabolism. The shift is
supported by previous findings that lambs first went
through a non-ruminant stage (0-3 wk) before entering to
the ruminant transition stage (3-8 wk) [5-7]. Further-
more, we found the molecular evidence for an increase in
the ruminating capacity during d 21 - d 56, in this time
the gene expression levels of the rumen vascular smooth
muscle contraction were enhanced.

It is well known that the diet [18, 19] and the timing
for feed introducing [20, 21] both have dominant
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impacts on the rumen microbial colonization process in-
cluding microbial species and types of metabolism. The
rumen microbial composition and relative abundances
shifted from being dominated by proteolytic bacteria to
amylolytic bacteria and cellulolytic bacteria during the
phase transition, which was mostly responsible for the
gradual intake of granule and alfalfa after d 25. More-
over, we noticed that the alpha diversity index is gener-
ally showed an increasing trend overall, but a transient
decrease at d 42, which is a transition time point in the
microbial colonization process. Subsequently, the alpha
diversity index recovered at d 56. In the first phase (d 1
- d 28), multiple microorganisms introduced into the
rumen may result in the increased microbial community
diversity. The rumen microbiota of the initial stage was
heterogeneous with diverse functions which could meet
the requirements in subsequent phase. In the second
phase (d 42 - d 56), the diversity and function of rumen
microbiota were altered under the enhanced regulation
of rumen immune function and the introduction of
granulated feed. The results from temporal dynamics of
microbial diversity index confirmed previous studies that
claimed there were more heterogeneous microbiota in
gut microbiome at birth time and then incline to de-
velop into a mature community [10, 11]. The correlation
between microbial diversity and host immune response,
at least partially, indicated that the host regulation on
microbiota was under relatively loose regulation during
the immune stage and then became a more tightly regu-
lated pattern. In addition, it has been proposed that the
microbiota at birth plays an important role in the devel-
opment and education of the microbial colonization and
host immune system [22]. Previous study had shown
that Bacteroidetes, Proteobacteria and Actinobacteria
were predominant bacterial community at birth [13].
These bacterial community were similar with the pre-
dominant microbial community of d 7 and d 14 (Add-
itional file 1: Fig. S5). The microbiota at birth in rumen
may act as a foundation in the subsequently develop-
ment process of rumen microbiota. Thus, well-designed
future studies with larger sample size and post-sucked
sampling of d 1 are necessary for in-depth understand-
ing of the microbial colonization during pre-weaned
rumen development. Taken together, the first develop-
ment phase of the rumen was more likely a programmed
process rather than effects from inducing by diet and
microbiome, while the shift of rumen microbiota was
regulated by both the diet and host.

A functional synergetic development was observed
between rumen and microbiome following by the
colonization of the rumen microorganisms. During the
early rumen development stage, the temporal dynamic
gene expression patterns were clustered into 15 gene co-
expressed modules, which mainly involved in the
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biological process such as pH homeostasis, nutrients
transportation, and antimicrobial. In the R2 module, the
high-level expression of CAI gene was important for
maintaining pH homeostasis in the rumen due to its
capacity in hydrating CO2 to bicarbonate [23]. Among
all of the 15 gene modules, genes in the modules R2 and
R4 which are involved in “Ammonium ion metabolic
process”, “Monocarboxylic acid metabolic process”, “Bu-
tanoate metabolism” and “Urogenital system develop-
ment” categories, showed an increasing expression level
trend, that was positively correlated with the rumen mi-
crobial glycolysis/gluconeogenesis metabolism. Mean-
while, among those genes in the R4 module, SLCI4A1 is
responsible for the transportation of endogenous urea
from blood to the ruminal lumen in the urea recycling,
which provide an additional nitrogen source in the
rumen for the synthesis of bacterial protein [24]. As the
rumen microorganisms need nitrogen sources for build-
ing up their cell mass and reproduction, the increasing
ability of nitrogen metabolism in the rumen may be
accounted for the co-development between the rumen
and its microbiomes to meet the growth requirements of
microbiomes. In addition, the expression of genes in-
volved in immune response and antimicrobial was highly
increased throughout the early rumen development, that
was positively correlated with microbial functions in
bacteriocin biosynthesis. These results suggest that bac-
teriocin production by the rumen microbiota may plays
a key role in the rumen immune response and subse-
quent colonization of microbiota. Noteworthy, in mod-
ule R2, three genes DUOXI1, DUOX2, and DUOXA2 had
increased expression trend during the early rumen de-
velopment, which negatively correlated with microbial
starch and sucrose metabolism. These findings sup-
ported the importance of these genes in the rumen im-
mune system and also in controlling microbial
colonization [25]. Also, some genes in the rumen mod-
ule R14 (CEBPB, SI100A9, CCL20, CXCLS, TNF,
NFKBIA, LBP, PGLYRP2, MUCI, SOCS1, SOCS3, and
CCDC3) were enriched in both IL17 signaling and regu-
lation of innate immune response pathways. Among of
these genes, CEBPB acts as an important transcription
factor regulating genes involved in innate immunity [26],
which was most highly expressed at d 1. Although this
study lacked the rumen metagenomic data at d 1, it has
been reported that rumen microbial colonization begins
as early as the first day of life [10]. These findings sug-
gest the host immune regulation of microorganisms has
already initiated when the rumen was colonized by
microbiomes. In addition, SOCSI, SOCS3, and CCDC3
genes are involved in negative regulation of cytokine
signaling [27, 28] and TNF-alpha-induced pro-
inflammatory response [29] that showed highly
expressed at d 1 and then a declining trend during early
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rumen development (Additional file 1: Fig. S6). These
findings show that the host innate immune system has
been activated after the colonization of microbiome at d
1. Moreover, the SI00A9 gene, which is related to the
antifungal and antibacterial activities [30], was highly
expressed throughout the postnatal rumen development
stages. This suggests that the host has a continuous
regulation on its microbiota to regulate both the access
and colonization of microbiomes.

Conclusions

Taken together, the results of this study revealed the
molecular mechanism underlying the temporal dynamics
of rumen gene expression patterns and microbiome
metagenomes and their relationships during early rumen
development in goats. The findings from two different
developmental phases and through the programmed
process of phase shift in the rumen may help to identify
a potential strategy for the selective manipulation of ru-
minal functions via changes in feeding management to
facilitate microbiota changes. The temporal dynamic
patterns and coexpressed gene modules and their correl-
ation with the rumen microbiome observed in this study
may help to establish a foundation for further research
investigating the interactions between the host and
microbiota. In future studies, it may also be interesting
to more fully elucidate the relationships between the
host and microbiome using metatranscriptomics and
metabolomics in the rumen.

Methods

Animals and sample collection

All animals handling protocols used in this study have
been described previously [11, 31]. We described the ex-
perimental procedures and approaches here briefly. We
used 21 healthy Shaanbei Cashmere goat in this experi-
ment, which was conducted at the Shaanbei Cashmere
Goat Original Breeding Farm (Hengshan, Shaanxi,
China). Estrus synchronization technology was used to
ensure all kids were birthed at the same or adjacent day.
All the kids are female, singleton and half siblings. After
birth, all selected kids were separated from their mothers
and randomly divided into seven age groups (1, 7, 14,
21, 28, 42, and 56 days, n =3 for each group), according
to the sampling time point. For the 1 day-age group,
newborn kids were euthanized immediately before suck-
ling. In other groups, all kids were housed together with
their mothers in the same pen and solely allowed to ac-
cess to their own dams’ colostrum (0-3 days) or raw
milk until d 25. The kids were allowed access to granule
and high-quality alfalfa from d 25 (Additional file 1:
Table S21) in addition to breast milk. All the kids were
fed two equal portions of the diets at 8:00 and 18:00 and
were provided with fresh water for ad libitum
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consumption throughout the entire experiment. All kids
were weaned at d 56. By the respective deadline, the kids
of each age group were sampled before weaning and
without prior feeding. When feeding ewes, the kids and
ewes were separated and the kids were fed the solid di-
ets, but they did not touch the ewes’ food. After ewe
feeding, the feeders were removed, then the kids were
released from the feeding fence. By the respective dead-
line, the kids of each age group were sacrificed without
prior feeding. All goats were anaesthetized via intraven-
ous injection of thiopental (0.125 mg/kg of body weight),
which was purchased from Kangjiano Biological Co.,
Ltd., Suzhou, China) and then were euthanized via intra-
venous injection of potassium chloride (5-10 mL), which
was purchased from Sinopharm Chemical Reagent Co.,
Ltd., Shanghai, China, following the procedures of previ-
ous studies [11, 32, 33]. The whole rumen of each of
these kids were collected as a closed section to prevent
environmental contamination. After rinsed with sterile
PBS, samples of the rumen wall tissue (~2cm? in size)
from each of kids were collected at the bottom of the
ventral sac quickly, and the site of sampling was the
same for all animals. Tissue samples were snap-frozen in
liquid nitrogen and stored at — 80 °C for subsequent total
RNA analysis. The ruminal contents were placed and
homogenized into 20ml cryopreservation tubes and
snap-frozen in liquid nitrogen and stored at — 80 °C for
further DNA analysis.

RNA isolation, library construction, and sequencing

Total RNA was isolated from all tissue samples, accord-
ing to the Trizol protocol (Invitrogen, Carlsbad, CA,
USA). A total amount of 1.5 pg high-quality RNA per
sample was used as input material for the RNA sample
preparations. Sequencing libraries were generated using
a NEBNext® Ultra RNA Library Prep Kit for Illumina®
(NEB, Beverly, MA, USA), according to the manufac-
turer’s recommendations. And index codes were added
to attribute sequences to each sample. The library prepa-
rations were sequenced on an Illumina Hiseq X Ten
platform, and 150 bp paired-end reads were generated.

RNA-seq data quality control and quantification
processing

High-quality reads were obtained by removing adaptor
sequences and filtering low-quality reads from raw reads
using Trimmomatic (version 0.36) [34] with the follow-
ing parameters: LEADING:3 TRAILING:3 SLIDINGW
INDOW:4:15 MINLEN:40. High-quality reads from 21
samples of goats were aligned to the NCBI assembly
goat reference genome (GCF_001704415.1). For this, we
used STAR (Version 2.5.1) [35] with the following
parameters: outFilterMultimapNmax 1 and outFilterMis-
matchNmax 10. Unmapped reads were extracted by
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SAMtools (Version 1.3) [36] for further mapping by
HISAT2 (Version 2.0.3-beta) [37] for more efficient use
of data. We normalized the read depth by computing
Fragments Per Kilobase per Million mapped reads
(FPKM) values for the transcripts and genes in each
sample using StringTie (Versionl.3.4) [38] and Ballgown
(Version 2.2.0) [39].

Identification of temporal differentially expressed genes
We used Cuffdiff (Version 2.2.1) [40] with “time-series”
parameters to identify genes that were temporally
expressed. A standard threshold (false-discovery-rate q
value of < 0.05 and log2-transformed FPKM difference >
2-fold) was used to identify the DEGs.

Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis

GO functional enrichments analysis were performed by
using Fisher’s exact test to determine the significance of
enrichment of components based on their hypergeo-
metric distribution using an in-house script. P values
were corrected for multiple testing using the Bonferroni
method implemented in the R p.adjust package, and a
final corrected P<0.05 was considered significant.
KEGG functional enrichment was assessed using
KOBAS 3.0 [41, 42] (http://kobas.cbi.pku.edu.cn/) by
Fisher’s exact test following with Bonferroni method for
multiple testing.

DNA extraction, library construction, and metagenomic
sequencing

For metagenomics analysis, total genomic DNA was ex-
tracted from rumen content samples by a bead-beating
method (RBB + C). This method is based on a mini-bead
beater (Biospec Products, Bartlesville, USA) using an
E.Z.N.A.° Universal DNA Kit (Omega Bio-tek, Norcross,
GA, USA) according to the manufacturer’s protocols.
The integrity and quantity of genomic DNA were exam-
ined by electrophoresis in 1% agarose gels, a TBS-380
mini-fluorometer (Turner BioSystems, California, USA),
and a NanoDrop2000 spectrophotometer (Thermo Sci-
entific, Grand Island, NY, USA). One milligram of gen-
omic DNA from each sample was then fragmented to
obtain sequences of approximately 300 bp, using Covaris
M220 (Gene Company Limited, China) for paired-end li-
brary construction, and with a TruSeqTM DNA Sample
Prep Kit (Illumina, San Diego, CA, USA). Adapters con-
taining the full complement of sequencing primer
hybridization sites were ligated to the blunt-end frag-
ments. All samples were then sequenced using an Illu-
mina HiSeq X Ten platform (Illumina Inc., San Diego,
CA, USA) and a 150-bp PE strategy using a HiSeq 3000/
4000 PE Cluster Kit and HiSeq 3000/4000 SBS Kits ac-
cording to the manufacturer’s instructions (www.
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illumina.com). Note that due to the DNA quality of one
sample at d 7 cannot meet the requirements for sequen-
cing, there are two biological replicates at d 7. Thus, the
final metagenomic sample size was 17.

Metagenomics quality control

The obtained raw sequence reads were first trimmed
with Trimmomatic (version 0.36) [34] to remove adapter
sequences and filtering low-quality reads. Leading or
trailing stretches of Ns and bases with quality <25 were
also trimmed, and reads were scanned with a 4-base
wide sliding window and cut when the average quality
per base dropped below 25. Only reads of at least 40 nu-
cleotides in length were kept. Additionally, according to
one previous analysis by BWA-MEM [36] (version
0.7.15, with default parameters except “-M” enabled), all
reads that were aligned to the NCBI assembly goat refer-
ence genome (GCF_001704415.1), were also removed.
Finally, on average, 11% of the clean reads correspond-
ing to the host (goat) genome DNA were removed. The
remaining set of high-quality reads was used for further
analysis.

De novo assembly and gene calling

In order to construct a comprehensive catalog of genes
from rumen development microbial, high-quality reads
were used for de novo assembly with SOAPdenovo soft-
ware (v2.20) [43], with the following parameters: -d 1,
-R, -K 39 for tuning to maximize the contig N50 value.
The contigs were assembled into scaffolds with the pa-
rameters -L 200. The assembly was broken at N connec-
tions to obtain scafftigs for gap filling, which was
performed using the intrinsic gap-filling function of
SOAPdenovo and Gapcloser v1.12 (a companion
program released with SOAPdenovo) softwares. The
high-quality reads from each sample were assembled
separately and mapped again to the scaffolds by SoapA-
ligner software (v2.20) [44] to acquire the PE reads
which were not used for assembly with the following pa-
rameters: identity 290%, -m 200, —u, — 2. Unassembled
reads from all samples were co-assembled in a final glo-
bal assembly to identify rare genes with the same param-
eters that were used for the single-sample assemblies.
Scafftigs shorter than 500 bp generated from single sam-
ples or co-assemblies were removed before further
analysis.

ORFs in the scafftigs (> 500 bp) were predicted with
MetaGeneMark (version 3.26) [45] from the predicted
results with default parameters for prokaryote. A non-
redundant gene catalogue was constructed with CD-HIT
(version 4.6) [46], using a sequence identity cut-off of
0.95, with a minimum coverage of 0.9 for shorter se-
quences and grouping shorter genes. We then using the
NCBI Genetic Codes, translated the ORFs of the predicted
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non-redundant gene set into protein sequences (https://
www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/
index.cgi?chapter=tgencodes#SG1) with an in-house script.

To assess the abundance of gene transcripts, reads
were aligned to the gene catalogue with SoapAligner
[44] using the following parameters: -m 200, —x 400,
identity 295%. Genes with <2 reads in each sample were
then filtered [47, 48], and the remaining genes (Uni-
genes) were used for subsequent analysis.

Quantification of metagenome content

The abundance of a gene in a sample was normalized by
dividing the number of reads that were uniquely mapped
to that gene by the gene length. After that, normalized
gene abundances were transformed into relative abun-
dance by dividing them by the total number of uniquely
mapped reads for a given sample. We calculated the
abundances following the method [49-53] using an in-
house script. The resulting set of gene relative abun-
dance was called as individual’s microbial gene profile,
which were used for further analyses.

Taxonomic annotation and functional annotation

The taxonomic assignment of predicted genes was car-
ried out by DIAMOND software (Version 0.8.24.86)
[54]. Multiple sequence alignment against sequences
from Bacteria, Fungi, Archaea, and Viruses were ex-
tracted from the integrated NR database (Version 20,
161,014, https://www.ncbi.nlm.nih.gov/). For the defi-
cient of protozoa genomes in NR database, we only fo-
cused on the prokaryotes in further analysis. BLASTP
alignment was used to filter hits with e-values >1le-5,
and for each gene, the significant matches (defined by e-
values at least 10-fold higher than that of the top hit)
were retained to distinguish taxonomic groups. Then,
we determined the taxonomical level of each gene by the
lowest common ancestor (LCA)-based algorithm imple-
mented in MEGANS5 [55], which assigns genes to taxa at
taxonomic levels reflecting their conservation levels. The
numbers of genes and their abundances in each sample
at seven taxonomic levels (kingdom, phylum, class,
order, family, genus, and species) were obtained from
the LCA annotation results and gene abundance tables.
The abundance of each taxon in each sample was esti-
mated from the sum of the gene abundances assigned to
the taxon, and the number of a taxon’s genes in a sample
was estimated from the number of genes with non-zero
abundance.

We conducted a KO abundance analysis to construct
the KO profiles of the microbiomes to reflect the mi-
crobes’ functions. Gene functional annotations were
made by DIAMOND (Version 0.8.24.86) [54] with a cut-
off of e-value <le-5 to search against the KEGG
databases and map the KO IDs of the best hits for our
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predicted ORFs (genes); this allowed us to identify KO-
annotated genes and determine their matched KO num-
bers. For the second-level KO profiles, we utilized the
annotations for the non-redundant genes and summed
the relative abundances of genes assigned to the same
KO. For the third-level Ko pathway profiles, we summed
the relative abundances of KOs assigned to the same Ko
pathway. The resulting gross relative abundances were
treated as the KO and Ko contents of each sample and
used to generate KO and Ko profiles of the samples,
respectively.

Statistical analysis and alpha diversity analysis

We applied PCA (R prcomp in the gmodels package,
Version 2.16.2) to decrease the dimensionality of the gene
expression data for rumen transcriptome and abundance
data for each taxonomic level. Analysis of similarity
(ANOSIM) is a non-parametric test method based on per-
mutation test, which is used to test whether the difference
between groups is significantly greater than the difference
within groups [56]. A suitable distance dissimilarity matrix
is produced by function “vegdistbray”. The distances
between pairs of groups were sorted in descending and
converted to ranks. According to the classification of dis-
tances, the difference between the mean value of distance
rank between groups and the mean value of distance rank
within groups was calculated as a statistical magnitude.
ANOSIM tests were then used to test for significant dif-
ferences between groups based on the rumen gene expres-
sion profile (d 1 - d 56) and ruminal microorganism gene
abundance profile (d 7 - d 56) for rumen transcriptomes
and metagenomes, respectively. Pairwise ANOSIMs be-
tween all pairs of groups are provided as a post-hoc test.
Significant comparisons (at P < 0.05) are decided based on
step-down sequential Bonferroni. Permutation tests be-
tween groups were applied using STAMP (Version 2.1.3)
[57] to obtain the probabilities of differences at each taxo-
nomic level, and the Benjamini and Hochberg False Dis-
covery Rate were then applied to correct the P values and
acquire g values. For each analysis, the P values were de-
termined based on 1000 permutations. The Simpson
index of alpha diversity values was calculated with rumen
microbial abundance at the genus level (R package vegan,
Version2.4.4). Microbial taxa and functional features with
a relative abundance greater than 0.01% in the sum of all
samples were retained for analysis. Values in the current
study were presented as the mean + standard error of the
mean (SEM) unless otherwise indicated.

Weighted gene co-expression network analysis

The interactions among the rumen genes and microbial
metagenomes were explored through network analysis
and correlation analysis. We used 2035 DEGs between
each pair of time-points from rumen wall transcriptomes
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as input for WGCNA to understand the link between the
rumen transcriptome and the rumen microbial metagen-
ome. This allowed us to identify the gene co-expression
modules with the similar gene expression trend in both
rumen gene expression and microbial metagenomes and
their functional correlations. Signed weighted gene co-
expression network analysis was performed using the
WGCNA R package [58]. A power test was performed to
determine the soft-threshold using pickSoftThreshold.
The optimal soft-threshold power was set to 8 (Add-
itional file 1: Fig. S10). This threshold was further used to
compute gene expression distance for module detection.
Based on the distance matrix, genes were subsequently
clustered using the average linkage hierarchical clustering
method using hclust, and the expression modules were
detected using dynamicTreeCut. The modules with simi-
lar patterns were further clustered and merged into the
consensus modules (Additional file 1: Fig. S11). The cor-
relation between the consensus modules and age was cal-
culated using corPvalueStudent. Pairwise Pearson
correlation coefficients were calculated for all selected
genes. The resulting Pearson correlation matrix was trans-
formed into a matrix of connection strengths (an adja-
cency matrix) using a power function, which was then
converted to a topological overlap matrix. WGCNA seeks
to identify modules of densely interconnected genes by
hierarchical clustering based on topological overlap [59].
Genes not assigned to any modules were excluded from
further analysis. The Spearman correlation coefficient be-
tween each host module and age (Additional file 1: Table
S20) was calculated by an in-house script. Modules with
P <0.05 were considered to have a significant correlation
with age. For each module, a functional enrichment ana-
lysis was carried out using Metascape [60]. Similarly, we
also conducted a WGCNA analysis on microbial genus
abundance profile. The optimal soft-threshold power was
set to 10 (Additional file 1: Fig. S12).

Interaction between the rumen gene expression with
microbial

The Spearman correlation coefficients analysis between
the rumen gene module with microbial genus module
and microorganism KEGG pathway abundance was cal-
culated by an in-house script. The expression level of a
module eigengene is defined as the first principal com-
ponent of a given module and used to represent the
overall expression level of a module. A correlation test P
value was used to assess the statistical significance be-
tween pairs of variables. Modules with P<0.05 were
considered to have a significant correlation as described
in a previous study [13].
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