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Summary
Genome sequencing is enabling precision medicine—tailoring treatment to the unique constellation of variants in an individual’s

genome. The impact of recurrent pathogenic variants is often understood, however there is a long tail of rare genetic variants that

are uncharacterized. The problem of uncharacterized rare variation is especially acute when it occurs in genes of known clinical impor-

tance with functionally consequential variants and associated mechanisms. Variants of uncertain significance (VUSs) in these genes are

discovered at a rate that outpaces current ability to classify them with databases of previous cases, experimental evaluation, and compu-

tational predictors. Clinicians are thus left without guidance about the significance of variants that may have actionable consequences.

Computational prediction of the impact of rare genetic variation is increasingly becoming an important capability. In this paper, we

review the technical and ethical challenges of interpreting the function of rare variants in two settings: inborn errors of metabolism

in newborns and pharmacogenomics. We propose a framework for a genomic learning healthcare system with an initial focus on

early-onset treatable disease in newborns and actionable pharmacogenomics. We argue that (1) a genomic learning healthcare system

must allow for continuous collection and assessment of rare variants, (2) emerging machine learning methods will enable algorithms to

predict the clinical impact of rare variants on protein function, and (3) ethical considerations must inform the construction and deploy-

ment of all rare-variation triage strategies, particularly with respect to health disparities arising from unbalanced ancestry representation.
Introduction

We are approaching an era in which genome sequencing at

birth may become a widespread practice with the potential

to revolutionize healthcare. Interpretation of the genetic

variants identified by sequencing, however, remains a sig-

nificant challenge and limits the use of DNA sequencing as

a primary diagnostic screen.1 Current algorithms used to

interpret the significance of genetic mutations are not reli-

able enough to be used without additional clinical data.2

Yet, accumulating biomedical data enables machine

learning algorithms to predict the consequence of genetic

variants with increasing accuracy. The pairing of modern

algorithms and widespread genome sequencing is begin-

ning to deliver precision medicine in limited settings,3

but the broad interpretation of rare genetic variation

requires both algorithmic advances and improved access

to data. The identification of rare variation responsible
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for unusual clinical phenotypes is a particularly difficult

challenge because both the responsible gene and the asso-

ciated variation must be identified. A slightly more trac-

table problem is the identification of clinically important

variants in genes that are already known to be clinically

significant and have known mechanisms for influencing

phenotype.

This paper focuses on two clinical domains that have

known clinically important genes and in the near term

should benefit greatly from improved rare variant interpre-

tation: pharmacogenomics (PGx) and inborn errors of

metabolism (IEMs). IEMs and PGx are examples of genetic

practice characterized by monogenic phenotypes for

which therapeutic action can be taken in response to clin-

ically important variants in known genes. Both fields have

been revolutionized by low-cost sequencing and the

curation of large databases cataloging the effects of specific

genetic variants. Furthermore, both fields struggle with
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interpretation of the phenotypic effects of rare variants

that have not been clinically evaluated.

As an interdisciplinary team supported by the Chan

Zuckerberg Biohub, we approach these two challenges by

addressing both computational and ethical issues in order

to develop a framework for genome-informed medical care

that benefits all. Here, we review the current practices and

limitations of variant interpretation in PGx and IEMs and

highlight recent computational advances that will allow

researchers to improve precision medicine. Ethical consid-

erations include health disparities because existing genetic

and genomic databases are not inclusive of individuals of

diverse ancestries. As the recent strategic vision from the

US National Human Genomic Research Institute (NHGRI)

attests, there are significant societal implications of a

genomic learning healthcare system that we cannot afford

to oversimplify.4 Our focus on genes of known conse-

quence should generalize ultimately to the more difficult

cases where the gene, function, and mechanism are not

well understood.
PGx and IEMs in current clinical practice

For both PGx and IEMs, our detailed understanding of the

biological processes at play (the genes that are critical and

how they interact) has reached a point at which routine ge-

netic screens can inform clinical decision-making. In the

United States, PGx testing is mandated by the Food and

Drug Administration for a number of drugs because of

safety concerns and is recommended for many others.

Testing for IEMs is routine practice for nearly all newborns

in the United States, but the role of genetic testing is

largely limited to second-tier screens and carrier testing.

These two clinical domains are linked in more ways than

it may superficially appear. The clinical implications for

most known PGx- and IEM-driven phenotypes are often

caused by variants in a single gene. As monogenic traits,

there is not only a critical importance in understanding

the impact of variants in the underlying genes but also

in narrowing the problem space for a tractable solution.

Additionally, the mechanisms of disease and treatment

response are generally understood.

PGx describes how an individual’s response to medica-

tion is influenced by genetic variation in pharmacogenes:

genes encoding proteins involved in the pharmacokinetics

and pharmacodynamics of a drug.5 Many pharmacogenes

have common genetic variants with known clinical signif-

icance. These variants can affect the metabolism, trans-

port, and action of drugs throughout the body andmay in-

fluence efficacy or lead to adverse events. Studies have

shown as many as 99.8% of individuals carry at least one

genetic variant that could lead to adverse outcomes for at

least one drug.6–8 In the past, clinical practice overlooked

the influence of genetics on drug response and—except

for several extreme case9—used a standardized dose of

any particular drug for most patients, with some trial-
536 The American Journal of Human Genetics 108, 535–548, April 1,
and-adjustment to determine the ideal drug and dosage.

This error-prone process can lead to decreased efficacy

and increased incidence of adverse events that could be

otherwise avoided.10 Clinical practice may be moving to-

ward genetic testing prior to drug dosing, although at pre-

sent, current practice is still limited to physician-guided

treatment: genotyping or sequencing is ordered by a physi-

cian and carried out clinically (Figure 1A). To date, there are

60 drugs with clinical dosing guidelines published by the

Clinical Pharmacogenomics Implementation Consortium

(CPIC) and 94 drugs with guidelines from the Dutch

Pharmacogenomics Working Group (DPWG).11 As the

inexpensive interrogation of genetic information gains a

foothold in clinical medicine, pharmacogenetic informa-

tion will increasingly become standard care. Importantly,

when genetic information is used to guide dosing, the

current focus is on common polymorphisms in individuals

of European ancestry. Common polymorphisms in other

ancestral groups and rare variants are generally not

included in current clinical dosing guidelines. This can

lead to health disparities based on a patient’s ancestry

and is problematic for all individuals because rare

variants are estimated to contribute to as much as 50% of

interindividual variation in drug response.12

IEMs encompass more than 1,000 genetic disorders,

including organic acidemias, urea cycle defects, lysosomal

storage disorders, and disorders of amino acid meta-

bolism.13 IEMs are characterized by monogenic mutations

that can affect protein function and result in altered metab-

olite levels. The majority are autosomal recessive disorders.

Many IEMs are severe, early-onset conditions amenable to

therapeutic intervention, and early treatment can lead to

significantly improved clinical outcomes. Because the con-

sequences of unrecognized IEMs in pre-symptomatic

newborns can be catastrophic, detection before symptom

manifestation is essential. Newborn screening (NBS), a

near-universal public health practice, detects over 40 of

the most common, treatable IEMs via biochemical tests per-

formed in blood samples taken shortly after birth. IEMs

occur in �1 in 2,000 births worldwide and are present in

all ancestral groups.14 Comparing incidence across ancestry

is difficult because of differences in screening between

countries and the fact that ancestry is not consistently cate-

gorized within countries.15 One study of ancestrally diverse

California newborns suggested that newborns with Middle

Eastern ancestry had the highest incidence of IEMs (>1 in

1,000) and newborns with Japanese or Pacific Island

ancestry had the lowest incidence of IEMs (<1 in 5,000).16

Presently, NBS detects IEMs by identifying elevated me-

tabolites in blood, which is performed with tandem mass

spectrometry (MS/MS), an inexpensive and rapid test.

However, disorders may be missed, some analytes are

non-specific, and follow-up testing may be time

consuming and complex.1,17 DNA sequencing has the

potential to more accurately identify disorders for which

MS/MS detection is not optimal and also identify disorders

for which there is no appropriate metabolite screen.
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Figure 1. Diagram of current treatment workflow and proposed workflow that integrates genomics
Simplified overview of the identification and treatment of patients with IEMs or PGx. We contrast the current approach with our
proposed framework, which incorporates early sequencing and analysis of rare variants with machine learning and ethical
considerations.
(A) Current practice for IEMs and PGx begins with an observable phenotype. In IEMs, this may be an altered metabolite detected by
newborn screening; in PGx, perhaps an adverse event. Phenotype can also include physical examination,medical history, family history,
and relevant labs or studies. Genetic sequencing is then performed, which could include targeted single-gene sequencing with copy
number variant detection, gene panel, whole-exome sequencing, or in some cases, family trio sequencing to assess phasing and identify
de novo variants. If annotated pathogenic variants are identified in the target gene, a patient may be diagnosed with a disease and offered
preventative services (as is the case with IEMs) or given a different drug or dose adjustment (as with PGx). Identification of VUSs may
result in a diagnosis, depending on the other variants identified. In this simplified figure, VUS refers to a variant in the targeted gene of
interest as opposed to an incidental finding not relevant to diagnosis. Patient diagnosis can occur without DNA sequencing, as is the case
with some IEMs.
(B) Hypothetical future approach to patient care in the fields of PGx and IEMs. All individuals undergo whole-genome sequencing
at birth. Machine learning models use detected variants to predict phenotype (disease risk or differential drug response). Ethical
considerations are addressed, and clinical action is taken accordingly.
Carrier testing provides an opportunity to detect rare

variants in IEMs and other disease-associated genes18

before conception. However, interpretation of genetic

screening results still faces significant challenges,19 espe-

cially in cases identifying variants of uncertain significance

(VUSs) where risk for inherited disease cannot be defini-

tively assessed and actionability is questionable. The

falling cost of next-generation sequencing will continue

to expand the identification of genomic variants that

may cause IEMs or alter drug response. Although many ge-

netic variants have established associations with disease

phenotypes or drug response, themajority are of unknown

clinical consequence. Generating experimental data to

validate the pathogenicity of individual variants is tedious

and expensive, although recent advances have facilitated

more large-scale generation of data.20 Several databases

attempt to catalog variants in disease-causing genes, but

there is no central catalog for associated functional data.

Thus, alternative methods for determining or predicting

functional effects of genetic variants are urgently needed.

At present, validation of genetic variants as causal for

IEMs or important for PGx is complex, involving consider-

ation of layers of information at the genetic, phenotypic,

clinical, and familial levels.21 Variants in genes underlying
The Ame
IEMs frequently require functional characterization to be

validated as causal. Functional validation can be carried

out with a myriad of model systems, including patient-

derived cells or blood, immortalized cell lines, and animal

models.22 Robust functional assays suitable for the valida-

tion of variants as causal are not always available because

they require a biological or biochemical measurement

directly related to the function of the gene of interest.

Common experimental methods to validate pathogenicity

include overexpression models to assess function of the

variant allele, genetic rescue whereby introduction of the

wild-type allele rescues phenotype, and transgenic expres-

sion for phenotyping in model organisms such as E. coli,

yeast, Drosophila, C. elegans, zebrafish, and mice.22

CRISPR-Cas9 technology allows for high-throughput func-

tional characterization in many systems. Assays investi-

gatingmRNA and protein expression (i.e., RNA sequencing

[RNA-seq] and immunoblot) can reveal variant conse-

quences on splicing and allele expression or differential

protein expression, respectively.22 The validation of clini-

cally important variants relating to PGx is also complex.

Targeted functional assays evaluating variant effects on

gene function can be carried out in vitro when feasible

via similar methods and models as for IEMs. Examples
rican Journal of Human Genetics 108, 535–548, April 1, 2021 537



Table 1. Ethical considerations for the adoption of novel genomic
technologies into learning health system practice

Area of IEMs and PGx and ethical
issues Key question

Whole-genome sequencing for
newborns: (1) uncertainty of
results and (2) return of clinical
results, including results from
late-onset disorders

Can genome sequencing improve
the uncertainty of results and
return of clinical results?

Interpreting VUSs: (3) research
and clinical divide and (4) social/
racial inequity

Can we view the classification of
VUSs as a social justice
opportunity to close social and
genetic ancestry gaps?

Genomic learning healthcare
systems: (5) privacy risks and (6)
data sharing

How can genomic learning
healthcare systems ensure
adequate genomic input and data
governance?

VUSs, variants of uncertain significance.
include enzyme activity assays23 and transporter uptake

assays.24 Pharmacogenetic variation can further be vali-

dated as clinically important in pharmacokinetic/pharma-

codynamic studies, whereby individuals with a particular

genotype exhibit significantly different drug response

compared with individuals with a different genotype for

the variant in question.
Ethical considerations in rare variant

interpretation

Genome-informed precision medicine must include anal-

ysis of ethical, legal, and social implications (ELSIs) in or-

der to improve upon rather than exacerbate existing

health disparities.4 We have identified six chief concerns

with enhancing computational predictors for the pheno-

typic effects of rare variation at the scale proposed here.

First, the uncertainty of results and, second, the return of

clinical results can either improve or compromise clinical

care. Although enhanced computational predictors for

IEMs and PGx can minimize harm from the trial and error

of current clinical practices, consistency in clinical educa-

tion and approaches to ambiguous and incidental findings

will be critical to determining societal benefit. Third,

research and clinical stakeholder perspectives in approach-

ing the classifications of VUSs can differ. Fourth, the under-

representation of minority groups in current datasets and

the underlying research that informs them needs partic-

ular attention in order to create a larger and more diverse

reference genome so that biases can be reduced. Fifth, an

effective genomic learning healthcare system must ac-

count for data security and privacy risks. Sixth, there needs

to be transparent data sharing expectations across all levels

of participation in the learning system. Building on previ-

ous ethical frameworks25,26 and the need for a nuanced

approach,27 we suggest that trade-offs between ensuring

individual control over data and the social obligations of

individuals have yet to be resolved at the level of ethical
538 The American Journal of Human Genetics 108, 535–548, April 1,
governance provisions. Discussion of these concerns is

guided by three central ethical questions, summarized in

Table 1 and elaborated within the ethics spotlight sections.
Ethics spotlight 1: Can genome sequencing

improve the uncertainty of results and return of

clinical results?

For the use of predictive algorithms as the primary

methods of analysis for IEMs and PGx to be ethically justi-

fied, these methods must provide equal or greater certainty

than current methods. Improving screening and predictive

analysis for IEMs and PGx at the testing level is contingent

upon the accuracy of results, the provisions around return-

ing results, and the impact on clinical care. Even patho-

genic results can have variable penetrance and/or VUSs

and, given the possibility of reclassification over time,

can cause significant consternation on both the part of

the clinician and patient.28 Perhaps most thoroughly

documented in cancer genetics,29 the clinical return of ge-

netic results is rarely straightforward. The prohibition

against the return of uncertain results, outlined by the

American College of Medical Genetics and Genomics

(ACMG), is such that even if there is a suspicion that an un-

certain variant is pathogenic, it should conservatively be

classified as a VUS because this information is used inmed-

ical decisions.2

The follow-up of uncertain results is complicated by

clinician/researcher and patient expectations and under-

standings of actionability. Genomic literacy across

different healthcare professional roles is limited.15,30 The

disclosing of sequencing results should be contingent

upon what has been previously explained to the patient/

parent about incidental findings and potential treat-

ments.31 As healthcare delivery is already biased with re-

gard to decisions about referrals or withdrawals of care,

including decisions made through racial discrimination,

it will be challenging for algorithms to correct for existing

biases in the handling of results.32 Uncertain and inci-

dental (or secondary) results in clinical care should be

considered in the context of existing slippages of fiduciary

obligations—such as clinician biases and/or patient

mistrust—that emerging tests may or may not be able to

compensate for.33 The NHGRI has called for greater diver-

sity among the genomic scientist workforce.4

In order to contain immediate risks around uncertainty

of results and focus resources, is there a case for tiered ap-

proaches? For example, beginning with targeted

sequencing and, upon accuracy improvements, expanding

programs to include non-targeted sequencing, or at the in-

dividual level, only sequencing specific genes as a second-

tier option if a positive test result arises in genome

sequencing? Certainly, implementing genome sequencing

at the routine screening level requires greater computa-

tional accuracy, accessibility, and more nuanced ethical

safeguards.4,27 In the US healthcare context, it is difficult
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to resolve the issue of healthcare insurance coverage. Can

financial disparity in the follow-up of results be partially

alleviated with temporary coverage through risk-sharing

agreements between payers and manufacturers of tests?34

Can ethical priorities of the clinician and patient transac-

tion be made compatible with the needs of the genomic

learning healthcare system—which must maximize scarce

resources—such that genomic sequencing improves

healthcare across all of society?
Evaluating variants of uncertain significance

Variants in functionally important genes are often sus-

pected to lead to clinical consequences. For IEMs and

PGx, there are hundreds of genes in which nonsense and

missense variants are associated with clinical outcomes.

Although additional genetic, epigenetic, and environ-

mental factors alter disease risk and drug response, the

gene sequence is the primary determinant of phenotype

for these genes. Thousands of pathogenic rare variants in

these genes have been characterized with clinical conse-

quences often well understood and cataloged. Yet exome

and genome sequencing continue to identify novel vari-

ants in these genes at a rapid pace. The ACMG has devel-

oped guidelines to interpret these variants, but by design,

conclusive evidence is required to assert a variant is patho-

genic, even in known disease genes.2 For example, defects

in PAH (MIM: 612349) cause phenylketonuria (PKU [MIM:

261600]), an IEM that can lead to severe intellectual

disability and seizures when untreated. In gnomAD,35 a

population database of variants seen in more than

100,000 individuals, 57% of observed protein-altering var-

iants in PAH have unknown pathogenicity. Individuals

who are homozygous for these variants at birth will have

an unknown risk of developing PKU, and carriers of these

variants cannot be advised of their risk of having a child

with PKU. Thus, predicting the functional consequence

of rare variants in IEMs and PGx is an important challenge.

To begin to address this issue, numerous publicly avail-

able databases actively catalog genetic variants and associ-

ated disease and drug response phenotypes. These data-

bases are typically human curated and bring together

information that would otherwise be dispersed across the

literature, allowing researchers and clinicians to quickly ac-

cess existing knowledge. Several databases focus on the

pathogenicity of variants genome wide, including thou-

sands of variants in IEM and PGx genes. These include

ClinVar, ClinGen, the Human Gene Mutation Database

(HGMD), and Online Mendelian Inheritance in Man

(OMIM).36–38 Such platforms have a shared goal of linking

genes with disease, although they take different ap-

proaches. ClinVar allows submissions from clinical labora-

tories, research groups, and specialized databases, present-

ing all submitted data through an online interface. Most

submissions are not manually vetted and are presented as

submitted. ClinGen and OMIM attempt to provide author-
The Ame
itative curation of known variants and their relationship to

disease. Curators review literature and experimental data

to determine pathogenicity of genetic variants. ClinVar

and ClinGen share and collaboratively curate data. In addi-

tion to being used for standardizing the set of variants with

known consequences, these databases are also used by re-

searchers and clinicians to evaluate the evidence that an

uncatalogued VUS causes disease based on its similarity

to cataloged variants (e.g., if a VUS results in the same

amino acid change as a cataloged pathogenic variant,

this VUS now has strong evidence for being patho-

genic).2 Similarly, efforts have been made to catalog the

relationship between genetic variation and drug response,

exemplified by databases including PharmVar and

PharmGKB.39–41 Like ClinVar, PharmVar relies on user sub-

missions of discovered haplotypes in genes related to

pharmacogenomics.

These variant databases encapsulate the combined

expertise of thousands of clinical researchers across the

world but also reveal a large amount of uncertainty. The

majority of possible missense variants in IEM and PGx

genes are classified as VUSs or are altogether missing

from databases. ClinVar alone contains more than 6,000

variants classified as VUSs in IEM genes and more than

10,000 VUSs in PGx genes (Figures 2A and 2B). Variants

in ClinVar change classification as researchers submit

new evidence, but very few VUSs are resolved as fully path-

ogenic or benign (Figures 2C and 2D). Instead, many vari-

ants are subject to conflicting classifications. Indeed, 41%

of IEM and PGx variants in ClinVar are of uncertain signif-

icance or have conflicting interpretations of clinical impor-

tance. For novel variants, it is often challenging to estab-

lish pathogenic certainty until they are observed by

multiple clinicians who submit consistent classifications

to a variant database. For VUSs without further clinical or

experimental evidence, computational methods offer a

possible resolution.

Most computational approaches predict the functional

impact of single-nucleotide polymorphisms (SNPs) and

small insertions and deletions (INDELs) by using predictive

machine learningmodels. The popular tool CADD uses a lo-

gistic regression model and more than 60 genomic features

to learn the features that distinguish randomly generated

variants from recently fixed variants in humans.42 The re-

sulting predictor has been used to predict the pathogenicity

of clinical variants and is currently used in clinical analysis

pipelines.43 REVEL, a meta-predictor, uses the ensemble of

scores from several prediction algorithms like CADD, each

with different strengths and weaknesses, and is trained to

differentiate rare unlabeled variants from HGMD patho-

genic variants.44 Both CADD and REVEL are capable of pre-

dicting the effects of variants in any gene, which is typical of

predictors used in clinical research. However, predictors that

are gene-, gene family-, or locus-specific generally perform

better for both IEMs and PGx in comparison to predictors

that rely on data from the entire genome.45–52 Despite their

promise, such bespoke methods are constrained by the
rican Journal of Human Genetics 108, 535–548, April 1, 2021 539



Figure 2. ClinVar variants of uncertain significance in genes related to IEMs and PGx
(A–D) The number of VUSs in ClinVar between 2015 and 2020 in IEM and PGx genes, respectively (A and B). All ClinVar variants in IEM
and PGx genes that were reclassified between February 2018 and February 2019 (C and D). Height of bars is proportional to number of
variants reclassified. A total of 293 variant reclassifications is shown in (C), and 434 variant reclassifications are shown in (D).
limited data available for most genes, such as the number of

known pathogenic variants and associated functional data.

Because these methods are designed to predict the func-

tional impact of a variant, their predictions can be some

layers removed from the clinical consequence. Additionally,

pharmacogenes are not under the same evolutionary

constraint as genes involved in disease, limiting the

effectiveness of most predictive algorithms.47,53

To combine the best features of variant databases and

computational predictors, automated systems that use

both in tandem are already being tested to predict the

pathogenicity of rare variants. Consider one recent study

evaluating IEM detection by sequencing dried blood spots

(DBSs) obtained from newborns.1 This study compared the

performance of MS/MS to exome sequencing as a primary

screen for IEMs on a set of 805 newborns with confirmed

IEMs. Variants identified by sequencing were automatically

assessed on rarity, protein consequence, and predicted path-

ogenicity (including CADD) and matched with cataloged

pathogenic variants inClinVar andHGMDtopredict disease

status. Overall, this combination was neither sufficiently
540 The American Journal of Human Genetics 108, 535–548, April 1,
sensitive nor specific compared to MS/MS, and exome

sequencing notably missed a number of cases in which a

pair of rare, protein-altering variants were absent from the

causal gene. However, performance varied among IEMs

and, in some cases, provided more specific diagnoses than

conventionalMS/MSanalyte testing.32%ofpathogenicvar-

iants were absent from HGMD and ClinVar. Critically,

sequencing led to several false positives inwhich an individ-

ualharboredapairof rare,protein-alteringvariants inan IEM

genebutdidnothave theassociateddisorder.These falsepos-

itives significantly limit the ability to use DNA sequencing

for screening and could be mitigated by more accurate

computational methods that distinguish pathogenic from

benign protein-altering variants.
Ethics spotlight 2: Can we view the classification of

VUSs as a social justice opportunity?

Whether the classification of VUSs and IEMs can offer a

fairer distribution of the benefits of sequencing
2021



technologies across all population groups is a significant

question. Most large datasets in the US contain homoge-

neous ancestry that is unrepresentative of the whole pop-

ulation.54,55 In addition to the need to improve predictive

methods for IEMs, screened individuals need to be consid-

ered as part of a social group in relationship to a wider and

unequal social system. The moral obligations embedded

within the ethics of clinical research and practice need to

be better integrated.25 For individuals seeking healthcare,

polygenic risk scores are more accurate for patients of

European ancestry because the data from which algo-

rithms are trained are derived largely from individuals of

European ancestry.56,57 Similarly, variant impact predictors

tend to be derived from cataloged variants in databases,

which are not representative of all ancestries. For example,

ClinVar was recently found to bemissing a large number of

hearing impairment variants that primarily affect individ-

uals of African ancestry,58 most likely indicative of a

broader pattern. For variant predictors, this bias will lead

to greater reliance on European ancestry variants and

European genetic context, producing less accurate classifi-

cation of IEM and PGx variants in other ancestral popula-

tions (e.g., African), which would only compound existing

injustice in healthcare access for underrepresented popula-

tions.59,60 Disparity in ancestry representation is especially

stark in data sources for genome-wide association studies,

where European ancestry disproportionately represents

81% of the dataset population.54

Can we alleviate healthcare disparity by closing current

ancestry gaps in genetics research? Given evidence that

polygenic risk scores can be improved upon by incorpo-

rating datasets from a broader range of genetic ances-

tries,61 it is imperative that the genetics field strives for

fairer training data. As the field matures to consider the

role of genetic modifiers,62 as well as social and environ-

mental interactions,63 genotypes of diverse individuals

are needed to consider the effects of genetic modifiers

and the environment on variants. Newborn screening

programs, with their mandatory collection and the near

universal application of testing, provide a diverse and truly

representative set of individuals.16 That said, racial

discrimination in healthcare and healthcare research is

not simply resolvable through technical fixes. Redressing

data underrepresentation and health equity in machine

learning precision medicine must be viewed in the context

of governance and broader social change, which we discuss

in ‘‘ethics spotlight 3,’’ regarding questions of social

obligation.
Opportunities in rare variant evaluation

In predicting the effect of a variant on gene function, we

can predict its effects on the system, such as a metabolic

pathway, and then on the physiology and/or pathophysi-

ology. Cataloging observed likely clinically impactful vari-

ants in databases such as ClinVar and PharmVar38 can be
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effective for determining the pathogenicity of more

frequent rare variants (allele frequency between 0.01%

and 1%). These variants are common enough that they

have been identified in multiple individuals, and therefore,

the effect on phenotype can be verified. However, ultra-rare

variants, defined as having an allele frequency less than

0.01%, are responsible for a large portion of rare genetic dis-

orders. Publicly available databases of PKU patients indicate

that 60% of cases involve at least one ultra-rare SNV, and in

28% of cases, the affected individual carries an ultra-rare

variant on both copies of PAH. Some of these ultra-rare var-

iants may be de novo mutations, and the individual may be

the only person known to harbor that exact variant.64 The

vast majority of ultra-rare variants are absent from clinical

databases, indicating that the current approach of cata-

loguing observed genetic variants fails when allele fre-

quencies are especially low. For PAH, which is one of the

most studied metabolic genes, only 9% of possible SNVs

have functional impact classified in ClinVar.

Emerging computational algorithms may serve as a

means for evaluating the impact of rare variants in IEM

and PGx genes. As noted above, existing algorithms have

limited ability to accurately predict the impact of variants

in these genes, especially among rare variants. Methods

have been developed to specifically evaluate variants in

pharmacogenes, but these are largely based on existing

methods and may have some of the same inherent

biases.47 Machine learning has revolutionized computer

vision and natural language processing by effectively

analyzing spatial and sequential data.65–67 Machine

learning is a type of artificial intelligence in which algo-

rithms are taught, or ‘‘trained,’’ to make predictions based

on existing data. Machine learning forms the basis of exist-

ing variant effect prediction algorithms, where an algorithm

is trained to predict whether a genetic variant will be

deleterious or not on the basis of a training dataset of

known deleterious and benign genetic variants. In recent

years as computational power and the amount of available

data has increased, a type of machine learning that uses

deep neural networks, known as deep learning, has become

widespread.With the rapid growth in the availability of bio-

logical data, deep learning has also been extensively used in

bioinformatics,68–75 including transcription factor binding

site prediction,76 genome functional annotation,77 and

assessment of variant function.78,79 Several methods have

been developed specifically for the evaluation of alleles in

pharmacogenes, namely CYP2D6 (MIM: 124030).80,81

These purpose-built models outperform existing methods

and are capable of assessing the impact of any combination

of variants observed in a haplotype rather than single vari-

ants. Onemajor drawback of deep learning is that it requires

an immense amount of data in order to estimate the large

number of parameters required for good performance.82,83

Transfer learning offers an opportunity to leverage the

power of deep learning in situations where data are

limited. It is difficult to obtain sufficient data to develop

phenotype prediction algorithms from genomic data via
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deep learning, especially when we only have tens or hun-

dreds of individuals with both genome sequencing data

and well-characterized clinical or molecular phenotypes.

Transfer learning is an emerging approach for overcoming

the challenge of limited data. The idea is to build models

that perform a task (X) that is similar to the goal task (Y)

but for which there are large amounts of relevant real or

simulated data. Once the model for solving task X is per-

forming well, it can be refined with data relevant to task

Y. In the case of predicting variants, we might build a

model using data from a well-studied gene (X) and then

refine the model with data from a poorly studied gene

(Y). The resulting model may perform very well on Y

because the ‘‘lessons’’ learned in modeling X transfer well

to Y.84–89 There are several flavors of transfer learning

that have been applied to applications in genetics and pro-

teomics. Convolutional neural network (CNN)-based

approaches pre-train weights of convolutional layers on

large datasets that can be finetuned on smaller datasets.90

Transformer-based approaches, frequently used in natural

language processing, have been applied to functional

predictions of variants in proteins.91,92 Graph-CNNs have

been used to make drug-binding predictions with protein

structure data after being pre-trained with an unsupervised

learning step.93 These transfer learning methods could in

theory be used to create structure-based predictions of

the effect of amino acid changes on drug binding. These

methods combined with in silico representations of drug

molecules could be used to create substrate-specific

predictions of drug-protein interactions and how genetic

variants may influence that behavior.

The underlying homology between gene orthologs and

paralogs may allow for an increased ability to perform

transfer learning.Wemay be able to use knowledge learned

in some domains to inform others. Not surprisingly, some

rare diseases have received more attention than others,

often because of the incidence of the disease, serendipitous

factors, and scientific opportunities. These well-studied

diseases typically have significantly more variant impact

data available than others. PKU has an incidence of 1 in

10,000 newborns, and there are hundreds of disease-associ-

ated cataloged variants. In comparison, tyrosine hydroxy-

lase deficiency (THD [MIM: 605407]) affects fewer than 1

in 100,000 newborns and has been associated with fewer

than 20 variants in TH (MIM: 191290). Sequencing bene-

fits individuals with THD less simply because the disease

is rarer and few known pathogenic variants exist. The

chemical similarity of phenylalanine and tyrosine leads

to a high degree of homology between PAH and TH, which

presents an opportunity to transfer knowledge about PKU

variants to better understand THD—for example, in under-

standing which parts of the protein may be more or less

tolerant of non-synonymous mutations. However,

although transfer learning may offer some advantages in

the assessment of rare variation, this approach relies on

the existence of genes that are similar enough to the

gene of interest with sufficient data. Transfer learning
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may be valuable for some domains, but there is still a

need to generate large amounts of high-quality data.

Ideally, for knowledge to be truly transferable, data

collection would be ongoing and from whole-population

datasets rather than being limited to existing datasets.

Ultimately, the goal of any variant interpretation

method is to improve clinical care. Integration of genetics

into the clinic is already quite challenging, and integration

of computational methods for predicting variant function

is rife with further challenges. Learning health systems

have long been proposed as models for improving health-

care,94–96 but integration of genetic data into such a system

would allow for the accumulation of data to train more

sophisticated predictive models as well as an opportunity

to iteratively improve upon such algorithms.

A genomic learning healthcare system would allow for

rapid collection and phenotyping of rare variants.

Learning health systems have been proposed in healthcare

since 2007, but few have fully integrated genetics to

inform patient treatment.95 In existing systems, the algo-

rithms are constantly improving on the basis of a feedback

loop of data that are collected over the course of patient

treatment. A genomic learning healthcare system (GLHS)

would operate in much the same way, but with the addi-

tion that clinical decision support is provided on the basis

of genetic data as well as clinical data.34 In this proposed

system, collection, sequencing, and analysis of patient

data would be required as a first step and would need to

be available as part of the patient’s clinical record in the

electronic health system. This would enable clinical deci-

sion support for IEM- and PGx-related conditions,

providing doctors with diagnosis and treatment guidance.

The algorithms underlying the clinical decision support

can be evaluated regularly and updated on the basis of

newly available patient data. In addition to evaluating

the algorithms, sequencing and analyzing important genes

for every individual treated will allow formore rapid collec-

tion and phenotyping of ultra-rare variants—if ancestrally

diverse datasets are available.

The ultimate goal of a GLHS is to improve treatment for

all patients by leveraging their genetic data. This includes

determining the pathogenicity of rare variants that may

be previously unseen in patients and potentially making

clinical decisions based on their predicted impact. As a

conservative first step, a genomic learning healthcare sys-

tem could implement existing clinical guidance models

for IEMs and PGx, such as the pharmacogenomics dosing

recommendations from CPIC. Once genetic data are

collected for each patient, predictive models for rare vari-

ants can be developed and implemented in clinical prac-

tice at such a time when there is sufficient confidence in

the predictions of the model. Careful analysis will be

needed in selecting and evaluating predictive models for

both IEMs and PGx, and it is likely that gene-specific

models will be needed. The specific clinical action based

on a predicted phenotype will then depend on the applica-

tion area and the onset and severity of the condition.
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Figure 3. Proposed workflow for a
genomic learning healthcare system
Patients’ DNA samples are collected and
sequenced with genomic data input to
computational models. The model outputs
a predicted phenotype for the patient; re-
sults are reviewed by clinicians and applied
to the patient. Outcomes are evaluated
and the model continues to learn from a
feedback loop to improve outcomes for
future patients. Icons are from The Noun
Project.100–103
Severe IEMs may require immediate intervention (such as

PKU), whereas for others, a preventative approach is de-

ployed. Some IEMs respond to pharmaceutical interven-

tions, and genotype may predict likelihood of response

to a specific medication.97,98 For late-onset IEMs, genotype

may predict age of onset, which can inform appropriate

patient monitoring.99 Similarly for PGx, if the potential

consequences of prescribing a drug are life threatening,

the clinician may select an alternate therapy. Likewise, if

the consequences are mild, they may proceed with

caution. We illustrate this framework in Figure 3 before

turning to the ethical questions to be taken into account.
Ethics spotlight 3: How can genomic learning

healthcare systems ensure adequate genomic

input and data governance?

Data governance and consent for secondary data use will

significantly shape whether or not genomic learning
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healthcare systems can improve accu-

racy and reduce biases. Learning

health care systems present unique

ethical challenges that traditional

clinical and research ethics—focusing

on individual harms and a sharp

research/clinical care divide—will find

difficult to address.25 Data collection

and input (step 1 and step 2 of Figure 3)

differs between clinical and public

health repositories in terms of provi-

sions around secondary use. One

option to improve data privacy and

security is through the use of federated

learning. This approach involves a

centrally pooled dataset with non-co-

located data only; data are not shared

directly, and model parameters could

be protected by research collaboration

agreements, advances in data encryp-

tion, and a trusted third-party to

oversee data access.104

The use of artificial intelligence in

healthcare systems is also complicated
by issues arising from the possible encoding and routiniza-

tion of human bias, even with the use of seemingly neutral

data sources.55 Artificial intelligence has been described as

‘‘the collective medical mind.’’32 More than simply doing

no harm, a GLHS should actively support greater health

equity.4,105 Of central importance is whether clinical

data, or model parameters if deploying a federated learning

approach, could be viewed and secured as a public good in-

sofar as all stakeholders, both healthcare and private indus-

try, hold amoral obligation to use and share clinical data in

ways that benefit society over and above individual or

commercial interests.26 If viewing clinical data as a public

good, determining how to deal with computational predic-

tors and healthcare outcomes that accurately capture dif-

ferences not so much resulting from human input biases

but rather serving unfair social conditions would be of

greatest difficulty.

For public health data use, it is important to identify

and address social and political inconsistencies in the

ethical oversight from institutional review boards and
n Genetics 108, 535–548, April 1, 2021 543



government bodies, particularly in regard to informed con-

sent and anonymization of data.106 This requires careful

consideration for how questions of beneficence regarding

collections and distribution of quality care across popula-

tions can vary and ultimately widen health disparities.107

Taking the case of newborn DBSs, the current justification

for the mandatory nature of newborn screening rests on

the potential harms to the child were they not screened

for these treatable conditions (see Johnston et al., 2018

for a full historical justification).27 Safeguards are needed

to protect the storage and research use of genetic data,

which could become more identifiable.108 With such pro-

tections, could the practice of informed consent with indi-

viduals be seen as less important than another process to

ensure respect for autonomy at a group level in order to

meet social obligations to contribute to both greater

knowledge and efforts to reduce social inequity in

health?25 Because biobanks of newborn DBSs provide a

rich and unique dataset for research and improving

newborn screening (and other genetic testing)—with

enormous potential for contribution to a GLHS—the loss

of such potential, if secondary use of newborn DBSs is

only permissible on an individual consent basis, needs to

be carefully weighed up against ethical concerns about

respect for individual control. How do we ensure respect

for individuals in a GLHS that relies on the collective

contributions of entire populations in order for everyone

to potentially benefit? Those implementing machine

learning research in a GLHS must engage these questions

directly.
Conclusion

The defining problem of the genomic age is the interpreta-

tion of human genetic variation. In reviewing computa-

tional advancements and ethical concerns, we look to

develop gene-specific variant interpretation algorithms

with a genomic learning healthcare system that builds

from a focus on early-onset treatable disease in newborns

and actionable pharmacogenomics recommendations.

We seek diagnosis of IEMs and treatment for PGx that is

tailored to each individual and treatment outcomes that

are shared to improve treatment for future patients across

all of society. The existing system is the first step toward

this goal, as evidenced by confirmatory sequencing of

patients and variant cataloging in databases such as

ClinVar. Yet the existing system falls short because it is

reactive rather than predictive and accurate treatment de-

pends on whether the variant has been previously seen

and cataloged. Importantly, it remains to be determined

whether computational methods can alleviate health

inequity that is reinforced by these limited variant data-

bases. Pervasive sequencing may indeed present a social

justice opportunity: to actively promote a more fair and

consistent distribution of treatment across all population

groups. Yet, there are many barriers blocking the way,
544 The American Journal of Human Genetics 108, 535–548, April 1,
including unrepresentative sequencing databases, second-

ary data use permissions, barriers to healthcare access, and

existing biases at the human interface of research and

caregiving.

There are technical challenges, including accurate

variant classification, data limitations, and growing

numbers of variants of uncertain significance. A combina-

tion of a GLHS and transfer learning can overcome existing

data limitations in order to improve the computational

prediction of variants. An increased understanding of

each patient’s variants will enable more precise diagnosis

and treatment. Most importantly, as more patients provide

information into the system, lessons learned from one pa-

tient may inform the care of all patients. A dynamic and

fair genomic learning healthcare system will create the

greatest patient benefit from the captured genomic and

phenotypic information, but this will fundamentally

depend on careful consideration of societal implications.
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Loosen, S.H., Marx, A., Boor, P., Tacke, F., Neumann, U.P.,

et al. (2019). Deep learning can predict microsatellite insta-

bility directly from histology in gastrointestinal cancer.

Nat. Med. 25, 1054–1056.

4. Green, E.D., Gunter, C., Biesecker, L.G., Di Francesco, V., Eas-

ter, C.L., Feingold, E.A., Felsenfeld, A.L., Kaufman, D.J.,

Ostrander, E.A., Pavan, W.J., et al. (2020). Strategic vision

for improving human health at The Forefront of Genomics.

Nature 586, 683–692.

5. Lavertu, A., McInnes, G., Daneshjou, R., Whirl-Carrillo, M.,

Klein, T.E., and Altman, R.B. (2018). Pharmacogenomics

and big genomic data: from lab to clinic and back again.

Hum. Mol. Genet. 27 (R1), R72–R78.

6. Van Driest, S.L., Shi, Y., Bowton, E.A., Schildcrout, J.S., Peter-

son, J.F., Pulley, J., Denny, J.C., and Roden, D.M. (2014).

Clinically actionable genotypes among 10,000 patients

with preemptive pharmacogenomic testing. Clin. Pharma-

col. Ther. 95, 423–431.

7. Reisberg, S., Krebs, K., Lepamets, M., Kals, M., Mägi, R., Met-
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