
OBSERVATIONS: CASE REPORTS

SARS-CoV-2 Reinfection in a Liver Transplant Recipient
Background: Immunocompromised persons may be at

higher risk for recrudescent infections and reinfections with
SARS-CoV-2. However, the 2 entities can be difficult to distin-
guish, and cases have been infrequently documented.

Objective: To distinguish SARS-CoV-2 reinfection from recru-
descence in a liver transplant recipient with 2 distinct episodes of
COVID-19 using clinical history and viral genomic sequencing.

Case Report: The patient is a 61-year-old man who has a his-
tory of liver transplant due to chronic hepatitis B and C virus infec-
tions and is receiving maintenance immunosuppression with
tacrolimus and mycophenolate mofetil. He presented to the
emergency department (ED) with fever, nausea, vomiting, and
cough. He was stable in the ED and was discharged home, and
symptoms resolved within 12 days. We detected SARS-CoV-2 by
reverse transcriptase quantitative polymerase chain reaction (RT-
qPCR) on a nasopharyngeal swab collected during his ED visit.
Results were negative on repeated testing for SARS-CoV-2 by RT-
qPCR done 48 and 53 days after the initial positive result.

On day 111 after the initial SARS-CoV-2 diagnosis, the patient
presented to the ED with several days of increasing confusion, hal-
lucinations, unstable gait, and frequent falls. There was no fever,
dyspnea, nausea, abdominal pain, or diarrhea. Magnetic resonance
imaging of the patient's brain showed an acute punctate infarction
of the right upper pons, and SARS-CoV-2 was detected by

RT-qPCR on a nasopharyngeal swab on admission and again 2
days later. A serum IgG assay detecting antibodies to the SARS-
CoV-2 receptor-binding domain was negative. The patient's hospi-
tal course was complicated by worsening lethargy and hypoxia. He
received convalescent plasma, remdesivir, and dexamethasone
and was discharged on hospital day 23 (134 days since first infec-
tion). One month later, results of repeated testing for SARS-CoV-2
by RT-qPCR were negative (Figure 1) (1–4). Results of an anti–  
SARS-CoV-2 IgG assay were positive after treatment with convales-
cent plasma and remained positive 5 months later.

Excess material from clinical diagnostic specimens was sub-
jected to whole-genome sequencing to determine if the 2 symp-
tomatic periods represented distinct infections. Genomes from the 
later time points differed from those at the first time point by 11 to 
12 single base substitutions; this exceeds the rate estab-lished by 
the U.S. Centers for Disease Control and Prevention for identifying 
potential reinfection cases (1). The phylogenetic rela-tionship of 
the genomes showed that virus from the later infection was more 
closely related to virus circulating in the community than to that 
seen in the first infection (Figure 2). Haplotype finger- printing of 
residual host genetic material in the samples confirmed that all 
came from the same patient.

Discussion:We present a case of a liver transplant recipient
with 2 distinct SARS-CoV-2 infections, separated by 111 days
without symptoms and 2 negative test results for SARS-CoV-2
infection. The clinical course suggested reinfection, and viral
genomic sequencing was used to distinguish whether the later
positive samples were due to SARS-CoV-2 relapse or reinfec-
tion. Three lines of genomic evidence support reinfection rather

Figure 1.Genetic variation over time observed in SARS-CoV-2 genomes from patient samples.
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Five nasopharyngeal specimens were collected spanning 118 d. For viral sequencing, 2 replicate sequencing libraries were prepared from source ma-
terial for each sample as previously described (1). SARS-CoV-2 genomes were assembled using viral-ngs, v2.1.10.0, assembly pipelines (2). Consensus
SARS-CoV-2 genomes were assembled for all positive time points, whereas no genomic data were produced from the negative RT-qPCR test result (T2).
The genome from the first time point was 96.6% complete (mean depth: 18 reads), and remaining genomes were 99% complete (mean depth: tens to
thousands of reads). Each assembled genome was characterized by comparison to the ancestral reference genome, NC_045512.2 (isolated from one
of the first known COVID-19 cases in Wuhan, China). The 3 later time points are nearly identical and share a common set of single-nucleotide variants
(SNVs), with T3 having a single additional SNV. Compared with T1, these 3 genomes had more substitutions (11-12 SNVs) than expected from the mean
substitution rate of SARS-CoV-2, which is approximately 1 substitution every 2 wk (3). Of note, 5 of the substitutions seen in the first time point were
replaced by the ancestral allele in later time points; these apparent reversions strongly suggest that the later genomes reflect an independent infection
with a virus from a distinct lineage rather than evolution of the virus of the first time point, especially given the ubiquity of SARS-CoV-2 in the surrounding
community. Three amino acid changes present at the first time point were absent from the later time points, and the later time points all bear 3 new
amino acid substitutions not seen in the first time point, as well as a deletion. Time points T3–T5 had a notable amino acid substitution in the receptor-
binding domain of the spike glycoprotein at position 501 (S:N501T), an amino acid substitution believed to increase affinity for the angiotensin-
converting enzyme 2 receptor (4). In the most deeply sequenced later time point, T4, none of the distinguishing variants of the first time point were
present in high abundance, and nearly half were absent entirely. For none of the apparent reversions to the ancestral allele did a minor population exist
in the most densely sequenced later time point, T4. RT-qPCR= reverse transcriptase quantitative polymerase chain reaction.
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than recrudescence: placement of the 2 infections on distant
parts of the phylogenetic tree such that the second infection
does not seem to be descended from the first, a preponder-
ance of substitutions in the SARS-CoV-2 genomes relative to
the number expected given the published substitution rate of
the virus (1,3), and apparent reversions to the ancestral allele
among several of these substitutions. Of note, the substitutions
seen in the later time points were present before the selective
pressure imposed by administration of remdesivir and conva-
lescent plasma. Taken together with the clinical history, the
genomic data are consistent with the second symptomatic pe-
riod being the result of reinfection. An antibody response after
the first infection was not detected, which we speculate contrib-
uted to the patient's susceptibility to repeated infection. As
shown here, genomic sequencing offers the ability to discern
whether subsequent infections may be reinfection. The paucity
of reinfection cases in the literature may be due in part to
underdetection, highlighting the need for more comprehensive
sequencing of possible cases of SARS-CoV-2 reinfection. In

addition to helping distinguish between reinfection and recru-
descence, genomic sequence data can identify variants circulat-
ing in the population that are of high risk because of infectivity,
disease severity, or resistance to treatment.
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Figure 2. Tree of SARS-CoV-2 genomes generated from this patient and contextual SARS-CoV-2 genomes from surrounding states
(MA, CT, RI, VT, NH, ME, and NY) as of 5 February 2021 from the National Center for Biotechnology Information GenBank.
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Similarity by genetic distance and placement on the phylogenetic tree show that the second infection is more closely related to and descended from
infections circulating in the community than from the viral genome sequenced from the first infection. The sequences were aligned to the reference
NC_045512.2 usingMAFFT. A maximum likelihood tree was created via IQ-Tree with the general time-reversible model with empirical base frequencies
and 3 FreeRate categories, as selected by minimum Akaike information criterion. CT= Connecticut; MA= Massachusetts; ME= Maine; NH= New
Hampshire; NY= New York; RI= Rhode Island; VT= Vermont.
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Note: The SARS-CoV-2 genome sequences produced in connection
with this case are available via the National Center for Biotechnology
Information GenBank under accessions MW565821 (T1), MW565822
(T3), MW565823 (T4), and MW565824 (T5) and via GISAID under acces-
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