Skip to main content
. 2020 Oct 5;33(2):108–114. doi: 10.4103/tcmj.tcmj_88_20

Table 2.

Summary of studies for computer aided convolutional neural network polyp detection

Algorithm and method Image Dataset Processing speed Outcomes
Misawa et al. 2018 [24] 3D CNN (ex vivo) Video 73 videos divided into 546 short videos
Training: 105 polyps positive, 306 polyps negative; testing: 50 polyps positive, 85 polyps negative
Sensitivity: 90%; specificity: 63.3%; accuracy: 76.5%
Urban et al. 2018 [25] CNN VGG19 (ex vivo) Still and video Training: 8641 images
Testing
 Set 1: 9 videos
 Set 2: 11 videos (missed polyp simulation)
10 ms/frame Sensitivity at 75%
False negative rate: 96.9%
Accuracy: 96.4%
Frame by frame false positive rate: 5%
Yamada et al. 2019 [26] Faster R-CNN VGG 16 (ex vivo) Still and video Training: 4087 images, and 135,874 video frames
Testing: 4840 still images, and 77 videos
21.9 ms/image
30 frames/s
Sensitivity: 97.3%; specificity: 99.0%; AUC: 0.975
Becq et al. 2020 [27] SegNet CNN (ex vivo) Video 50 prospectively collected videos PDR: 81%
Sensitivity: 98.8%
Positive predictive value: 40.6%
Klare et al. 2019 [28] CNN Live 55 live colonoscopies 50 ms of latency Sensitivity: 75.3%; ADR: 29%
Wang et al. 2019 [29] CNN
Real time RCT
Live Training: 5545 images
Test: 536 routine colonoscopy
25 frames/s
77 ms latency
ADR: 20.3% (conventional) versus 29.1% (CAD), P<0.001
Mean number of polyps per procedure: 0.51 versus 0.97, P<0.001
Liu et al. 2020 [30] 3D CNN
Real time RCT
Live Training: 101 polyp positive; 300 polyp negative
Testing: 46 polyp positive; 88 polyp negative
PDR: Control (28%) versus CAD (44%), P<0.001
ADR: Control (24%) versus CAD (39%), P<0.001

3D: Three-dimensional, ADR: Adenoma detection rate, CAD; CADe: Computer-aided detection, CNN: Convolutional neural network, PDR: Polyp detection rate, R-CNN: Region-convoluted neural networks, VGG: Visual geometry group