Table 2.
Algorithm and method | Image | Dataset | Processing speed | Outcomes | |
---|---|---|---|---|---|
Misawa et al. 2018 [24] | 3D CNN (ex vivo) | Video | 73 videos divided into 546 short videos Training: 105 polyps positive, 306 polyps negative; testing: 50 polyps positive, 85 polyps negative |
Sensitivity: 90%; specificity: 63.3%; accuracy: 76.5% | |
Urban et al. 2018 [25] | CNN VGG19 (ex vivo) | Still and video | Training: 8641 images Testing Set 1: 9 videos Set 2: 11 videos (missed polyp simulation) |
10 ms/frame | Sensitivity at 75% False negative rate: 96.9% Accuracy: 96.4% Frame by frame false positive rate: 5% |
Yamada et al. 2019 [26] | Faster R-CNN VGG 16 (ex vivo) | Still and video | Training: 4087 images, and 135,874 video frames Testing: 4840 still images, and 77 videos |
21.9 ms/image 30 frames/s |
Sensitivity: 97.3%; specificity: 99.0%; AUC: 0.975 |
Becq et al. 2020 [27] | SegNet CNN (ex vivo) | Video | 50 prospectively collected videos | PDR: 81% Sensitivity: 98.8% Positive predictive value: 40.6% |
|
Klare et al. 2019 [28] | CNN | Live | 55 live colonoscopies | 50 ms of latency | Sensitivity: 75.3%; ADR: 29% |
Wang et al. 2019 [29] | CNN Real time RCT |
Live | Training: 5545 images Test: 536 routine colonoscopy |
25 frames/s 77 ms latency |
ADR: 20.3% (conventional) versus 29.1% (CAD), P<0.001 Mean number of polyps per procedure: 0.51 versus 0.97, P<0.001 |
Liu et al. 2020 [30] | 3D CNN Real time RCT |
Live | Training: 101 polyp positive; 300 polyp negative Testing: 46 polyp positive; 88 polyp negative |
PDR: Control (28%) versus CAD (44%), P<0.001 ADR: Control (24%) versus CAD (39%), P<0.001 |
3D: Three-dimensional, ADR: Adenoma detection rate, CAD; CADe: Computer-aided detection, CNN: Convolutional neural network, PDR: Polyp detection rate, R-CNN: Region-convoluted neural networks, VGG: Visual geometry group