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The decline in species richness at higher latitudes is among
the most fundamental patterns in ecology. Whether changes
in species composition across space (beta-diversity) contrib-
ute to this gradient of overall species richness (gamma-
diversity) remains hotly debated. Previous studies that
failed to resolve the issue suffered from a well-known ten-
dency for small samples in areas with high gamma-
diversity to have inflated measures of beta-diversity. Here,
we provide a novel analytical test, using beta-diversity
metrics that correct the gamma-diversity and sampling
biases, to compare beta-diversity and species packing across
a latitudinal gradient in tree species richness of 21 large
forest plots along a large environmental gradient in East
Asia. We demonstrate that after accounting for topography
and correcting the gamma-diversity bias, tropical forests
still have higher beta-diversity than temperate analogues.
This suggests that beta-diversity contributes to the latitudinal
species richnessgradientasacomponentofgamma-diversity.
Moreover, both niche specialization and niche marginality (a
measure of niche spacing along an environmental gradient)
also increase towards the equator, after controlling for the
effect of topographical heterogeneity. This supports the joint
importance of tighter species packing and larger niche
space in tropical forests while also demonstrating the
importance of local processes in controlling beta-diversity.
1. Introduction
Beta-diversity is the variation of species composition across
space, and it is a key element of conservation planning
because it indicates whether diversity is concentrated
within a few sites or spread across many sites [1–3]. One
factor enhancing beta-diversity should be large niche space,
i.e. more species sharing more available niches, perhaps
associated with abiotic habitat heterogeneity [4–10]. Another
feature elevating beta-diversity would be dense species pack-
ing, i.e. many narrow niches result from stable climate and
high productivity [5,7–11]. Both stable climate and greater
productivity would then lead to higher beta-diversity at
low latitudes [9,12–14]. On the other hand, if beta-diversity
is driven mostly by abiotic heterogeneity, we would not
expect a latitudinal gradient in beta-diversity, because the
abiotic heterogeneity should not vary with latitude. These
alternatives remain unresolved, and studies on the causes
of the latitudinal gradient in beta-diversity appear to reach
opposing conclusions [15–21]. Underlying the debate
has been controversy about statistical biases in tools for
measuring beta-diversity.

The bias in beta-diversity metrics arises from dependence
on a sample size that interacts with gamma-diversity [20,22–
24], a bias that is easy to illustrate using simple measures of
species overlap. Small samples rarely (if ever) capture all
local species. Two small samples from two sites that have
exactly the same composition will appear to differ by ran-
domly capturing different subsets of the local communities.
The fewer species sampled, the greater this artefactual beta-
diversity will appear [22,24]. A crucial aspect of the sample
size bias is the dependence on gamma-diversity it engenders,
since small samples underestimate diversity more severely in
species-rich sites than in species-poor sites [20–22,24,25].
This bias has led authors to develop metrics that correct
beta-diversity for sample size [22,25,26] or tools based on
comparisons with null models [20,23]. Crucial in the
sample size bias is the dependence on gamma-diversity it
engenders, because larger samples are needed in species-
rich sites [21,22,24,25]. Once correcting for sample size bias,
gamma-diversity dependence should be removed, and it
should be straightforward to compare beta-diversity across
a gradient of species diversity in order to evaluate the
importance of species packing and total niche space.

We carry out this comparison using a steep latitudinal gra-
dient in tree species richness, as documented in our census of 3
million trees at 21 sites spanning 50° of latitude in East Asia
[27,28]. We define beta-diversity within each plot, so it is a
measure of how tree species partition local niche space, then
we compare the local estimates of beta-diversity across the lati-
tudinal gradient. In a previous simulation study, Cao et al. [26]
identified that the corrected beta-Shannon diversity index is
highlyeffective at removing the bias arising frombeta-diversity
metrics in small samples of high gamma-diversity commu-
nities [26]. With this corrected index, we can answer two
fundamental questions about variation in beta-diversity and
its impact on the overall species richness: (i) is there a latitudinal
gradient inwithin-plot beta-diversity? and (ii) do local environ-
mental heterogeneity, niche marginality (the distance between
the species optima relative to the overall mean habitat), and
niche specialization contribute to the latitudinal patterns of
beta-diversity? By simultaneously testing the importance of
local heterogeneity and latitude, we can establish whether
species packing and total niche space contributes to a higher
richness in tropical relative to temperate forests.
2. Material and methods
(a) Forest dynamics plots
We used data from 21 forest dynamics plots (15–52 ha) that are
part of the ForestGEO and Chinese Forest Biodiversity Monitor-
ing Networks [27,28] (figure 1a; electronic supplementary
material, table S1). All stems with a diameter at breast height
of equal to or greater than 1 cm were spatially mapped,
tagged, measured and identified to species [29]. The plots
range from tropical rain forest at 2.98° N latitude to a boreal
forest at 51.82° N latitude (electronic supplementary material,
table S1), from sea level to more than 1400 m elevation, and
local topographical variation is as low as 17.7 m and as high as
298.6 m (figure 1b; electronic supplementary material, table S1).

We divided plots into non-overlapping quadrats of different
scales (grain sizes) (10 × 10 m, 20 × 20 m, and 50 × 50 m) in order
to assess the effect of grain size on beta-diversity [19,21]. We
define alpha-diversity as the quadrat level diversity, and gamma-
diversity as plot level diversity. In the main results, we present
only the results at a grain size of 20 × 20 m, and details of results
at a grain size of 10 × 10 m and at a grain size of 50 × 50 m can be
found in the electronic supplementary material (electronic
supplementary material, table S2 and figure S2).

Plot latitudes were adjusted for mean elevation: adding
100 km of latitude per 100 m increase in elevation. Local environ-
mental heterogeneity was quantified in terms of topography,
which was the only environmental factor consistently available
across all plots. Specifically, we used the ratio of surface area to
planimetric as a metric of topographical heterogeneity, calculat-
ing at grain sizes of 10 × 10 m, 20 × 20 m and 50 × 50 m, which
provided a useful measure of the range and roughness of the
overall plot, based on digital elevation models [6,30]. Local habi-
tat and species niches were defined using six topographical
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Figure 1. The spatial distribution of forest dynamics plots (a), and their elevational ranges (b); (b) shows the latitudinal pattern of elevation range, which was
transformed by subtracting the minimum elevation of each plot. The width of each violin plot reflects probability density distribution of mean elevation for 20 ×
20 m subplots in each forest dynamics plot. Full plot names are listed in the electronic supplementary material, table S1. (Online version in colour.)
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factors as environmental variables: mean elevation, convexity,
slope, aspect, topographical wetness index and altitude above
channel [31–33].
(b) Measurement of beta-diversity
To remove gamma-diversity dependence caused by the sample-
size bias of beta-diversity metrics, we used the correction method
designed for the Shannon diversity index based on the relation-
ship between cumulative diversity and sample size [34]. The
beta-Shannon diversity index measures the heterogeneity of
pooled communities and is calculated as the effective number
of compositionally distinct and equally abundant communities
[35,36]:

1Da ¼ exp � 1
N

Xs
i¼1

pi1logpi1 � 1
N

Xs
i¼1

pi2logpi2 � . . .

 

�� 1
N

Xs
i¼1

piNlogpiN

!
ð2:1Þ

1Dg ¼ exp �
Xs
i¼1

1
N
(pi1 þ pi2 þ . . .þ piN )log(pi1 þ pi2 þ . . .þ piN)

" #

ð2:2Þ

and 1Db ¼
1Dg

1Da
ð2:3Þ

where 1Da, 1Db and 1Dg are alpha-, beta- and gamma-Shannon
diversity, respectively; pi is the proportional abundance of species
i; S and N are the total number of species and the total number of
local communities (or plots), respectively, in the pooled commu-
nities. Alpha- and gamma-Shannon diversity are mathematically
independent (i.e. gamma-diversity does not contain information
of alpha-diversity) [35]. Beta-Shannon diversity weights all species
by their abundance. We then used a sample-size dependence
correction method to reduce the bias in beta-Shannon diversity
for comparing beta-diversity among regions [25,34]. As in a
species accumulation curve, the expected cumulative alpha- or
gamma-diversity was depicted as a function of sample size,
while sample completeness was estimated from community struc-
tures of samples [25,34]. Beta-diversity was then estimated from
asymptotically approximated alpha- and gamma-diversity based
on the diversity sample-size curve. Details of the undersampling
correction method for the beta-Shannon diversity can be found
in the electronic supplementary material, S1. Simulation work
conducted by Cao et al. [26] confirmed that beta-metrics that incor-
porate an undersampling correction method were more effective
at removing the dependence on gamma-diversity and inferring
casual mechanisms compared to other uncorrected beta-diversity
metrics or null models [26].

(c) Community-level niche differentiation
Niche differentiation was described using attributes of specializ-
ation and marginality. Niche specialization was defined as
SD(available habitat)/SD(habitat used), in which SD(available habitat)
represented the standard deviation of environmental conditions
for a community and SD(habitat used) represented the standard
deviation of environmental conditions occupied by a species
(illustrated in figure 2). Niche marginality was defined as the dis-
tance between a species’ optimum and the mean environmental
conditions within the plot (figure 2) [37,38]. Both specialization
and marginality were calculated from multivariate measures of
habitat, known as ecological niche factor analysis [37]. To
better meet the assumption of normality of residual in a
regression model and approximate the linear relationship
between niche specialization and explanatory variables (elec-
tronic supplementary material, figure S1a,c,e), the log- and
Box-Cox transformations [39] were applied for niche specializ-
ation across grain sizes (electronic supplementary material,
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lower beta-diversity (ii). (Online version in colour.)
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figure S1b,d,f ). Based on the precise mapping of all individuals
in these plots, the community-level niche marginality and
specialization were respectively quantified as species-level
niche marginality and specialization weighted by relative species
abundance. Higher community-level niche specialization indi-
cates the fine partitioning of available niche space, while higher
community-level niche marginality indicates a larger deviation
from mean environmental conditions of a community and thus
suggesting a larger niche space. Topographical variables are typi-
cally strongly correlated with the variation in resources such as
water availability and soil conditions [40,41], thus can capture
potentially important axes of niche differentiation. The aspect
was computed as sin(aspect) and cos(aspect), and other topogra-
phical variables were Box-Cox transformed before being
included in analyses [39].

(d) Statistical analysis
To examine the significance of latitudinal gradients in local beta-
diversity, niche specialization and niche marginality, we first
modelled beta-diversity, community-level niche specialization
and niche marginality against topographical heterogeneity
and adjusted latitude separately using simple linear regression
models. Subsequently, to determine the relative effect sizes of
adjusted latitude and topography, we performed multiple
linear regression models with beta-diversity, niche specializ-
ation, and niche marginality as response variables,
respectively, and all variables were scaled using (x –mean(x))/
SD(x) before being included.

All statistical analyses were performed with R software, v.
3.6.4 [42]. The corrected beta-Shannon diversity was calculated
using R package ‘entropart’ and ‘vegan’ [43,44]. The
topographical variables were computed using the ‘RSAGA’
package [45] and the SAGA GIS software [46]. Ecological niche
factor analysis was implemented to calculate niche metrics
using R package ‘adehabitatHS’ [47].
3. Results
Gamma-diversity declined by more than 40-fold from tropical
to temperate latitudes, from 818 species at Pasoh to 18 at Dax-
inganling (electronic supplementary material, table S1). Beta-
diversity measured by the corrected beta-Shannon diversity
also declined with latitude, although this pattern was not sig-
nificant (figure 3a). However, the corrected beta-Shannon
diversity was significantly correlated with latitude (e.g. 20 ×
20 m, standardized effect size =−0.39, p = 0.033) in multiple
regression models, after controlling for the effect of local topo-
graphical heterogeneity (electronic supplementary material,
figure S2c).Wealso found that beta-diversitywaspositively cor-
related with community-level niche specialization, niche
marginality and local topographical heterogeneity (figures 3b–
d, electronic supplementary material, figure S3). We obtained
similar results across three grain sizes although the effect size
of topographical heterogeneity and latitude varied with grain
sizes (electronic supplementary material, figures S2, S3).

Various predictors of beta-diversity were also associated
with latitude. Both community-level niche specialization and
niche marginality significantly decreased from tropical to tem-
perate forests at some grain sizes (figure 4a,c; electronic
supplementary material, figure S6a,c). However, topographical
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heterogeneity did not have a significant relationship with lati-
tude (electronic supplementary material, figure S5). Both niche
specialization and niche marginality were positively correlated
with each other (electronic supplementary material, figure
S4g–i), and both were also positively associated with local topo-
graphical heterogeneity (figure 4b,d; electronic supplementary
material, figure S4a–f). Multiple linear regression models con-
firmed these results, showing that specialization and
marginality both significantly declined with latitude after con-
trolling for topographical heterogeneity at most grain sizes.
In the multiple regression models, the effect sizes of topogra-
phical heterogeneity were larger than those of adjusted
latitude in predicting specialization and marginality (electronic
supplementary material, table S3, figure S6b,d).

4. Discussion
Whether beta-diversity contributes to the latitudinal diversity
gradient has been intensely debated in recent years, largely
because of the bias in beta-diversity metrics in small samples
of high gamma-diversity communities [17,20–24]. To move
this debate forward, we first examined the latitudinal gradi-
ent in beta-diversity by removing the gamma-diversity and
sample-size bias with a correction for undersampling
[25,34], while also accounting for the effect of topographical
heterogeneity statistically. Our results showed that beta-
diversity increased from high to lower latitudes, in line
with a number of previous studies also finding higher
beta-diversity in the tropics [2,13,18,48]. This supports the
hypothesis that beta-diversity contributes to the latitudinal
gradient in species richness. Because topographical hetero-
geneity did not systematically vary with latitude, it appears
that local topographical heterogeneity does not contribute
to the latitudinal gradient in beta-diversity, in line with pre-
vious findings [49,50].

High beta-diversity in the tropics reveals higher species
turnover at lower latitudes, meaning tighter species packing
and expanded niche space in tropical relative to temperate
forests [5,9,12,48,51]. These hypotheses have been investi-
gated for decades, with dense species packing in large
niche space attributed to a stable climate and higher pro-
ductivity in the tropics [5,9,51–53]. We found increasing
niche marginality and specialization towards lower latitudes,
supporting this hypothesis. Perhaps larger niche space
enables more species to use more variable resources, while
higher niche specialization allows species to specialize on
narrower subsets of the resources available [5,9,51–53].
These consequently reduce niche overlap and competition
between co-occurring species and facilitate species coexis-
tence [54]. Tighter species packing and larger niche space in
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the tropics could be related to other mechanisms as well, such
as higher diversification rate [55] and stronger conspecific
negative density dependence [56,57] at lower latitudes.

Wealso conclude thatbeta-diversityat the extent of15–52 ha
is largely driven by local processes—specifically, topographical
heterogeneity and the niche differentiation it fosters. How-
ever, topographical heterogeneity did not contribute to the
latitudinal gradient in beta-diversity (figures 3 and 4). This
may seem an unsurprising result, but the roles of local
ecological processes have been questioned given the broad
latitudinal gradient of gamma-diversity [12,20]. We suggest
that the effect of local processes has been obscured by the
biases in beta-diversity metrics of small samples from high
gamma-diversity communities in previous studies [23].
Moreover, our large samples over 55 degrees of latitude
provide comparable measures of niche differentiation, topo-
graphical heterogeneity and beta-diversity, well beyond
what was available in early studies [6,58]. Our results could
be refined by considering the influence of additional factors
that contribute to local environmental heterogeneity and
niche differentiation, such as soil types and soil nutrients
[59], which could also contribute to beta-diversity. The
biases in beta-diversity metrics in a small sample from high
gamma-diversity communities are also associated with
other attributes of communities such as the species abun-
dance distributions [60], and tests of the alternative
techniques in other systems are warranted.
In conclusion, our results support that a latitudinal gradi-
ent in beta-diversity contributes to the latitudinal gradient in
tree species richness after separately controlling for local
topographical heterogeneity and the bias in beta-diversity
metrics in small samples of high gamma-diversity areas.
Our results further suggest tighter species packing and
larger niche space in tropical forests [12,51,53], but also con-
firmed environmental heterogeneity as a determinant of
beta-diversity. Our findings help resolve the ongoing debates
on the contribution of local beta-diversity to the latitudinal
gradient of species richness.
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