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Animal hosts have evolved intricate associations with microbial symbionts,
where both depend on each other for particular functions. In many cases,
these associations lead to phylosymbiosis, where phylogenetically related
species harbour compositionally more similar microbiomes than distantly
related species. However, evidence for phylosymbiosis is either weak or lack-
ing in gut microbiomes of flying vertebrates, particularly in birds. To shed
more light on this phenomenon, we compared cloacal microbiomes of 37 tro-
pical passerine bird species from New Guinea using 16S rRNA bacterial
gene sequencing. We show a lack of phylosymbiosis and document highly
variable microbiomes. Furthermore, we find that gut bacterial community
compositions are species-specific and tend to be shaped by host diet but
not sampling locality, potentially driven by the similarities in habitats
used by individual species. We further show that flight-associated gut modi-
fications, coupled with individual dietary differences, shape gut microbiome
structure and variation, contributing to the lack of phylosymbiosis. These
patterns indicate that the stability of symbiosis may depend on microbial
functional diversity rather than taxonomic composition. Furthermore, the
more variable and fluid host–microbe associations suggest probable dispar-
ities in the potential for coevolution between bird host species and microbial
symbionts.
1. Introduction
Gutmicrobial symbionts play amultitude of dietary, defensive anddevelopmental
functions facilitating their host’s life-history strategies [1,2]. Consequently,we often
observe tight associations between symbiotic microbial communities and their
hosts. In some instances, these associations are strong and lead to phylosymbiosis,
in which phylogenetically related host species harbour compositionally more
similar microbial communities than distantly related species [3]. Evidence for
phylosymbiosis is found in many animal clades, including corals [4], many
clades of non-flying mammals [5,6], spiders [7] and some insects [8,9]. However,
phylosymbiosis is not apparent in multiple animal groups such as bats [10],
chipmunks [11], teleost fish [12] and birds [10,13]. In birds, host phylogeny has
a weak, or at least only a secondary influence on gut community structures
[10,14–17], but rather follows a random model of evolution [13].

Physiological gut adaptations associated with flight have been proposed to
explain this weak association [10]. The evolution of flight has led to
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modifications in the digestive tracts of birds; specifically,
shorter digestive tracts and faster gut retention times com-
pared to similar-sized non-flying mammals [18]. These
modifications could potentially affect the stability of avian
gut microbial communities [10], because shorter gut retention
leads to more fluctuating gut environments and potentially
higher microbial turnover. Bird microbiomes are also highly
variable between individuals of the same bird species
[19–21] and tend to be malleable to dietary and environ-
mental changes [19,21–26]. Consequently, diet tends to
affect gut microbiomes more than host phylogeny [17].
Since diet, and potentially gut length, influence avian gut
microbiome structure, phylosymbiotic signals may only be
apparent when examining closely related bird species with
similar body size and diet, while controlling for sex and
environment [14]. With the exception of one recent study
[16], no studies have explored a diverse group of wild passer-
ine birds (order Passeriformes) with multiple individuals
per species to test the relative importance of phylogeny, diet
and body size (i.e. gut retention time) on gut microbial
compositions and the potential absence of phylosymbiosis.

Here, we compared microbiomes from 356 cloacal
samples across 37 passerine species (14 families) from mul-
tiple highland and lowland localities on the tropical island
of New Guinea. First, we investigated host taxon effects on
microbial community composition, a pre-requisite for the
presence of phylosymbiosis. Despite the strong effect of
host taxon, our data suggest the absence of phylosymbiosis.
To determine what factors may be causal to this, we first
tested if gut community composition reflected dietary
guilds of hosts [17,19]. Second, we tested the prediction that
locality could cause gut microbial compositions to be more
similar in individuals of the same bird species [21]. Finally,
we evaluated whether gut retention time affected passerine
microbiome composition and variability, using body mass,
which is strongly associated with retention time, as a proxy
[27–29]. Larger birds with slower gut retention times [27,28]
would have less fluctuating (more stable) gut environments
compared to smaller birds, potentially influencing microbial
diversity and stability. If gut length and retention time influ-
ence bird gut microbiome compositions, we expect host body
mass to be negatively correlated with microbial diversity and
heterogeneity.
2. Methods
(a) Sample collection
Cloacal swabs were collected from passerine birds (order Passer-
iformes) captured through mist netting at four high elevation
localities (2200–3700 m.a.s.l), two mid-elevational localities
(1700 m.a.s.l.) and three lowland localities (200 m.a.s.l) in
Papua New Guinea in 2017, 2018 and 2019 (electronic sup-
plementary material, figure S1). All samples were collected
during the dry season, except for 28 samples collected at Baita-
bag in the rainy season in 2019. The forest types and climatic
variables were similar in different localities at similar elevations
[30–32]. Swabs were collected using Copan mini FLOQ swabs
(Brescia, Italy) and stored in either 70% EtOH (2017) or RNAlater
(2018 and 2019) at approximately 20°C for up to two weeks until
they were transferred to the field station and stored at −20°C.
Storing samples in RNAlater at ambient temperature for less
than two weeks is not expected to have a strong impact on the
microbiomes [33]. To determine if the storage buffer (EtOH or
RNAlater) affected microbial profiles, we also collected samples
from up to six individuals per buffer type for two species in
2019 from the same locality (see Results). Birds were weighed
in the field and assigned to feeding guilds (frugivore, insectivore,
frugivore + insectivore, insectivore + nectarivore, or granivore),
based on extensive sampling of stomach contents by Sam
et al. [32].

(b) DNA extractions and MiSeq amplicon sequencing
A total of 555 cloacal samples were collected from 85 passerine
species (electronic supplementary material, table S1). The full
swab, along with 100 µl of RNAlater (for the samples that
were stored in EtOH we only used the swab without EtOH)
were used for DNA extractions, and all samples were extracted
at the same time. DNA extractions and MiSeq amplicon sequen-
cing of the v4 region of the bacterial 16S rRNA gene was
performed as described in Bodawatta et al. [20].

(c) Miseq sequence analysis, alfa diversities
MiSeq sequences were analysed using the DADA2 pipeline [34]
within QIIME2 [35]. Sequences were assigned to amplicon
sequence variants (ASVs) with 100% similarity and then to
taxonomy using the SILVA 132 database [36]. Archaeal, mito-
chondrial and chloroplast sequences were removed using
QIIME2. We generated the rooted bacterial phylogeny using
the ‘align-to-tree-mafft-fasttree’ function in QIIME2 [35]. For
the final analyses, we only included bird species with three or
more individuals (electronic supplementary material, table S1).
ASVs with <10 total sequences across all samples were excluded,
and the dataset was rarefied based on the sample with the lowest
number of sequences (2480 sequences) using the ‘rarefy_even_-
depth’ function in phyloseq [37] (electronic supplementary
material, figure S2). Final analyses were conducted on the rare-
fied dataset in R 4.0.2 [38] (detailed information in electronic
supplementary material, file S1).

Observed ASV richness and Shannon’s diversity were calcu-
lated using the phyloseq [37] and microbiome [39] packages.
Faith’s phylogenetic diversity (PD) of microbiomes was calcu-
lated using the picante package [40]. High PD values indicate
high phylogenetic diversity within a microbiome. We calculated
the standardized effect size (SES) of PD using species-level mean
abundance of each ASV and conducting 1000 random iteration
(shuffling taxa across the bacterial phylogeny), using the
‘SES.pd’ function in picante [40].

(d) Effects of host species, feeding guilds and locality
on gut microbiomes

Bacterial community differences were calculated using Bray–
Curtis, Jaccard, weighted and unweighted UniFrac, and β mean
nearest taxon distances (βMNTD). Except for βMNTD, all dis-
tances were calculated using phyloseq [37]. βMNTD distances
were calculated using the ‘cophenetic’ function in the ape pack-
age [41] and the ‘bmntd’ function in iCAMP [42]. Overall,
statistical differences between bacterial communities of different
host species, feeding guilds, localities and buffer types (EtOH
and RNAlater) were evaluated using permutational multivariate
analysis of variance (PERMANOVA) using the adonis2 function
in vegan [43] with 10 000 permutations. We tested all variables in
one model, with the ‘by’ parameter set to ‘margin’ in adonis2 to
estimate the marginal effects of different variables and to control
for covariation between them.

Centroids (±s.e.) of bacterial communities of different species
were visualized in nonmetric multidimensional scaling (NMDS)
plots. We investigated the heterogeneity (individual variation) of
microbiomes through calculating the microbial divergence
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(distance to group median) using the ‘divergence’ function in the
microbiome package [39]. This was only calculated using Bray–
Curtis dissimilarity as the divergence function is unable to use
UniFrac distances. Larger divergence values indicate higher bac-
terial community variation. As divergence is influenced by
sample size, we also calculated species-level microbial heterogen-
eity using three randomly picked individuals per species and
repeated this five times. We evaluated the core microbiome of
each bird species using the ‘core’ function in the microbiome
package [39], assigning ASVs with a relative abundance of at
least 0.0001% in at least 50% of the samples to cores.

For feeding guilds, we used the wrapper package pairwise.a-
donis [44], to investigate the bacterial community-level pairwise
differences. We investigated the 30 most relatively abundant bac-
terial genera between five feeding guilds using the
‘amp_heatmap’ function within ampvis2 [45]. We further evalu-
ated the species-level effect of habitat on gut microbiomes in
species captured at two or more localities with a minimum of
three individuals per locality. Statistical differences were deter-
mined using PERMANOVAs and the data were visualized
using principal coordinate analyses (PCoA).

(e) Host species phylogeny and testing for
phylosymbiosis

We created a host species phylogeny using a concatenated align-
ment of three mitochondrial and three nuclear genes sourced
from GenBank (electronic supplementary material, table S2)
using BEAST v. 1.8.4 [46]. We applied the general time reversible
nucleotide substitution model to the concatenated data and ran
the analysis for 100 million generations using a relaxed uncorre-
lated lognormal distribution for the molecular clock model, and
assuming a birth-death speciation process as a tree prior. Conver-
gence diagnostics were assessed in Tracer v. 1.6 [47], by
determining the effective sample sizes and mean distribution
values. The final output tree was summarized in TreeAnnotator
v. 1.8.3 [46] as a maximum clade credibility (MCC) tree after
discarding the first 10 million generations as burn-in.

To test for phylosymbiosis, we used both correlation (Mantel
test) and cluster-matching (Robinson–Foulds distances—RF)
analyses between the host phylogeny and the microbial commu-
nities. These analyses require the number of tips (samples) in the
phylogeny to match the number of samples in the microbial
distance matrix. Thus, to acquire one microbial community to
represent each bird species, we both (i) calculated the average
abundance per ASV within a bird species [14] and (ii) randomly
picked one individual per bird species [10]. Random picking was
repeated 10 times. Microbial community distances were then
calculated using all the aforementioned distance matrices.

Mantel correlations were calculated using vegan [43] through
Pearson’s correlation tests between host phylogenetic distances
(measured with the adephylo package [48]) and microbial com-
munity similarities. The significance of correlations was
evaluated using 10 000 random permutations. For the cluster-
matching method, we used the RF.dist function in the phangorn
package [49] to investigate the normalized RF distances (normal-
ized by the total number of nodes) between host phylogeny and
the microbial dendrogram. A normalized RF distance of 0 rep-
resents perfect congruence of the topology of tested trees while
a value of 1 represents no matching nodes. The significance of
observed values was determined through comparing mean RF dis-
tances acquired from 10 000 randomly generated microbiome
dendrograms using the rNNI function in phangorn [49].

( f ) Association between microbiome structure and body
mass

To investigate the relationship of species-level average ASV rich-
ness, PD, microbial heterogeneity with body mass (g), we used
phylogenetic generalized least-squares (PGLS) tests in caper
[50], accounting for phylogenetic non-independence between
host species. We used each of the microbiome characteristics as
dependent variables and body mass (g) as the independent vari-
able. Categorical comparisons were conducted using Kruskal–
Wallis rank-based tests (KW) and Dunn’s post hoc tests using
the FSA package [51]. All results were visualized using the
ggplot2 [52] and viridis [53] packages in R 4.0.2 [38].
3. Results
For the final analyses, we used 356 cloacal microbiomes from
37 bird species (average number of individuals ± s.e. = 10 ±
1.5) representing 14 families with a total of 11 457 557
sequences (average ± s.d.: 32 184 ± 19 483). After removing
ASVs with less than 10 sequences, but prior to rarefying,
sequences were assigned to 24 110 ASVs from 41 phyla (elec-
tronic supplementary material, table S3). Rarefaction of the
dataset led to 21 686 ASVs, dominated by Proteobacteria
(36.7%), Firmicutes (17.7%), Epsilonbacteraeota (12.3%), Acti-
nobacteria (9.7%), Bacteroidetes (8.4%) and Tenericutes
(5.5%). Only 0.4% of the sequences could not be assigned
to phylum. The average relative abundances of bacterial
phyla differed markedly between bird species (electronic sup-
plementary material, figure S3 and tables S4 and S5). Both in
the full dataset (table 1) and in the two selected species we
did not find an effect of storing buffer (EtOH and RNAlater)
on microbiome composition (electronic supplementary
material, figure S4 and table S6). Thus, we analysed all rarefied
data from the three years together.

(a) Passerine microbiomes are species-specific with a
small core microbiome

Alpha diversity indexes differed significantly between bird
species (ASV richness, KW: χ2 = 74.29, d.f. = 36, p = 0.0002;
Shannon’s diversity, KW: χ2 = 89.16, d.f. = 36, p < 0.0001; PD,
KW: χ2 = 66.52, d.f. = 36, p = 0.0015; electronic supplementary
material, figure S5). Post hoc tests revealed that these patterns
were mainly driven by a few species-level differences (elec-
tronic supplementary material, table S7). Standardized
effect sizes of PD indicated that PD was significantly lower
than expected by chance in all but three bird species (elec-
tronic supplementary material, figure S6 and table S8),
suggesting non-random phylogenetic composition of
communities.

Host taxon (species) significantly affected microbial beta
diversity and explained a large proportion of the variance,
irrespective of the distance matrix used (table 1 and figure 1),
suggesting species specificity in microbiome composition.
Heterogeneity (divergence) differed between bird species
(KW: χ2 = 170.1, d.f. = 36, p < 0.0001; electronic supplemen-
tary material, figure S6b), suggesting intraspecific variation.
Despite this strong effect, core microbiomes included on aver-
age only 1.7% (s.d.: ± 1.6) of the total number of ASVs. Core
richness was marginally significantly negatively associated
with sample size (electronic supplementary material,
figure S7a). In contrast, total species-level ASV richness was
significantly positively correlated with sample size (electronic
supplementary material, figure S7b). However, the average
ASV richness of a species was not associated with sample
size (electronic supplementary material, figure S7c),
suggesting that it is more robust to sampling depth.



Table 1. Effects of host species and feeding guild on microbial community structures measured with five different matrices using PERMANOVAs with 10 000
permutations. Significant results are highlighted in italics.

distance matrix variable F d.f. R2 p

Bray–Curtis host species 2.345 33 0.1777 <0.0001

feeding guild 1.474 1 0.0034 <0.0001

locality 1.519 8 0.0279 <0.0001

buffer type 1.182 1 0.0027 0.1058

Jaccard (unweighted) host species 1.733 33 0.1436 <0.0001

feeding guild 1.241 1 0.0031 0.0003

locality 1.244 8 0.0249 0.0002

buffer type 1.079 1 0.0027 0.1582

UniFrac (weighted) host species 1.489 33 0.1283 <0.0001

feeding guild 0.0014 1 0.0000 0.9911

locality 0.8557 8 0.0141 0.5072

buffer type 0.1598 1 0.0003 0.5758

UniFrac (unweighted) host species 1.489 33 0.1283 <0.0001

feeding guild 1.145 1 0.0029 0.2441

locality 1.059 8 0.0221 0.2564

buffer type 0.7364 1 0.0019 0.8572

βMNTD host species 3.476 33 0.2133 0.0002

feeding guild −1.212 1 0.0023 0.9739

locality 3.706 8 0.0551 0.0126

buffer type 3.421 1 0.0064 0.1194

Table 2. Results of testing for phylosymbiosis between host phylogeny and species-level average gut microbiome dissimilarity using both correlation-based
Mantel tests and cluster matching with Robinson–Foulds distances.

distance matrix

correlation-based analyses cluster matching with Robinson–Foulds distances

Mantel r p RF (observed) null mean (10 000 trees) p

Bray–Curtis 0.0493 0.0908 0.9143 0.9481 0.9952

Jaccard 0.0491 0.0994 0.9143 0.9483 0.9934

UniFrac (weighted) 0.0109 0.3415 0.9429 0.9657 0.9992

UniFrac (unweighted) −0.0042 0.5229 1 0.9947 0.8194

βMNTD −0.0344 0.8381 0.9714 0.9819 0.9829
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The proportion of core ASVs was not associated with the
feeding guild (electronic supplementary material, figure
S7d). Overall, this underlines the importance of sample
sizes for estimating microbial diversity and core microbiomes
of passerine birds.

(b) No evidence of phylosymbiosis between host
phylogeny and microbial communities

Despite species specificity, we did not find evidence for phy-
losymbiosis irrespective of the method used for species-level
average microbiomes (table 2 and figure 2). Overall, ran-
domly selected microbiomes (one individual per species)
also did not consistently show signs of phylosymbiosis.
Only four out of 10 randomly selected communities
showed significant Mantel correlations with host phylogeny
for Bray–Curtis and Jaccard dissimilarities, while only one
of the 10 communities showed a significant association for
UniFrac and βMNTD (electronic supplementary material,
table S9). Furthermore, there was no evidence for phylosym-
biosis in any of the 10 sets when using the RF matching
cluster method.

(c) Host dietary guild secondarily influence the
structure of microbiomes

Observed ASV richness (KW: χ2 = 11.45, d.f. = 4, p = 0.0219)
and Shannon’s diversity (KW: χ2 = 19.41, d.f. = 4, p = 0.0004)
differed between dietary guilds, while PD did not (electronic
supplementary material, figure S8). Pairwise feeding
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communities of different species. (a) Bray–Curtis dissimilarity–stress = 0.2096, (b) unweighted UniFrac distances–stress = 0.2613.
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guild comparisons revealed that granivores had significantly
lower richness and Shannon’s diversity than other dietary
guilds (electronic supplementary material, figure S8). How-
ever, we should acknowledge that only one granivorous
species was included. Dietary guild only significantly
affected gut bacterial compositions based on Bray–Curtis
and Jaccard, not UniFrac distances (table 1), suggesting that
the phylogenetic composition of microbiomes is not impacted
by the feeding guild. The effect of the feeding guild was sec-
ondary to the host effect (figure 1 and table 1). Pairwise
comparisons (conducted only using Bray–Curtis dissimilar-
ity) demonstrated that microbial community composition
significantly differed between all five dietary guilds
(electronic supplementary material, table S10).

Relative abundances of the 30 most abundant genera indi-
cated differences in the composition of some genera between
the five dietary guilds, suggesting affiliation of some bacterial
genera with host diets (figure 3). However, unique ASVs in
different feeding guilds tend to be associated with the
number of species sampled (electronic supplementary material,
figure S9). Microbiome heterogeneity was significantly
different between guilds (KW: χ2 = 45.24, d.f. = 4, p< 0.0001).
Post hoc analyses indicated significant differences in commu-
nity variation between multiple feeding guilds, with
insectivorous species generally being more variable (figure 3).
The effect of the feeding guild suggests that species-specific
bacterial communities are secondarily shaped by diet and
that diet-associated microbes vary between species from the
same feeding guild, while phylogenetic beta diversities are
unaffected by dietary guild (table 1).

(d) No strong species-specific effect of locality on the
composition of passerine microbiomes

Overall, sampling locality significantly affected beta diversity
measured with Bray–Curtis, Jaccard and βMNTD, but not
UniFrac distances (table 1). For species-level analyses, we
used thirteen bird species with three or more individuals
from each of two or more localities and the beta diversity
was measured with Bray–Curtis and βMNTD. The Bray–
Curtis analyses indicated that only Melanocharis versteri and
Melilestes megarhynchus were significantly influenced by
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locality (electronic supplementary material, figure S10). There
was only a marginally significant effect in M. versteri when
evaluated using βMNTD and no effect in M. megarhynchus
(electronic supplementary material, figure S10). Furthermore,
pairwise comparisons of M. versteri microbiomes (Bray–
Curtis) did not reveal significant differences between
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localities (electronic supplementary material, figure S10a). By
contrast, M. megarhynchus individuals from Wanang
(200 m.a.s.l.) differed significantly from Dengenumbu
(1700 m.a.s.l.) and Baitabag (200 m.a.s.l.) (electronic sup-
plementary material, figure S10b). There was no significant
effect of sampling locality for any of the remaining eleven
species for either of the distance matrices (electronic sup-
plementary material, figure S11), suggesting that locality
does not strongly impact passerine gut microbiomes at the
species-level, contradicting several previous studies
[21,23,24].
(e) Bird microbiome heterogeneity is significantly
associated with body mass

Average ASV richness per species demonstrated a marginally
significant negative association with host body mass
(figure 4a). We did not find an association between body
mass and species-level PD (PGLS: F = 0.5851, R2 = 0.0164,
p = 0.4495). Overall, microbiome heterogeneity (divergence)
was also significantly negatively associated with body mass
(figure 4b). Heterogeneity measured with correction for
sample sizes (three randomly picked individuals per species),
demonstrated significantly negative associations with host
body mass in three out of five random datasets (electronic
supplementary material, figure S12). However, even the
non-significant datasets demonstrated the tendency for nega-
tive associations between microbial divergence and body
mass (electronic supplementary material, figure S12). Thus,
average ASV richness and intraspecific variation are reduced
in larger bird species, potentially associated with the slower
gut retention time and more stable gut environments
compared to smaller birds.
4. Discussion
Our findings demonstrate that the composition and intraspe-
cific variation of species-specific, yet non-phylosymbiotic,
passerine gut microbiomes are influenced by the combined
effects of host diet and gut retention time. Despite the overall
effect of locality on gut microbiomes, species-level analyses
showed no effect of locality on the gut microbiome structure
of bird species; likely as a result of similar habitats used by
individuals from the same species across localities at similar
elevations. This sheds new light on how diet, high individual
variation, and flight-associated digestive tract modifications
may be causal to the lack of/weak phylosymbiosis observed
in bird microbiomes [10,13,14,16,17].

(a) Gut microbiomes are species-specific and
secondarily influenced by host diet

The significant effect of host species on microbiomes, along
with the lower PD than expected by chance in many species,
suggests that passerine microbiomes are species-specific, con-
sistent with other studies [13,23,25]. However, the extent of
species specificity is compromised by extremely small core
gut microbiomes, a positive association between sample
size and total ASV richness, and high intraspecific variation.
Differences in the diet of the individual bird may explain this,
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as microbiomes (when bacterial phylogeny is not considered)
are secondarily influenced by host diet, which is consistent
with previously documented flexible responses in gut
communities to diet changes [17,19,22,26].

Individual dietary intake of wild New Guinean birds
varies greatly within a species [32], suggesting broader diet-
ary niches than often assumed (e.g. previously designated
insectivores are now often known to also feed on plant
material [32]). The effects of this are also evident from the
presence of multiple clusters in ordination plots of individ-
uals from different localities (electronic supplementary
material, figures S10 and S11). These PCoA clusters thus
probably represent individuals consuming similar diets and
consequently end up with similar gut microbial communities,
despite the differences in their location. We only observed a
strong effect of locality in M. megarhynchus, which is the
only species in our dataset that occurs from lowlands to
mid elevations. Food availability can differ markedly
between elevations [32], potentially driving this effect (elec-
tronic supplementary material, figure S10b). This suggests
that individual bird species have a large pool of potential
gut microbial symbionts, but that variation in diet serves as
a filter so that individuals only harbour a subset of these
microbes [17].

(b) Gut retention time influences average amplicon
sequence variant richness and microbiome
heterogeneity

Flight-affiliated adaptations (short intestinal tracts and faster
gut retention) [18] have been hypothesized to drive avian gut
microbial community structure [10]. Fast gut passage poten-
tially implies a less stable gut environment and higher
microbial turnover, ultimately leading to high individual
variation and small core microbiomes. In support of this,
our results show that larger birds with longer intestinal
tracts and hence longer retention times have reduced average
gut microbiome richness and relatively lower intraspecific
variation than smaller bird species. This appears comparable
to other ecological systems. Herein, microbiomes of smaller
birds represent smaller communities that will tend to experi-
ence stronger ecological drift leading to faster divergence in
community composition and higher extinction rates, ulti-
mately leading to higher and faster community turnover
compared to larger communities/birds [54–56].

The association between gut physiology and microbiome
stability is also evident in flight-less bird species, which tend
to have more specific and stable microbiomes [10]. The link
between microbial heterogeneity and body mass (even after
controlling for sample sizes) implies that associations between
gut bacterial symbionts and passerine bird hosts are likely to
be less strict than those observed in other animal taxa [5–
9,57]. These more fluid associations may explain the marked
influence of habitat-associated diet differences on bird micro-
biomes [23,24]. Therefore, having a microbiome that can
perform all the necessary and important functions in digestion,
development and immunity probably depends little on the
taxonomic composition of gut bacteria, but more on physio-
logical capabilities—potentially served by a myriad of
microbial taxa—that provide hosts with symbiont-derived
benefits despite a less stable gut environment [58].
(c) Implications for host–symbiont evolution in
passerines

Variable and malleable microbiomes of passerine birds imply
the absence of tight long-term associations between specific
bacterial taxa and specific host species. This is in line with
previous suggestions that birds rely less on gut microbes
[10]. However, this flexibility may have been important in
facilitating the colonization of new niches during the
radiation of the Passeriformes. Further, even if core micro-
biomes are small, species specificities imply non-random
associations, so disentangling functional host–symbiont
complementarity is needed to understand gut microbial
roles in wild birds. Thus, while it is most likely that beneficial
impacts exist [59], the fluid nature of the microbiomes are
markedly different from the tighter long-term associations
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seen for example in multiple clades of mammals [1,57,60,61].
Mammals, with some exceptions, tend to harbour more gut-
adapted microbes, reduced transmission from the environ-
ment [1,60], more specialized digestive tracts [1,62] and
more frequent vertical transmission from parents to offspring
[63]. By contrast, high levels of transient microbes [1,10] and
reduced complexity of digestive tracts in birds [18] appear to
lead to fluctuating and variable microbiomes. The reduced
stability of microbiomes, even within an individual’s lifetime,
would increase the variability over bird generations, ulti-
mately resulting in no or weak phylosymbiosis. Notably,
however, the gradient of microbiome stability driven by
species-specific variation in gut retention time could predicta-
bly lead to a gradient in the level of adaptation in bird host–
microbe associations [62]. This could ultimately lead to a gut
physiology-driven gradient in the potential for coevolution or
co-speciation between passerine hosts and specific gut bac-
terial symbionts.
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