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Parasites threaten all free-living organisms, including molluscs. Understand-
ing the evolution of immune defence traits in natural host populations is
crucial for predicting their long-term performance under continuous infec-
tion risk. Adaptive trait evolution requires that traits are subject to
selection (i.e. contribute to organismal fitness) and that they are heritable.
Despite broad interest in the evolutionary ecology of immune activity in ani-
mals, the understanding of selection on and evolutionary potential of
immune defence traits is far from comprehensive. For instance, empirical
observations are only rarely in line with theoretical predictions of immune
activity being subject to stabilizing selection. This discrepancy may be
because ecoimmunological studies can typically cover only a fraction of
the complexity of an animal immune system. Similarly, molecular immu-
nology/immunogenetics studies provide a mechanistic understanding of
immunity, but neglect variation that arises from natural genetic differences
among individuals and from environmental conditions. Here, we review
the current literature on natural selection on and evolutionary potential of
immune traits in animals, signal how merging ecological immunology and
genomics will strengthen evolutionary ecological research on immunity,
and indicate research opportunities for molluscan gastropods for which
well-established ecological understanding and/or ‘immune-omics’ resources
are already available.

This article is part of the Theo Murphymeeting issue ‘Molluscan genomics:
broad insights and future directions for a neglected phylum’.
1. Introduction
Parasites (here referring to both micro- (e.g. viruses and bacteria) and macro-
parasites (e.g. helminths)) present a severe threat to free-living organisms,
including molluscs, by reducing their survival and fecundity. Such adverse
fitness effects can, for example, influence the evolution of host life-histories
[1,2] and drive sexual selection [3,4]. Furthermore, if host individuals fail to
resist infections and/or eliminate them after establishment, parasite prevalence
in a host population may rapidly increase, eventually crashing it (reviewed in
[5]). Owing to complicated species interactions in natural communities, reduced
host population density may have broad ecological consequences, for instance,
by altering resource–consumer interactions, and also jeopardize vital ecosystem
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services (e.g. [6,7]). Moreover, although biomedical science
has been able to eliminate several disease-causing agents
(mostly viruses and bacteria), parasites are still one of the
most common causes of death in humans and sources of
economic loss in agriculture (e.g. [8,9]). The threat of disease
is even expected to increase in the future because of the
continuous emergence of new disease-causing agents
[10,11], the evolution of drug resistance (reviewed in
[12,13]) and biological invasions (reviewed in [14]). Therefore,
to create projections of the risks that parasites impose, a cru-
cial element to understand is if and how host populations
may evolutionarily adapt to parasitism.

Several factors are known to play essential roles in deter-
mining host susceptibility to infections, including host and
parasite genetics (e.g. [15–17]), host gender (e.g. [2,18]), host
age (e.g. [19,20]), host nutritional state (e.g. [21,22]), host be-
haviour [23,24] and environmental conditions (e.g. [25,26]).
Many of these effects arise from differences in host immune
function, which is the primary physiological barrier against
infections (reviewed in [27]). Therefore, understanding the
outcomes of host–parasite interactions, and thus disease
outbreaks in nature, requires detailed knowledge on the evol-
utionary responses of immune defence traits to parasite-
mediated selection. The host immune function has recently
become an important research topic in several fields of ecology
and evolutionary biology (see [28]). This development has
given rise to the interdisciplinary field of ecological immunology
(or ecoimmunology; see [29]) that has proven to be highly useful
when investigating the evolution of host immune defence
traits in natural systems (reviewed in [30]). That research can
be expected to be of great help when evaluating the role of
evolution in determining future disease outbreaks.

Ecological immunologists typically focus on quantitative
immune defence traits such as the amount of end products
of immune cascades that are controlled by several genes.
This approach is chosen because many immunological pro-
cesses, especially in invertebrates, consist of traits that are
not strictly specific to certain parasites [31] and are likely to
evolve through selection on additive genetic variance (e.g.
[32–34]) rather than frequency-dependent selection (reviewed
in [35]). Adaptive evolution of quantitative traits requires that
phenotypic trait variation reflects fitness variation (i.e. traits
are subject to natural selection) and that it is at least partly
heritable (i.e. traits show additive genetic variation; [36]). In
this article, we briefly review earlier empirical work on
both natural selection on and genetic variation in immune
defence traits across animal systems to present the general
state of research in the field. Then, we discuss how we
believe the recent development in the fields of genomics
and transcriptomics could support future investigations in
the evolutionary ecology of host immune activity. Lastly,
we review the state of research focusing on the evolution of
immune activity in molluscs and propose how the rapidly
expanding genomics and transcriptomics resources in this
group of organisms (e.g. [37–39]) could be of great help
strengthening future ecoimmunological research.
2. Natural selection on immune activity
The first requirement for the adaptive evolution of a pheno-
typic trait is that it is subject to natural selection. From the
potential forms of selection on quantitative traits [36],
positive directional (i.e. the highest trait values lead to the
highest fitness) and stabilizing selection (i.e. intermediate
trait values lead to the highest fitness) are considered most
relevant for immune traits. First, since the function of the
immune system is to prevent and eliminate infections by
harmful (i.e. virulent) parasites, a strong immune system
can be assumed to increase fitness and evolve as a response
to parasitism (e.g. [40,41]). However, the immune defence is
typically energetically costly to maintain and use (reviewed
in [42,43]), which can lead to trade-offs between immune
function and life-history traits (e.g. [44,45]), as well as
between different immunological mechanisms [32]. Therefore,
strong immune defence (and subsequent low parasite abun-
dance) does not necessarily lead to the highest fitness. In fact,
theoretical models predict host immune function to evolve
under stabilizing selection when immune activity is costly to
maintain and use (reviewed in [46]). Contrary to the theoretical
predictions, empirical studies that are mainly conducted using
birds (a few studies exist on mammals, reptiles and insects)
typically suggest positive directional selection on immune
function through its positive effects on survival and fecundity
(reviewed in [46]). A few studies report stabilizing or even
negative directional selection on immune defence traits
[47–50]. Owing to the predicted costs associated with
immune function (see above), evidence for positive directional
selection is surprising and may arise from challenges to ident-
ify and measure appropriate parameters of host immune
function as well as fitness components.

The above studies on natural selection on immune func-
tion typically focus on measuring the end products of one
or a few immunological cascades (but see [51]). However,
the immune system is formed from several different com-
ponents that are effective against different types of parasites
(reviewed in [27,52]). For example, the immune system of
the fruit fly shows specific responses towards Gram-positive
bacteria, Gram-negative bacteria and fungi (e.g. [53,54]), and
similar specificity has been seen in other taxa (e.g. [38,55]).
Additionally, immunological pathways consist of several
steps (recognition, signalling, effectors) that are crucial for
successful immune responses, and different components
and steps of the immune response may be traded-off with
different physiological, life-history and/or immune defence
traits [32,38,56,57]. Furthermore, the activity of different
immunological mechanisms, their relative contribution to a
successful defence and the costs related to high immune
activity may vary over space and time. This variation could
depend on, for example, infection risk in the environment,
the type of parasites the hosts are exposed to and environ-
mental conditions that determine the expression of trade-offs
[46]. These factors make predicting evolutionary forces that
shape immune function in natural populations very difficult
when only a narrow subset of immune traits is examined to
quantify selection. Therefore, although ecoimmunological
studies can give detailed estimates about the evolution of
specific immune traits, they are not as successful at providing
a general understanding of the evolution of immune activity at
the level of the whole immune system.

The recent development in transcriptomics (see [58,59])
provides excellent opportunities to overcome the above-
mentioned challenges when investigating the evolution of
organisms’ immune activity. In general, trait evolution may
depend more strongly on variability in gene expression than
on variation in protein-coding sequences [60,61]. In fact, the
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genetic basis of transcription and its evolution under natural
selection is well demonstrated in yeast (e.g. [62,63]), fruit fly
(e.g. [64,65]) and fish (e.g. [66,67]). For instance, a study on killi-
fish Fundulus heteroclitus identified 13 genes with variation in
transcription among natural populations that indicate thermal
adaptation across a latitudinal gradient [66]. Such studies
show that gene expression can be ameaningful predictor of indi-
viduals’ performance and could be used in the quantitative
genetic (i.e. statistical genetic) framework as a ‘phenotype’
(reviewed in [68]).

Transcriptomics has become especially fruitful in evol-
utionary ecology in the era of the rapid development
of high-throughput gene expression analysis technologies.
Currently, it is possible to measure the transcription of numer-
ous genes selected across the whole genome in a very cost- and
time-efficient manner (e.g. [69]). In ecological immunology,
this allows using transcription of a broad range of genes
that cover different immunological pathways and steps of
immunological cascades (i.e. recognition, signalling, effectors)
to comprehensively quantify the ‘immune phenotypes’ (sensu
[70]) of individuals. However, ecoimmunological research is
still rarely conducted at the gene expression level. So far,
condition dependence of immune activity [71], genetic speci-
ficity between hosts and parasites [72] and immune priming
[73,74] have been investigated by quantifying transcription
in bumblebee and red flour beetle. Those studies have
hugely benefitted from the detailed examination of different
components of the host immune system provided by transcrip-
tomics technologies. To our knowledge, however, gene
expression analysis has not been incorporated in earlier studies
on natural selection on immune function.
3. Evolutionary potential of immune activity
The second requirement for adaptive trait evolution is that
the traits under selection can respond to it. Specifically, fit-
ness-related traits need to show heritable genetic variation
[36]. Therefore, understanding the genetic architecture of
and the extent and type of genetic variation in phenotypic
traits is indispensable for understanding their evolution
[75]. In fact, if and how natural populations can evolutiona-
rily respond to natural selection is one of the main topics in
current evolutionary ecological research. Estimating quanti-
tative genetic parameters such as additive genetic variance
and covariance of traits is an efficient approach for testing
whether or not natural populations can evolve through adap-
tation, and how fast this process can be (reviewed in [76,77]).
This is especially important because in many systems, natural
populations do not respond to the observed selection, or their
responses differ from the predictions based on selection
(e.g. [78,79]). The above approach is highly relevant also in
the case of immune defence traits. However, despite wide
interest on the evolutionary potential of immune traits (e.g.
[15,32,34,80]) this information is mostly lacking from natural
populations (but see [81–84]). The scarcity of such knowledge
prevents predicting the evolutionary responses of host
defences to parasitism.

One main reason for the poor understanding of the evol-
utionary potential of defence against parasites is that earlier
genetic research on immune function has been largely
divided into two separate fields: molecular immunogenetics
and quantitative genetics. Molecular immunogenetics focuses
on describing genetic mechanisms underlying the structure
and functioning of individual components of the immune
system from a medical perspective. Such information has,
of course, important implications in society, but they rarely
shed light on ecological and evolutionary relevance of
immune function. The latter is because those studies are typi-
cally conducted using specific strains of model organisms for
biomedical research and do not consider natural genetic vari-
ation (e.g. specific mouse strains [85,86]). Quantitative genetic
studies, on the other hand, examine genetic variation by
focusing on natural populations or at least laboratory stocks
that originate from the field. However, many quantitative
genetic studies also are limited to laboratory conditions
owing to the need for controlled breeding designs that esti-
mate quantitative genetic parameters such as heritability
(i.e. the proportion of trait variation arising from breeding
values) and genetic correlation. Such studies are especially
common in invertebrates (e.g. [32–34]).

The main limitation of breeding designs conducted under
laboratory conditions is that the estimated quantitative gen-
etic parameters may not reflect their actual values under
natural conditions. This discrepancy is likely because, for
example, trait heritability and genetic correlations often
depend on the environmental conditions under which they
are estimated (reviewed in [87,88]). Dependence on environ-
mental conditions is because several environmental factors
such as resource availability and ambient temperature can
affect variation in trait values among individuals, as well as
the expression of trade-offs. Therefore, quantitative genetic
studies are most useful in study systems in which social ped-
igrees over many generations are available from natural
populations (mainly mammals and birds; reviewed in [89]).
To our knowledge, such studies on immune defence have
only been conducted in Soay sheep [84] and a few bird
species (e.g. [81–83]). The rarity of such studies is likely to
be because collecting pedigree data in natural populations
is always demanding and practically impossible in many
study systems (e.g. invertebrates). Furthermore, similarly to
the studies on natural selection on immune activity described
above, quantitative genetic studies on immune function focus
on a few phenotypic immune traits that reflect the amount of
end products of immune cascades (e.g. [32–34]). Thus, quan-
titative genetic studies are often not successful at predicting
the evolution of the immune system as a whole and would
greatly benefit from the integration of transcriptomics to
expand the collection of measured immune traits at the gene
expression level. To our knowledge, such an analysis on the
genetic architecture (i.e. variance components) of the expression
of several immune traits has not yet been conducted.

In the field of quantitative genetics, interest in using geno-
mics tools when examining the heritability of phenotypic
traits is currently increasing. Using genomics methods
allows, for instance, genotyping of individuals with high
marker density across the whole genome (e.g. single nucleo-
tide polymorphism (SNP) genotyping using SNP chips or
restriction site-associated DNA sequencing (RAD-seq)
[90,91]) to estimate relatedness among individuals in natural
populations. The advantage of these methods is that they
measure the realized genomic relatedness based on the pro-
portion of genome identity-by-state between all pairs of
individuals. Such estimates can differ significantly from the
expected values of identity-by-descent provided by pedigrees
[92]. These methods have been used to improve the available
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pedigree information, for example, in the great tit [93,94] and
Soay sheep [95,96] populations when calculating quantitative
genetic parameters for morphological and life-history traits.
The obtained genetic data have proven to be highly useful
by improving parameter estimates when compared with
those that use only pedigree information [95,97,98]. Addition-
ally, RAD-seq data have been used to estimate the heritability
of body mass in roe deer without any pedigree information
[99]. However, only one study on Soay sheep [84] has focused
on immune traits by using a high-density SNP chip to build a
genomic relatedness matrix for quantitative genetic analyses.
It is, however, important to note that heritability estimated
via SNP data is expected to be lower than narrow-sense her-
itability calculated, for example, from pedigree data. This
difference is because of the imperfect tagging of the causal
variants by SNPs. Because SNP genotyping typically focuses
on common alleles (greater than 1% frequency), SNP herit-
ability does not capture the contribution of rare SNPs to
trait variation [100].

The above genotyping approaches provide additional
opportunities for more detailed investigation of the genetic
architecture of the examined traits. For instance, marker-
based partitioning of phenotypic trait variation across
chromosomes helps to estimate whether the traits of interest
are polygenic or not [93,94,96,101]. If the contribution of
different chromosomes on trait heritability depends on their
size, the trait should be polygenic. However, if only one
chromosome (not necessarily the largest) explains most of
the trait heritability, then the trait is likely to be determined
by a small number of genes with large effects. Furthermore,
identifying candidate loci underlying phenotypic trait vari-
ation (e.g. using genome-wide association studies (GWAS)
[102]) allows examining covariation in their phenotypic
effects [103]. Because of these advantages, the interest in
using methods like GWAS in natural populations of wild
species is increasing in the field of quantitative genetics
(e.g. [96,104,105]). In our opinion, however, the greatest
benefit of ‘molecular quantitative genetics’ is that it enables
studies on natural populations of invertebrates and plants
that are currently severely underrepresented in this field
owing to the lack of social pedigree information [89].
4. Natural selection on and evolutionary
potential of immune activity in molluscs

In molluscs, natural selection on immune activity has been
examined in the great pond snail, Lymnaea stagnalis. In a
field study by Langeloh et al. [106], snails from a genetically
diverse laboratory stock were maintained in enclosures in a
lake for several weeks. The stock population experimental
snails originated from was initiated by interbreeding individ-
uals from several natural populations to increase genetic and
phenotypic variation among individuals because snail popu-
lations in the field often show low genetic diversity [107].
This way, the risk of limited phenotypic variation preventing
the detection of stabilizing selection aimed to be minimized
(see [46]). Over the course of the study, snails’ immune
activity (antibacterial activity and phenoloxidase (PO)-like
activity of haemolymph), as well as fitness components
such as survival and fecundity, were followed. The results
indicated positive directional selection on antibacterial
activity and stabilizing selection on PO-like activity. This
finding is interesting, suggesting that the activity of
different components of the snail immune system may be
independently subjected to selection owing to differences in
their importance for snails defences under certain conditions
and/or trade-offs with other traits that are relevant for fit-
ness. In this case, for instance, contrasting fitness functions
may arise from possibly higher fitness costs of high PO-like
activity that is a component of oxidative defences that poten-
tially induce higher self-damage [108] than antibacterial
activity. The variation in selection on the examined immune
traits calls for simultaneous examination of a broader range
of different immunological mechanisms.

To enable such work at the gene expression level,
L. stagnalis has recently been subjected to extensive transcrip-
tome sequencing [109]. That work has provided a broad
picture of the immune system of this species and identified
multiple targets for future ecoimmunological work. Transcrip-
tomes were sequenced from individual snails exposed to
various immune activation treatments (wounding, injection
of bacteria cells, injection of trematode-infected snail
tissue from other individuals) and environmental changes
(elevated temperature, resource limitation). This approach
allowed the identification of components of the immune
system that respond to different immune challenges/environ-
mental conditions. For instance, bacterial challenge activated
the Toll-like receptor (TLR) signalling pathway, signalling
through cytokines, antibacterial defences through cytolytic β
pore-forming toxins and melanisation-type reaction [109].
Similarly, exposure to protein extracts from trematode parasites
increased the gene expression of some components of the TLR
signalling pathway and melanisation-type reaction. Addition-
ally, apart from immune challenges, altered temperature and
resource availability modified the expression levels of cytokines
and effectors contributing to antibacterial defence [109]. These
findings indicate a potentially important role of these com-
ponents in the snail immune system against parasites and
pathogens, as well as in determining context-dependence of
immune activity.

However, by nature, many components of the invertebrate
innate-type immune system show largely constant, unchan-
ging levels of activity. Nevertheless, those components
can be important determinants of the hosts’ capacity to resist
infections, thus contributing to organismal fitness. If such
immunological mechanisms show high among-individual
variation in natural populations, they could be subject
to strong natural selection. Detecting variation in transcrip-
tion that arises through causes such as genetic background
and/or physiological condition of individuals is, however,
easily overlooked in typical RNA-seq studies that aim to
expose study organisms that are as genetically homogeneous
as possible to highly controlled experimental treatments. To
be able to detect such among-individual variation in
immune activity, L. stagnalis transcriptomes [109] were specifi-
cally sequenced using a genetically diverse laboratory
population of snails (see [106]). Interestingly, the results
indicated high among-individual variation in the transcrip-
tion of many components of the snail immune system,
including non-self recognition, signalling through TLR path-
way and cytokines, components of the production of reactive
oxygen species (ROS), factors regulating apoptosis and effec-
tors representing antibacterial defence and melanisation-type
reaction [109]. In addition to immunological mechanisms
that showed clear responses to immune challenges (see the
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previous paragraph), immune factors with high among-indi-
vidual variation in transcription should be included in
future ecoimmunological studies on this species. For instance,
cage experiments, similar to Langeloh et al. [106] that estimate
snail fitness under (semi)natural conditions in the field, but
employ targeted molecular assays (microarray or qRT-PCR)
to quantify immune activity across a broad range of different
immune defence factors at the transcription level would
allow comprehensive examination of selection on snail
immune phenotypes.

Earlier work examining the amount of within-population
genetic variation in parasite resistance and immune activity
inmolluscs is slightlymore abundant than thework on natural
selection on defence traits that was described above. For
example, Grosholz [16] examined genetic variation in the
resistance of a bivalve mollusc Transennella tantilla against tre-
matode parasites under field conditions. By maintaining
individuals from laboratory cultured maternal sibships in
field enclosures, he demonstrated significant family-level vari-
ation in parasite resistance. Similar variation has been seen in
the susceptibility of L. stagnalis snails to trematode cercariae in
laboratory exposures [110]. In L. stagnalis, family-level vari-
ation in immune activity (antibacterial activity and PO-like
activity of haemolymph) has also been demonstrated under
laboratory conditions using both maternal sibships [80,111]
and full-sib families [112,113]. Although the conducted studies
demonstrate the role of within-population genetic variation in
determining susceptibility to infections and the strength of the
immune defence, the fact that they are limited to comparisons
among maternal sibships and full-sib families prevents their
use in disentangling the actual genetic mechanisms that deter-
mine variation (e.g. additive versus dominance variance) and
means that the results can be confounded by parental effects
(but see [112]). Therefore, the studies conducted on molluscs
cannot estimate the evolutionary potential of the immune
defence traits/parasite resistance based on narrow-sense
heritability that is defined by breeding values.

Recent and ongoing work on the genomics of L. stagnalis
may provide great opportunities to use the tools of molecular
quantitative genetics when examining variation in immune
activity in natural snail populations under field conditions.
Currently, a draft genome of L. stagnalis is available [114],
and this species has been successfully used in a RAD-seq
study to identify the chirality-determining locus in which
the restriction enzyme SbfI produced 52 124 candidate loci
[115]. This study, however, used paired-end sequencing and
did not report how many of the candidate loci are located
in physical proximity. Strong linkage between loci could sig-
nificantly reduce the number of independent markers that
can be used when building a genomic relatedness matrix.
Nevertheless, the obtained number of loci should generate
a sufficient marker density considering the genome size of
1.19 Gb of L. stagnalis [116] for molecular quantitative genetic
analyses (i.e. estimation of trait heritability, chromosome
partitioning analysis). The number of polymorphic marker
loci provided by RAD-seq may, however, vary among snail
populations depending on their genetic polymorphism.
For example, preliminary results from a study of L. stagnalis
populations in northern Switzerland that used the same
SbfI enzyme with single-end sequencing recovered 7407
marker loci, many without any polymorphism, so that the
number of polymorphic sites varied between 1456 and 2689
per population (C Çetin, PGD Feulner, O Seppälä 2020,
personal observations). This result calls for the use of a
more flexible double-digest RAD-seq approach in which
different combinations of restriction enzymes are used to
yield a greater number of markers [91].
5. Opportunities and challenges in
ecoimmunology across molluscan gastropods

The scope of previous work on natural selection on and the
evolutionary potential of immune defence traits in molluscs
is narrow due to reliance on L. stagnalis. Also, the development
of ‘omics’ resources (including annotation and expression pro-
filing of immune genes) for this species is recent and still partly
underway [109]. The increasing use of next-generation sequen-
cing has begun to unlock other gastropod species as potential
targets for ecoimmunological research by providing useful,
and in some cases, well-developed genomics resources [117].
From the angle of gastropod immunogenomics, Biomphalaria
glabrata is themost intensively studied species with a relatively
well-annotated reference genome [37]. However, research on
B. glabrata mainly focuses on understanding the molecular
mechanisms that determine its, and other Biomphalaria species
[118], resistance/susceptibility to Schistosoma mansoni, a tre-
matode parasite that is a global human health problem [119].
The ‘omics’-level work on the immune function of B. glabrata
[120] has revealed commonalities of the general molluscan
defence system when compared to other taxa. These include,
for instance, the roles of lectins in non-self recognition, TLR sig-
nalling for immune regulation, and antimicrobial proteins and
ROS production by haemocytes to eliminate pathogens.
Although lineage-specific differences occur, for example,
between prosobranch and heterobranch snails and even
between closely related families like Planorbidae and Physidae
[121], work on B. glabrata provides a useful resource to support
ecoimmunological studies in other taxa. Research on B. glabrata
also aims to identify targets in snail biology that may help to
develop control measures of this species in nature to reduce
human exposure to schistosomes. That effort logically calls
for combining molecular immunology with field ecology and
requires ecoimmunological investigations.

The New Zealand mud snail, Potamopyrgus antipodarum,
is another good candidate for studies combining immunoge-
nomics and ecology in gastropods. Longstanding studies on
this species as a model for the evolutionary maintenance of
sexual reproduction have motivated intensive examination
of its transcriptomes, with a strong focus to characterize
the immune system [39,122]. With a well-established under-
standing of the ecology of this species, P. antipodarum offers
an excellent opportunity for combining field ecology and
immunogenomics to extend the use of this model beyond
the current focus on maintenance of sex. Furthermore, the
development and expansion of genomics resources render
additional gastropod species as potential candidates for
ecoimmunological research. This includes, for example, the
periwinkle Littorina littorina, whose immune system is exten-
sively characterized (e.g. [123,124]), and Physella acuta, a
freshwater snail for which current resources include a draft
genome assembly and RNA-seq-based characterization of
immunity [125]. Therefore, we believe that the opportunities
of merging immunogenomics with ecological research can
provide exciting new insights into the evolution of immune
function across multiple gastropod species.
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Results considering the variation in immune activity, its
genetic basis and fitness consequences need, however, to be
interpreted cautiously, especially when the examined
immunological mechanisms are inducible. For example, in
the most commonly used ecoimmunological model species
L. stagnalis, both phenotypic immunological assays [126]
and transcriptome data [109] indicate increased immune
activity after an immune challenge in certain components of
defence. Furthermore, environmental conditions such as
food availability and temperature influence snails’ immune
function (e.g. [80,109,111]). Such effects may lead to temporal
variation in immune activity at an individual level, which can
hinder detecting the quantitative genetic basis and/or fitness
consequences of among-individual variation in immune
function when, for example, field-collected individuals are
used. Therefore, the infection status (e.g. trematode infec-
tions) and resource level (e.g. fat content) of snails should
be examined simultaneously with their immune activity if
possible. Examining exposure to all relevant parasite types
is, however, unrealistic inmost studies. Furthermore, detecting
parasite exposures that did not lead to an infection but that
activated the immune system are virtually impossible to
quantify. Therefore, the components of the innate-type
immune system of molluscs that show largely constant levels
of activity may be the most suitable for the evolutionary ana-
lyses suggested in this article. Transcriptome profiling of
L. stagnalis has revealed multiple immunological mechanisms
with high among-individual variation without indication of
responses to immune activation or environmental factors
(e.g. components of non-self recognition, TLR signalling,
ROS production, antibacterial activity [109]). Those mechan-
isms serve as promising candidates for future research.
Similar opportunities can be expected in other invertebrates
that lack the adaptive immunity of vertebrateswith the highest
potential for induced responses.
6. Conclusion
While biomedical science has successfully eliminated several
disease-causing agents (mostly viruses and bacteria), para-
sites are still one of the most common causes of death in
humans and crop species, thus causing severe economic
losses (e.g. [8,9]). Furthermore, the continuous emergence of
new disease-causing agents [10,11], the evolution of drug
resistance (reviewed in [12,13]) and biological invasions
(reviewed in [14]) increase the disease risk now and in the
future. Several molluscs transmit harmul parasites such as
the human blood fluke (S. mansoni) in tropical regions
[119,127], and liver fluke (Fasciola hepatica), fish eye flukes
(Diplostomum spp.) and bird schistosomes (Trichobilharzia
spp.) that cause swimmer’s itch in temperate regions (e.g.
[128–130]). Therefore, an essential element when creating pro-
jections of disease risks is to understand if and how natural
host populations may evolutionarily adapt to parasitism.

Adaptive evolution of quantitative traits such as many
components of parasite resistance and immune function
requires that traits are subject to selection (i.e. contribute to
organismal fitness) and that they are heritable (i.e. show addi-
tive genetic variance; [36]). Despite broad interest in the
evolutionary ecology of immune activity in animals, the
understanding of selection on and evolutionary potential of
immune defence traits is not comprehensive. For example,
empirical studies typically do not support theoretical predic-
tions of immune activity being subject to stabilizing selection
(reviewed in [46]). We propose that this discrepancy may be
because ecoimmunological studies that mostly examine one/
few immunological mechanisms cover only a fraction of the
complexity of an animal immune system. The same mostly
holds for molecular immunology/immunogenetics studies
that also neglect variation in immune activity that arises
from genetic variation among individuals and from environ-
mental conditions. We believe that ‘merging’ ecological
immunology, genomics and transcriptomics is necessary to
fill these knowledge gaps and combine the formerly separated
field of ecological and molecular/genetic immunology. We see
this approach as highly promising in various taxa of molluscan
gastropods that are already used asmodel systems in ecological
and evolutionary research (e.g. L. stagnalis,P. antipodarum),mol-
ecular immunology (e.g. B. glabrata, L. stagnalis) and genomics
(e.g. B. glabrata). Combining the knowledge and tools across
the disiplines in these model species should allow examination
of evolution of immune activity while simultaneously covering
the immune system as awhole and considering the ecologically
relevant genetic background and environmental conditions.
Only then can evolutionary processes in natural populations
be thoroughly estimated.
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