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Molecular dynamics simulation is now a widespread
approach for understanding complex systems on the
atomistic scale. It finds applications from physics and
chemistry to engineering, life and medical science.
In the last decade, the approach has begun to
advance from being a computer-based means of
rationalizing experimental observations to producing
apparently credible predictions for a number of real-
world applications within industrial sectors such as
advanced materials and drug discovery. However, key
aspects concerning the reproducibility of the method
have not kept pace with the speed of its uptake in the
scientific community. Here, we present a discussion
of uncertainty quantification for molecular dynamics
simulation designed to endow the method with better
error estimates that will enable it to be used to report
actionable results. The approach adopted is a standard
one in the field of uncertainty quantification, namely
using ensemble methods, in which a sufficiently
large number of replicas are run concurrently, from
which reliable statistics can be extracted. Indeed,
because molecular dynamics is intrinsically chaotic,
the need to use ensemble methods is fundamental and
holds regardless of the duration of the simulations
performed. We discuss the approach and illustrate
it in a range of applications from materials science
to ligand–protein binding free energy estimation.
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This article is part of the theme issue ‘Reliability and reproducibility in computational
science: implementing verification, validation and uncertainty quantification in silico’.

1. Introduction
Computational methods offer a route to understand and predict the structure, dynamics and
thermodynamics of molecular systems. A large fraction of these are primarily based on molecular
dynamics (MD) simulations, first developed in the late 1950s [1]. These methods, however, find
their applications only in a limited segment of industry. Only in the past decade have they started
to be used in anything approaching an actionable context, for example in materials manufacturing
[2] and in the pharmaceutical industry [3]. Their main use is as a form of post hoc rationalisation
of experimental findings. In comparison to macroscopic modelling methods such as the finite-
element method (FEM) or computational fluid dynamics (CFD), which enjoy widespread use in
engineering applications, MD methods remain primarily confined to academic research, largely
due to their lack of reproducibility and limited accuracy, as well as the frequent long duration
and computational expense required for their use. Speed, accuracy, precision and reproducibility
are essential in any method which is to be relied upon for taking actionable decisions and thus
to become valuable in diverse applications, including inter alia industrial and clinical contexts.
For that, we need uncertainty quantification (UQ), verification and validation (V&V) or VVUQ.
But while careful control of uncertainty is the mainstay of weather forecasting, along with many
branches of engineering and applied mathematics, it is rather rarely performed in disciplines
such as physics and chemistry where much time is spent investigating matter at shorter length
and time scales than the macroscopic ones of direct concern in many real-world situations.

The purpose of the present paper is to assess the use of uncertainty quantification in the field
of molecular dynamics simulation and its relationship to the reproducibility of the method. We do
not provide a comprehensive review of molecular dynamics applications. We shall spend much
less time looking at verification and validation, which are respectively concerned with whether
molecular dynamics computer programs are solving the correct equations and how well their
output agrees with experimental observations [4].

Computational predictions are increasingly being used to predict outcomes and provide
recommendations in a variety of industrial and policy-making contexts. One of the central aims
of UQ is to facilitate decision making [5]; this is enabled by providing probabilistic statements
about quantities of interest, in a timely fashion, and helping decision makers to decide what
actions to take that maximize the likelihood of the desired outcome. Ensemble methods for
probabilistic weather prediction have become a routine part of the practice of weather forecasting
[6]. Simulation results have been used to help governments and non-governmental organizations
to make decisions as to how to help plan ahead for mass movements of refugees [7]. Accurate and
rapid binding free energy predictions based on classical molecular dynamics [8] are starting to
impact decision making in the pharmaceutical industry and clinical settings [9,10]. A very recent
and topical example is predictions emanating from simulations of an epidemiological model
by Ferguson et al. [11–13] which were used to guide UK government policy in addressing the
COVID-19 pandemic.

The steady increase of computational power permits investigations of a large diversity of
models over increasing length and time scales. This makes it even more essential to systematically
assess the reliability and reproducibility of the methods used and the results generated, as
such large-scale applications involve a vast amount of computational time and human effort.
Uncertainty quantification, along with validation and verification, ensures that the results are
reliable and reproducible while conferring greater confidence on predicted outcomes. Without
UQ, the usefulness and value of simulations are diminished, and the confidence in computational
results degraded. Science and engineering manifestly advance faster when there is less time
wasted on pursuing false leads.
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Given the increasing application of scientific computation in critical decision making,
uncertainty quantification has been the subject of broader attention in a range of domains [14].
In computational physics and computational chemistry, for example, there are well-documented
cases in the literature assessing the reliability with which various quantities of interest can
be computed. In ensembles of exchange-correlation functionals for density-functional theory
calculations, large error bars have been observed on energy differences at different states [15],
in reaction energies of specific chemical systems [16], within reaction kinetics of surface transition
states [17], and estimated free energies of activation [18]. Uncertainties in a model’s parameters
contribute to the uncertainties in its predictions. Careful and systematic uncertainty quantification
applied to the parameters enables one to estimate prediction uncertainty based on parameter
uncertainty inflation or deflation [13,19]. In some instances, prediction errors due to model
inadequacy can be handled by statistical correction of predictions, which may provide a reliable
uncertainty measure [20]. Various surrogate methods have been developed for the estimation
of prediction uncertainty, such as bootstrap-based methods, Gaussian process regression, neural
networks and deep learning ensembles [21–23]. Gaussian process regression has been employed
to identify particular calculations within a given dataset for which the uncertainties exceed a
given threshold [24,25]. The data points flagged up can be investigated with refined models and
more accurate methods that may be added back to the dataset if their uncertainties then fall below
the threshold concerned. Such validation and updating can improve the models and enhance the
quality of subsequent predictions [24].

One major application of MD simulation that we consider is the prediction of the binding
affinity of a lead compound or drug candidate with a protein target, of major relevance in drug
discovery and personalized medicine. That target may be respectively either a generic protein
or a sequence-specific variant, reflecting the fact that individuals respond differently to a given
drug based on their genetic make-up. The binding affinity, also known as the free energy of
binding, is the single most important initial indicator of drug potency, and the most challenging
to predict [26,27]. Another case we look at here is how one seeks to make actionable predictions in
support of advanced materials discovery. The guiding principle in all instances is to seek to make
reproducible predictions.

Reproducibility is an intrinsic feature of the scientific method, whether experimental or
computational. Scientific methods should yield the same results in a statistical sense regardless
of who performs them. Indeed, the lack of reproducible results in the published literature is
of current concern in the wider scientific community [28–30]. It should be noted that chaotic
dynamical systems exhibit extreme sensitivity to initial conditions, making accurate predictions
impossible and one-off observations largely unreproducible even though their underlying
dynamics is deterministic. Molecular dynamics is a case in point for which these issues need to
be addressed. To restore the predictive power of the scientific method to such systems scientists
contend that, while the accuracy with which we can simulate an individual chaotic process is
severely limited, accuracy in an averaged statistical and reproducible sense may still be possible
[31]. The purpose of the present paper is to assess the reproducibility and intrinsic uncertainty
of molecular dynamics simulation. We illustrate the issues by way of some examples drawn
from materials and life sciences. The discussion is, of course, applicable to all areas of classical
molecular dynamics.

2. Sources of error in classical molecular dynamics
There are two sources of error accruing in MD simulations, due to systematic and random sources.
In order to get a full grip on uncertainty in MD simulations, one needs to be able to identify both.
Systematic errors originate in things like the imperfect design, parameterization, conduct and/or
analysis of a study, which result in an estimate of a property deviating consistently from its true
value. Random variation—also called system noise, aleatoric or stochastic error—on the other
hand, is caused by the intrinsically chaotic nature of classical molecular dynamics and produces
apparently random deviations from the notionally ‘true’ value of an observable. It should be
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noted that in some cases no consensus definitions for the ‘true value’ may exist; more precisely,
differences in definitions from modelling and experimental studies can then contribute to
observed errors in validation studies. The glass transition temperature and the setting of cements,
for example, have a number of different operational definitions although only some of them are
endorsed as accepted scientific or engineering standards. The simulations should proceed from
a statistical-mechanical ensemble corresponding to the experimental conditions, and properties
calculated from expectation values may then be compared with their corresponding experimental
counterparts. Quantifying systematic errors requires first bringing the random components
contributing to the errors under control.

(a) Systematic errors
Systematic errors are introduced by inaccuracies inherent to the system investigated and within
the measurement method performed. They come from the assumptions and approximations
made when a theory is applied, a model is constructed, or a process is mimicked by the simulation
of a real-life problem. In constructing a model, there are many choices to be made, including:
which degrees of freedom are to be modelled explicitly, what components are to be excluded, the
kind of interactions between the components, what boundary conditions are to be used, and so on.
As Michael Levitt has stated: ‘the art is to find an approximation simple enough to be computable,
but not so simple that you lose the useful detail’ [32]. In principle, a higher level of resolution
should produce more accurate predictions than a lower level one, although in practice it is not
always the case because of the quality of the theory employed, a fortuitous cancellation of errors,
or the way that the methods are implemented which may not be fully verified. It is not uncommon
that simple methods outperform more complicated methods in the simulation field, as has
been seen in the blind SAMPL free energy prediction competitions [33–35]. In drug discovery
approaches, a ligand–protein model with explicit water molecules is usually better than one with
implicit water. These choices all affect the outcome of a simulation, usually in a deterministic way.
Biases in the interaction parameters chosen to represent the system can significantly influence
the results; for example, different protein force fields favour different secondary structure types
[36,37], populating either helical or sheet-like structures within independent simulations. When
the cause of such systematic errors can be identified, it can be reduced or even eliminated, as
shown for example in recent simulations with state-of-the-art force fields [38].

The implementation of the model in an appropriate MD engine and the calibration of the
engine can also influence the results. The thermodynamic conditions, such as constant volume or
pressure in a closed system, must be specified. Multiple factors need to be carefully considered in
the preparation of the molecular models, such as choice of force field, protonation and tautomeric
states, buffer conditions, use of restraints and constraints, thermostat and barostat, free energy
estimator and finite machine representation of floating point numbers [39,40]. A few operational
parameters need to be fine-tuned, including those for temperature and pressure couplings, for the
calculation of long-range interactions, for the time step(s) used within the integration algorithms,
and so on. Other factors, such as the introduction of numerical integrators and the accumulation
of rounding error [31], may also lead to systematic patterns of error. Moreover, it is entirely
possible that molecular dynamics may manifest a pathology which we recently discovered in
the simulation of simple chaotic systems described by the generalised Bernoulli map on digital
computers [41]. It is caused by the limitations of the IEEE floating point numbers in describing
the statistical behaviour of systems with such exquisite sensitivity: for certain parameter values,
ensemble and long-time averages, designed to address random errors, also contribute substantial
systematic errors to predicted properties. For those particular parameter values, the pathology
cannot be mitigated by increasing the precision of these numbers. While single precision floating
point numbers are inadequate for such extremely simple chaotic systems, double precision
floats can produce much better behaviour for most other parameter values (Milan Kloewer,
private communication with PVC). However, this leaves open the question as to whether double
precision floating point numbers are themselves sufficient to handle the complexity of real world
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molecular dynamics and fluid turbulence, which originate in dynamical systems that are many
orders of magnitude more complicated.

(b) Random errors
Given the extreme sensitivity of Newtonian dynamics to initial conditions, two independent MD
simulations will sample the microscopic states with different probabilities no matter how close
the initial conditions used [42]. The difference thus produced in two simulations introduces a
variation in results that can often be larger than the quantity of interest, making the results
practically useless. Large hysteresis can be observed in cases where adequate sampling of all
relevant conformational substrates is not achieved [43,44]. It should be noted that a seemingly
low standard deviation does not guarantee convergence; it can appear when simulations remain
trapped in a single energy well [45].

The impact of the chaotic nature of molecular dynamics has not been widely recognized in the
molecular dynamics field. Most accounts give surprisingly short shrift to it, a notable exception
being the recent book by Leimkuhler and Matthews [31], albeit it does not address the issue of
uncertainty quantification and the estimation of thermodynamic quantities. Extensive studies we
have performed in recent years show that molecular dynamics systems indeed exhibit extreme
sensitivity to initial conditions [46–49]. From our investigations, we observe that the properties
one computes from molecular dynamics trajectories appear superficially to be described by a
Gaussian random process (GRP) with a normal distribution denoted by N(μ,σ 2), characterized
by average μ and standard deviation σ (the square root of the variance in the data). Note,
however, that a normal distribution cannot be assumed and in fact there are frequently significant
deviations from such statistics in nonlinear dynamical systems of which molecular dynamics is
an excellent example [50].

In a recent study, for example, the effect of box size on simulations of protein dynamics in
water was reported [51]; the authors reported that calculated values of various properties, such
as the stabilities of the unliganded and liganded states of human haemoglobin and the density
or number of hydrogen bonds per water molecule, changed systematically with an increase in
box size; the authors maintained that a surprisingly large box of 150 Å was required to obtain
meaningful results. Although at first sight, this dependency on the box size appears to be an
example of a systematic error in the simulation, it is in fact caused by a lack of reproducibility in
the study which becomes manifest when random errors are taken into account [52]. Indeed, the
ensuing debate [51–54] highlights the importance of setting up systems correctly for simulation
and, more importantly, applying ensemble approaches to get statistically significant results. The
issue at stake is also important for the evaluation of the reliability of scientific research, as is clear
from the follow up studies by the debaters [45,55]. As we noted above, without first handling the
stochastic errors, it is not possible to assess correctly the nature and magnitude of the systematic
errors, and to interpret findings convincingly.

3. Uncertainty quantification in molecular dynamics simulations
Although it was recognized more than two decades ago that one-off classical molecular dynamics
simulations do not generate consistent protein conformations [56,57], systematic investigation
as to how to make these calculations reproducible had not been performed until recently.
Considerable effort has been invested in the development of so-called ‘enhanced sampling
protocols’ in order to accelerate phase space sampling, their purpose being to make computed
properties more reliable by demonstrating more rapid ‘convergence’ of computed properties.
These enhanced sampling protocols accelerate molecular dynamics to overcome high energy
barriers using methods such as bias potential approaches [58,59], Markov models [60], orthogonal
space random walk [61], self-guided Langevin dynamics [62] and Hamiltonian replica exchange
[63]. However, in all these cases, it is quite impossible to calculate the (equilibrium or other)
probability distribution function from one-off simulations, against which expectation values
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would be calculated; instead, expectation values of various observables are reported. Ensembles
of such enhanced sampling simulations show that there is a significant variance between the
expectation values computed from individual replicas [64].

Indeed, ensemble-averaging is not just a practical consideration invoked in the repertoire of
uncertainty quantification methods. When molecular dynamics is used, as it frequently is, to
estimate thermodynamic properties, such as the free energy of a system, it should be recalled
that the connection between microstates (generated by individual MD simulation trajectories)
and thermodynamic properties is achieved using ensemble averages. This is true whether the
system is in or out of equilibrium. The very common resort to perform so-called ‘long-time
averages’ of a single microsystem appeals to the ergodic theorem, which is in fact only valid
for long times at which this time average should converge to the ensemble average. In reality, that
time interval would need to be of the order of a Poincaré recurrence time—a truly astronomical
epoch—for the equality to hold. In practice, it is taken to be as long as authors deem to be
reasonable, and, compounding this, we must face the fact, mentioned below, that the accuracy
of these long-duration trajectories is severely limited.

In the ergodic hierarchy of dynamical systems, those which approach and reach equilibrium
must be at least mixing [42]. Mixing implies ergodicity, but the converse is not true. Mixing
systems exhibit the tell-tale property of dynamical chaos: neighbouring trajectories, no matter
how close, diverge exponentially, at a rate given by a Lyapounov exponent. The point is that
we are dealing with two levels of description and those wedded to trajectories and Newtonian
mechanics think only in terms of one, the trajectories which follow Newton’s equations of
motion. To understand the concept of equilibrium, one must work with probability distributions
(computed from ensembles) which obey Liouville’s equation. Ergodic theory is about the large-
scale probabilistic properties of dynamical systems, including in particular their long-time
behaviour. The condition for a solution of the Liouville equation to reach an equilibrium state
is that the dynamics must be mixing [42]; at the level of trajectories, it means that neighbouring
trajectories diverge exponentially. An analogy may help. Imagine some perfume in a bottle in one
corner of a room. The cap is removed and the vapours suffuse the room. Equilibrium is reached
when the density of the perfume is uniform throughout the room—that is the equivalent to phase
space equilibrium, when the probability distribution function no longer changes with time.

Since we can never know the true initial conditions for a real system (which arise as a
consequence of whatever it was doing before we started to observe it), we are obliged to formulate
the approach to equilibrium in probabilistic terms. Indeed, even a single trajectory associated
with a given initial condition becomes increasingly inaccurate as time passes, since the exquisite
sensitivity of the dynamics means that round-off errors accruing during the time integration of
the equations of motion inevitably put the system on orbits other than the one it began on.

The lack of reproducibility thus stems primarily from the intrinsically chaotic nature of
classical molecular dynamics. Other sources of uncertainty may play a role, many being
potentially tractable; these include: the theory or the model used, the extent of convergence
of the numerical method, the reliability of the software (which may not have been verified),
the way the software is used and so on [8,39]. We therefore focus on ensemble-averaging,
which is mandatory in statistical mechanics, for the convergence, reproducibility, reliability and
uncertainty quantification of properties obtained from MD simulations. If we adjudge the system
to be in a state of equilibrium, we can in addition perform time averaging, a procedure generally
bereft of meaning out of equilibrium.

(a) Ensemble method
Extensive studies we and others have performed in recent years [8,44,46–49,64–74] confirm that
the most effective and reliable computational route to reproducible binding free energies of
ligands to proteins using MD simulation can be achieved using ensemble methods. The same
conclusion has been drawn from MD simulations in other areas, including studies on materials
applications such as graphene-based systems [75], on DNA nanopores using coarse-grained MD
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simulations (Ahmad K, Coveney PV. 2019 unpublished work), on rate parameter estimation for
binding kinetics [76] and so on [77,78].

An ensemble approach employs a set of independent MD simulations, referred to as ‘replicas’
both in statistical mechanics and within the uncertainty quantification domain, to obtain the
required averages and associated. The key feature of such simulations is the use of ensembles
and—for systems at equilibrium—time averaging. It is useful to recognize the stochastic nature of
these simulations; it can be convenient to approximate the statistical properties of such ensembles
as Gaussian random processes [42]. The requirement for the number of replicas and the temporal
duration of the simulations depends mainly on the property of interest and the conformational
space being sampled. Each replica needs to be simulated for long enough to sample the most
relevant conformational space in order to evaluate one or more properties of interest. For free
energy calculations using an endpoint approach, for example, the stable binding states are the
most relevant. There is no theoretical means to establish the number of replicas required to
produce low errors from ensemble simulation: the criterion for ensuring convergence of the
ensemble average is to establish the number N of replicas required such that using N + 1 of them
makes no significant difference to the expectation values calculated. Of course, this can also be
looked at another way, as amounting to a trade-off between the amount of computation one
performs (which increases linearly with N) and the size of the error one is willing to tolerate
(which reduces roughly as N−1/2). The computational costs can be optimized when a cost-to-
accuracy ratio is carefully considered in a situation-specific and task-specific manner. Our studies
show that starting from good initial structures, accurate and reproducible results can often be
achieved from an ensemble simulation consisting of 25 replicas with 4 nanoseconds production
runs each using endpoint approaches [8]. For a drug screening project, where a large number of
compounds need to be evaluated, a coarse-grained workflow with a smaller number of replicas
can indeed be useful to distinguish binders from non-binders [79]. In such cases, replicas differ
only in terms of the random number seeds selected to assign initial atom velocities. In other
situations, it may additionally be necessary to randomly vary the initial atomic configuration,
that is the spatial coordinates, as well [80]. These matters are discussed further below.

In general terms, the principles discussed above are applicable to all-atom MD and coarse-
grained MD. The reduction in the number of degrees of freedom achieved by grouping several
atoms into single particles or pseudo-atoms, as is done in coarse-grained MD, reduces the level
of fluctuations in such systems. While this form of coarsening of the model’s representation can
typically lead to a decrease in accuracy, the benefits which accrue are an ability to study larger
systems for longer time periods; the reduced degrees of freedom also reduce the phase space that
needs to be sampled. We find that smaller ensembles are required for coarse-grained MD than
all-atom MD. This typically leads to an ensemble with around two-thirds the number of replicas
as compared to all-atom MD ensembles, as we have shown in recent work with graphene oxide
dispersions [81] and DNA nanopores in lipid bilayers [82].

(b) Performing ensemble simulation
The requirement to simply run a large ensemble of replicas may sound trivial but it comes with
significant overheads in terms of managing the execution of simulations and collation of output
data. It will be clear that using ensemble methods greatly adds to the computational cost of a
study and to the wall clock time unless one has access to modern high-performance computers
which are equipped with large numbers of nodes, cores and often accelerators. In such cases, in
the time it takes to run one simulation, one can produce the output for all of them. There is then a
lot more data to handle and process. The key step from the overall technical perspective is to bring
all these output trajectory data together and then perform the analysis on the aggregate of all of it.
This can be done in a number of ways, but the one we generally use is called a bootstrap error [83].
Given N results from an ensemble of simulations, the bootstrap method involves calculating the
distribution of means from resamples of size N from the original data. Many resamples are taken,
typically greater than 10,000, with replacement. If the original sample is representative of the
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true distribution, this method can provide error bounds or confidence intervals on any calculated
value. The bootstrap error behaves similarly to a standard error; indeed, it is meaningful for
quantities that have non-Gaussian distributions. This is of practical value in cases where we do
not know the distribution of the quantity of interest.

Evidently, effective automation is necessary to manage the extra effort involved, and efficient
sampling techniques are required to make these kinds of workflow possible. We have previously
developed software to assist us in this task for the computation of binding free energies, the
so-called ‘binding affinity calculator’ [84]. This in turn led us to develop software for more general
forms of uncertainty quantification, and to extend this to address verification and validation
too. In particular, we have developed the VECMA Toolkit [30,85], as an open-source, open
development project which enables us to apply these methods much more widely, to address
uncertainty quantification in a set of diverse domains. For example, the toolkit includes a python
library called EasyVVUQ, which permits users to instrument their own codes with capabilities to
perform UQ using a wide range of methods, including quasi-Monte Carlo (the method described
here), stochastic collocation and polynomial chaos [29,86].

4. Statistical distributions revealed by ensemble simulation
The use of ensembles in molecular dynamics simulation only started to be systematically and
routinely viable since the advent of the petascale era (that is, in a little over the past ten years),
as a result of the vast increase in the number of nodes, cores and accelerators available on
supercomputers. An instructive thing to do is to plot the frequency distribution of observables as
it emerges from all the members of an ensemble, as this gives us an indication of the nature of the
distributions we can expect. Figure 1 shows a set of examples of the data which typically emerges
from these studies, and is drawn from work we have performed over the past few months [79].

It is clear from these plots that, while they are approximately Gaussian, they exhibit deviations
from the standard bell curve expected on the basis that the variables are independent of
one another, as one assumes in conventional statistics. Instead, we find that the distributions
have a skewness associated with them, the asymmetry favouring the occurrence of values of
the observable higher than the mean. The majority of the distributions have positive excess
kurtosis, meaning they are heavy-tailed relative to a normal distribution. Our predictions of
non-normal distributions prompted an investigation of the distributions of experimental binding
free energies from a large number of independent measurements over time: these also exhibit
non-normal properties (Ian Wall and Alan Graves, private communication, 2020). Caution is
therefore required when statistical comparisons are made between predicted and measured
thermodynamic properties, as it is widely assumed that these data are normally distributed. Such
behaviour is at first sight unexpected, until it is recognized that these systems all display chaotic
behaviour as well as long-range interactions [31]. A Gaussian distribution of free energy results
can only be assumed for harmonic systems or transformations that can be approximated by linear
response theory (see, e.g. Hummer et al. [87], Shirts and Pande [88], or König et al. [89]). Most free
energy calculations are strongly influenced by anharmonic terms (e.g. van der Waals interactions),
are not performed in a homogeneous environment (e.g. in a protein), or exhibit more than one
dominant conformational substrate [44]. The underlying nonlinearities in the dynamics are what
account for both the presence of chaos and non-Gaussian statistics. The phenomenon is well
known in turbulence: there it is caused by very long-range hydrodynamic interactions mediated
by energy dissipation. It is not anticipated from our experience of studying linear systems with
short-range interactions at equilibrium.

That the equilibrium distributions arising in molecular dynamics should be non-Gaussian may
appear surprising, given the accounts in most textbooks and lectures, which transfer themselves
into research articles very readily. The reason for the presence of non-normal statistics in such
systems at equilibrium comes from the fact that here too we are dealing with the infinite range
interactions mediated by Coulomb forces. In a computer simulation of a closed system, such as the
canonical or (N,V,T) ensemble, the molecular dynamics is driven by the existence of thermostats
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Figure 1. Molecular dynamics equilibrium distributions with long-range interactions are non-Gaussian. The main figures
display the Fisher–Pearson coefficient of skewness (a,c) and the excess kurtosis (b,d) for distributions of predicted binding
free energies (�G), or binding free energy differences (��G), using the ensemble-based molecular mechanics Poisson–
Boltzmann surface area approach (ESMACS) (a,b) and thermodynamics integration (TIES) (c,d) approaches, respectively. The
ESMACS results are obtained from 250 ligand–protein complexes, each with 25,000 frames accumulated from an ensemble
simulation with 25 independent replicas. The TIES results include alchemical transformations of 50 pairs of ligands, from
ensemble simulations comprising 20 or 40 replicas each. The inset shows distributions of binding free energies for two ligands,
or ligandpairs,with themost negative andmost positive skewnesses or kurtoses respectively. Thebest-fitGaussiandistributions
are shown by black solid lines. See also Wan et al. [8].

(and barostats in e.g. the (N,p,T) ensemble). The dissipation of energy within the system causes
long-range correlations to be set up, which manifest themselves in the non-Gaussian nature of the
statistics.

The practical implications of this discovery are important to apprehend. Non-normal
distributions imply the occurrence of more ‘outliers’ and an increase in the observation of so-
called ‘rare events’, making it harder to infer poor agreement between theory and experiment
without far more data to pin down average behaviour. Naïve interpretation of correlation plots
as implying poor agreement between experiment and theory when data do not magically cluster
close to the 45-degree line need closer assessment; this is discussed further by Wan et al. [8].

5. Biomedical simulation
There are various approaches to estimate the magnitude of the binding free energy (a measure of
how strong the interaction is between a ligand and its target protein), based on different theories
and approximations [90]. The ‘informatics’ based approaches are, in the current era, usually
the output of docking studies in combination with so-called ‘machine learning’ [91]. The linear
interaction energy (LIE) method [92] is an approximation of linear response theory; molecular
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mechanics Poisson–Boltzmann surface area (MMPBSA) and molecular mechanics generalized
Born surface area (MMGBSA) methods [93] are based on invoking a continuum approximation
for the aqueous solvent to approximate electrostatic interactions following all-atom molecular
dynamics simulations, and, finally, so-called ‘alchemical’ methods, including thermodynamic
integration (TI) and free energy perturbation (FEP), have a theoretically firm foundation, the
former being exact and the latter an approximation. In practice, relative alchemical free energy
methods have a restricted domain of applicability due to sampling requirements for convergence
and, usually, the need to keep electrostatic charges constant during alchemical transmutations.
Absolute binding free energies derived from alchemical methods are at least an order of
magnitude more expensive. Binding free energy can also be calculated using approaches based
on potential of mean force; such calculations usually employ enhanced sampling approaches
such as metadynamics, adaptive biasing forces or umbrella sampling [94]. The choice of which
computational method to use is influenced by the desired accuracy, precision, time to solution,
computational resources available and so on.

(a) Ensemble method for endpoint approach
Endpoint free energy methods allow one to explore configurational space in the protein–ligand
bound and unbound states only, providing an efficient and accurate approach for the calculation
of state functions such as free energies. MMPBSA and MMGBSA approaches are two commonly
used endpoint free energy methods which require direct simulation of the two physical states.
To generate the structures of these states, one can use a 3-trajectory (3-traj) approach in which
separate MD simulations are performed for the ligand, apo (free) protein and ligand–protein
complex. Alternatively, one can use a 1-trajectory (1-traj) approach in which a single simulation
is performed for the complex; a 2-trajectory (2-traj) variant allows for flexibility in the complex
and one of the other two. The conformations for the ligand, protein and complex all being
extracted from the complex simulation, the 1-traj approach makes use of an assumption that
the conformations of the separated ligand and protein are similar to those of the complex. The
assumption in the 1-traj approach is based on a lock-and-key hypothesis in which a substrate fits
perfectly into the active site of an enzyme just like a key fitting into its lock. In the 1-traj approach,
noise is significantly reduced as the energy terms are largely cancelled out. That assumption is
questionable in many cases, however, as binding typically leads to conformational changes in
both protein and ligands. The 3-traj approach does not use this assumption but the amount of
noise is substantially increased when taking energy differences from three individual simulations.
It is important to recognize that the 2- and 3-trajectory variants only become possible when
ensemble-based methods are used, as extensive averaging is required to reduce the fluctuations
present in individual trajectories, as is discussed further below.

(b) Errors in endpoint approaches
The variation in the 1-traj free energy calculations based on ensemble simulations was
investigated systematically by Sadiq et al. [46] and by Genhenden and Ryde [93] using MMPBSA
and MMGBSA methods, respectively in 2010. The estimated free energies from two independent
MMPBSA calculations of the same molecular system can vary by more than 10 kcal/mol in
smaller molecule–protein complexes [47,49,93], and by up to 43 kcal/mol in larger and/or more
flexible ligands bound to a protein such as peptide–MHC (major histocompatibility complex)
systems [48]. With the ensemble method, however, a meaningful ranking of binding free energies
is generated. The 3-traj approach is able to address the role of the adaptation energy—the free
energy associated with the conformational changes upon binding. The large adaptation energy,
up to 39 kcal/mol, indicates that it is necessary to invoke the 3-traj approach for flexible small-
molecule–protein binding. This has been confirmed by several subsequent studies [64,65,68]
which show that incorporating the flexibility of the receptor and ligand improves the prediction of



11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200082

...............................................................

binding free energy ranking. There are also cases where incorporating flexibility does not improve
the ranking [67], indicating that binding is mediated by a lock-and-key mechanism.

(c) Ensemble endpoint simulations
To generate reliable, precise and reproducible binding free energies from MMPBSA and
MMGBSA approaches, we have proposed an ensemble-based MD approach, named ‘enhanced
sampling of molecular dynamics with the approximation of continuum solvent (ESMACS)’ [48].
This builds around the so-called MMPB(GB)SA method, including configurational entropy and
free energy of association, but with important additional features to address reliability and
reproducibility. Correctly accounting for entropic contributions is essential for reliably predicting
binding free energies in cases where the ligands are diverse and/or flexible with many rotatable
bonds. The contributions can be incorporated to the calculated free energies using normal mode
(NMODE) approach or a variety of other options [68]. We have found a varying number of
replicas may be required to achieve a desired level of precision; for many small-molecule–protein
systems, 25 replicas are typically required with 4 ns production run for each replica, for ESMACS
studies [48,49]. As already noted, the combination of the simulation length and the size of the
ensemble provides a trade-off between computational cost and precision. In collaboration with
several pharmaceutical companies, we have used the ESMACS approach to investigate drug-like
small-molecules bound to therapeutic targets [65–68] and shown that ESMACS is well suited for
use in the initial hit-to-lead activities within drug discovery.

(d) Ensemble method for alchemical approaches
The alchemical approach most commonly calculates relative binding free energies between two
physical states which are linked by an ‘alchemical’ path. A series of nonphysical steps are
involved in the path. The two physical states can be a protein binding with two ligands, or
a ligand binding with wild-type and mutant proteins. Along the alchemical path, some atoms
change their chemical identities—appearing, disappearing or alchemically transforming from one
to another. Although the alchemical free energy methods are formally exact and general, the
possible large uncertainties and expensive computational cost limit the domain of application:
they are applicable mainly to estimating small relative free energy changes for structures (drugs
or proteins) which involve relatively minor (perturbative) variations. The alchemical method can
also be used to calculate absolute binding free energies [73]. It is the equivalent of the relative free
energy calculation when one of the ligands involved is replaced by nothing and thus faces even
more demanding challenges to achieve convergence.

Free energy calculations using such alchemical methods had rarely been used seriously in
drug development projects until recently when Schrödinger Inc. released their ‘FEP +’ simulation
software for relative free energy calculations [95]. With the improved methodology, much of
which is proprietary and thus not available for critical assessment, and the use of graphical
processing units (GPUs), FEP+ has made a significant impact in the pharmaceutical industry
within its domain of applicability [3], although further evaluation is still needed on its accuracy
and precision [44,64,73]. From the perspective of this study, however, it is interesting to observe
that the methodology advocated is decidedly based on the use of ‘one-off’ simulations, so that
any attempt to provide uncertainty quantification is entirely lacking.

(e) Errors in alchemical calculations
As in many other approaches, an alchemical calculation certainly generates random errors,
and very likely contains systematic errors too. As we have stated above, we need to correctly
handle the stochastic errors before we can reliably estimate the possible systematic errors.
A survey of publications and binding databases shows that the binding affinities are in a
range between −6.5 and −15.2 kcal/mol for most of the interesting biomolecular ligands [96].
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Molecular simulations aim to predict free energies accurately, with an error approximately
1 kcal/mol, for small molecules to their target proteins. Thermodynamic integration can
produce significant differences from individual replica simulations, up to 1.58 kcal/mol and
approximately 7 kcal/mol for relative and absolute binding free energies, respectively, for the
cases tested using five independent simulations [73]. These simulations, which use the TIES
method (see section (f) below), vary only in their initial velocities which are randomly drawn
from a Maxwell–Boltzmann distribution. Similar results are obtained from multiple runs of FEP+
calculations, in which up to 3.9 kcal/mol variations have been observed from 30 independent
simulations, much larger than the MBAR (multistate Bennett acceptance ratio) errors reported for
individual FEP+ calculations [64].

When random errors are handled correctly, it is possible to identify the systematic errors
intrinsic to these simulation methods, provided due attention is paid to the way in which
errors, both theoretical and experimental, are handled. Systematic errors tend to shift all of
the measurements/predictions for the same target systems with the same set-up in the same
direction from their real values. Different techniques have been applied in alchemical free
energy simulations to enhance sampling in the hope of reducing errors in the calculations.
Widely used techniques include accelerated sampling methods, such as replica exchange with
solute tempering (REST2) [97], and free energy estimators, such as MBAR [98]. However, our
studies paying careful attention to uncertainty quantification show that these techniques offer
no guarantee of improving the accuracy of the predictions [44]. Indeed REST2, as used in FEP+,
appears to generate a significant systematic underestimation of free energy differences, which
degrades monotonically with the duration of simulation [64].

(f) Ensemble alchemical simulations
Alongside ESMACS, we have developed an ensemble-based approach called TIES (thermodynamic
integration with enhanced sampling) [74]. TIES employs an ensemble of independent MD
simulations in combination to yield accurate and precise free energy predictions. It quantifies and
reduces random errors, making the results precise and reproducible. This approach also makes it
possible to distinguish systematic errors and to interpret the results correctly.

As one example among many, the application of TIES to protein mutations provides insights
underpinning the impact of the gatekeeper mutation of the FGFR-1 kinase on drug efficacy
[73]. Using an ensemble-based approach, we were able to quantify the uncertainties in the free
energy calculations and to compare the performance of different software and hardware for the
calculation of the same free energy changes [64]. Ensemble approaches like TIES provide a reliable
and rapid method for uncertainty quantification applied to both relative and absolute binding free
energy calculations using alchemical methods [64,73].

6. Materials simulation
Predicting the properties of modern advanced materials typically requires understanding
the structure and the dynamical processes on an atomistic level [77,99]. Many large-scale,
macroscopic, engineering properties can be modelled using methods taken from continuum
mechanics, such as the finite-element method. However, diffusive processes, self-assembly,
structural degradation, surface/interface characteristics, and many other quantities of interest
to modern materials scientists and engineers are all heavily influenced if not controlled by
dynamical processes on the scale of atoms and molecules. This is particularly clear in the case
of nanocomposites, in which one has to deal with a polymer matrix in which is embedded a
nanomaterial such as a graphene (and its oxide), carbon nanotubes and clays [75,81]. Graphene
and other so-called two-dimensional materials have one dimension which is of the order of
nanometers, and thus just one or a few atoms thick, yet they impart dramatically enhanced large-
scale materials properties in the composites they produce. In such circumstances, it is clear that
one must use MD as part of the range of techniques available for studying such complex systems.
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MD techniques are uniquely equipped to explore processes that occur on time and length
scales of nanometers to microns, and nanoseconds to microseconds. For complex systems,
especially those with anisotropic structures on the nanoscale, such as ‘soft matter systems’,
MD has proven useful for predicting the nanoscale structure and material properties. In the
development of new materials, the chemical constituents are often among the first known aspects
of the system, and the subsequent time necessary for developing useful applications is spent
optimizing the fabrication and processing for engineering tests. MD can often help to reduce
if not remove many of these practical barriers and assess a material’s suitability for a given
purpose based only on its atomistic structure. Indeed, there is substantial interest in many areas
of materials design in virtual testing using computer simulation to speed up the process from
concept to real-world implementation, which currently takes of order 20 years, at a cost of many
billions of dollars [100]. The challenge then becomes providing reliable computer-based ‘in silico’
predictions which reduce the need for expensive and time-consuming experimental work. This
puts a premium on providing tight error bars since these furnish a key measure of the confidence
with which we can accept modelling results and use them to guide experimental work.

(a) Materials property prediction
By way of example, consider trying to predict a material’s stiffness using molecular dynamics
(figure 2) [101]. This is one of the most common applications of MD in materials science. A
uniaxial stretch of such a system is a fairly trivial simulation to perform; however, it poses
several fundamental questions about the certainty we can have in a result of an MD simulation.
As discussed above, several systematic uncertainties exist with this technique which is hard to
quantify [102], the most glaring example of which is the choice of force field used to represent the
material [103]. The often-quoted limitations of MD—such as finite size/time effects or structure
generation—are also systematic errors. Using appropriate workflows we can quantify these
effects to produce accurate results [104].

MD simulations in the condensed phase are typically performed by imposing periodic
boundary conditions in all three spatial directions, which means that we only expect to simulate
a comparatively small simulation cell to approximate the bulk properties. The size of this
simulation cell has many implications for computational cost but, more importantly, the reliability
of the scientific results it furnishes. Finite size effects and fluctuations can be expected to affect the
outcome of a simulation.

To measure the Young’s modulus (YM) of a material system, the pressure exerted along one
axis is sampled before and after (or during) imposition of a small strain. Since the instantaneous
pressure of a molecular dynamics simulation can fluctuate by several GPa, it is necessary to
average this value over a long sample period to measure the change in pressure due to an applied
strain. In a recent study [29], we considered an epoxy resin system, a thermosetting polymer. The
investigation quantified the effect of specific MD parameters on the measured Young’s modulus,
including the system size, starting velocities and polymer generation random seed.

We found that the mean YM of an ensemble of simulations is independent of simulation size
but, below a box of size 4 nm, there is a finite size effect which makes the system artificially
stiffer (figure 3). This effect only became evident after performing 300 replica simulations at
each box size, with mean YM and standard deviation of 3.4 ± 1.9 GPa. The smallest box size
gave a distribution of YMs with a significant skewness of −0.8; as the box size increased the
skewness tended to zero. The distribution is effectively Gaussian because there are no long-range
interactions present. The analysis was greatly facilitated by the use of the EasyVVUQ software
[29]. From this, it should be clear that one single measurement, at the low strains imposed here,
is wholly inadequate to measure this property reliably.

Another benefit of running ensemble simulations is that one can perform sensitivity analysis
and thereby learn about the variance in properties arising due to different input variables and
parameters. By applying the law of total variance, our study showed that the expected variance
due to the polymer network generation was equal to that due to the starting velocities of the atoms
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curves are shown in the plot; lines indicate the average of six replica simulations while the shaded regions correspond to the
standard deviations at each strain. While each replica varies, the ensemble average shows the three materials behave similarly.
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in the simulation. In other words, the exact connectivity of monomer units was inconsequential,
provided that the same cross-link density was achieved. However, one single simulation of such
a polymer is insufficient; the aforementioned ensemble of 300 replicas was required in order to be
95% confident of the size effect seen above.

These approaches are broadly applicable. Running ensembles that give statistically significant
results not only allows us to efficiently sample more phase space, therefore increasing the
accuracy in the result, but provides much more information that single simulations would not
be able to tell us.

Ensemble techniques are necessary for exploring phase space whenever molecular dynamics
simulations are used. Alfè et al. explored the kinetics of phase transitions in superheated metals
caused by nucleation processes [105,106]. The time taken for a superheated metal to melt in
this manner is generally unknown: by simulating an ensemble of 350 replicas, differing only
in the starting velocities of the atoms concerned, they were able to make accurate predictions
of the system’s kinetics. They found that nucleation rates are highly dependent on the details
of nanoscale behaviour. Here too, finite size effects were isolated and corrected for in reporting
reliable results.

(b) Generating structures
It is often forgotten that the starting structure can itself be a major source of uncertainty in MD
simulations; it is as true for materials as it is in biomedical simulation. The most straightforward
way of achieving variation in an ensemble is to use different random numbers to seed the initial
atomic velocities; however, generating different starting configurations should also be considered
as we did when performing an MD study of the Nobel prize-winning discovery of graphene
by peeling off atomic layers from graphite [80]. The process of building the initial structure and
coordinates of a system is not trivial and can often be the most time-consuming step in such
research work: it may involve non-trivial polymer chain building for synthetic and biological
macromolecular structures, the details about the microstructure of nanocomposites, and so on.
The initial state of an MD simulation is inevitably artificial and therefore not itself a representation
of the system of interest. Initial states must be built such that, for example, if one wishes to
study the equilibrium state, it will not take an inordinately long time to reach that state by MD
simulation. The starting structure must be sampled sufficiently and carefully assessed to check
that unphysical starting conditions do not influence the production stage of a simulation.

Polymer systems are manifestly difficult to build while diffusion in high molecular weight
polymers can be extremely slow, so entanglements and anisotropic structures must be built
carefully as good starting points. Numerous techniques exist to do this. Diffusive processes are
so slow that ‘sampling the phase space’ with one long simulation would be extremely expensive
using normal molecular simulation approaches and inaccurate into the bargain; instead several
structure generations are essential to be confident in a result.

Graphene oxide poses a different problem as its structure is that of an amorphous crystal
[107]. Oxygen-containing groups are present across the surface of graphene with some random
distribution; in the presence of other materials, the precise distribution of these groups may
influence their interaction. In the case of a graphene oxide dissolved in a polymer melt, it is not
sufficient to build one structure and generate an ensemble with different initial velocities; instead
one must generate several graphene oxide structures to understand the system.

(c) Forcefield critical properties
The errors caused by inaccurate force fields can be completely catastrophic for the physics under
investigation. A stable inaccuracy in a force field may give binding energy within some error
of the true value, but a more significant inaccuracy may result in divergent dynamical and/or
structural regimes [108]. For example, when predicting the structure of crystals, a flawed force
field may never produce certain crystal arrangements. Lennard-Jones forcefields are known to
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underestimate the friction between layered materials [109]. Sinclair et al. [75] found that the
spherical symmetry of these potentials is too gross an approximation while simulating graphene
bilayers so a new forcefield was developed. In the experiment, graphene flakes are observed
to show superlubric behaviour when propelled across a graphitic surface. Propelling flakes in
this way is a chaotic process (in the technical sense that it is highly dependent on the initial
conditions). In order to achieve an acceptable error which was comparable with experimental
data on frictional properties, ensembles of 40 replicas were required. The distance travelled by
a flake seems to follow a lognormal distribution, with a Fisher–Pearson coefficient of skewness
of 1.4.

7. Generating actionable predictions
In order for the predictions from computational science to inform costly and consequential
decisions for real-world problems, it is vital that they are accurate, reproducible and accompanied
by uncertainty quantification. Speed too is of critical concern, in order for predictions to be
actionable—that enables decision makers to take appropriate actions in a certain period of time.
Aerospace manufacturers are keen on the concept of virtual certification in order to reduce the
time to market, along the way from concept to implementation. Approaches and tools have
been proposed to perform uncertainty analyses in real-world practice [14]. Emulator based
methods [14] and the test harness [110] are used to analyse sensitivity and uncertainty, to evaluate
scientific software and to calibrate complex computer simulators. Practical recommendations
have been made on validation and reproducibility in the field of scientific research in general
[111] including molecular dynamics [5,39]. Uncorrelated data need to be collected in sufficient
quantities; autocorrelation analyses can be used to better understand if a time series represents
an equilibrated system [111], but caution must be exercised as longer autocorrelation times may
be uncovered if other relevant free energy minima are revealed [45].

In computer-aided drug discovery, different levels of uncertainties are needed in various
stages, including searching for potential small-molecule hits, identifying promising leads and
optimizing leads for further evaluation. Concentrating on the objects of uncertainty can give us an
appreciation of how decisions can be made based on uncertainty quantification and cost-benefit
analyses. The Accelerating Therapeutics for Opportunities in Medicine (ATOM) project (https://
atomscience.org/), funded by the Department of Energy in the USA, is predicated on the aim of
being able to go from concept to clinical trials for new drugs within 12 months. This is a very large
and highly ambitious project involving many partners, from academia, industry and US national
laboratories. Being able to rely on the results of in silico predictions will undoubtedly turn these
industries on their heads, by eliminating large amounts of laboratory-based testing. Knowledge
of the uncertainties attaching to decisions is critical here.

In the field of medicine, where patient safety is at stake, it is extremely important to have an
uncertainty quantification discipline for risk management [112]. We are active in the context of
clinical decision making for personalized medicine and have discussed these requirements for
many years (see e.g. Groen et al. [113] and Manos et al. [114]). Reproducibility and uncertainty
(indeed, more completely, VVUQ) are of central concern for the predictions to be deemed
actionable: for the uptake of in silico approaches in medical and clinical contexts, regulatory
authorities will demand procedures which are fully certified in this sense. This can be done
through careful control of the uncertainties in the calculations employed, which rest heavily on
molecular dynamics computation.

Generating actionable predictions requires a high level of automation which can be achieved
through a powerful combination of software and hardware, making calculations immediately
scalable for industrial and clinical applications. To make predictions which are fast enough
for actionable decision making, urgent priority must be given to such calculations on high-
performance computers. Our requirements for on demand access to large-scale computing
resources for such purposes are well known and have informed numerous initiatives across the
world to provide appropriate access mechanisms for medical and clinical research. This is part of

https://atomscience.org/
https://atomscience.org/
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the core business of the Computational Biomedicine Centre of Excellence (www.compbiomed.eu)
which has innovation and sustainability at its heart. As a matter of fact, the EasyVVUQ software
which we have introduced as an open-source toolkit, and as part of the VECMA Toolkit [30], is
based on its original applications to MD as discussed here. It is now being applied widely in many
fields of concern to this theme issue of Phil Trans A, from fluid dynamics to climate prediction
and fusion energy research. As such, it can be reasonably considered that the study of uncertainty
quantification in MD is now beginning to have an impact within the wider general field of VVUQ.

8. Conclusion
Ensemble molecular dynamics simulation provides us with a powerful methodology that enables
us to connect ergodic theory and uncertainty quantification, and to obtain reproducible results
from simulations in a systematic and theoretically well-grounded manner. As evidenced in the
case of ligand–protein binding free energy predictions, ensemble simulation-based approaches
yield statistically robust, precise and reproducible, hence reliable results. Using ensemble
methods, the errors in predictions can be systematically controlled, amenable to further reduction
by increasing the number of replicas in an ensemble and in propitious circumstances too by
extending the length of such simulations. Ensemble approaches are scalable: for example, they
permit hundreds to thousands of binding affinities to be calculated per day, depending on
the computing resources available. Computing capabilities are set to increase as the exascale
era heaves in to view. In the near future, rapid, accurate and reliable predictions of materials
properties may emerge that can be exploited in the aerospace and automotive industries; free
energy prediction at high throughput will assist physicians in clinical decision making and
medicinal chemists in directing compound synthesis in a routine manner. In sectors such as these,
virtual certification and regulatory approval for the use of in silico methods will depend critically
on the application of rigorous uncertainty quantification along the lines we have described.
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