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Eusocial insects can be defined as those that live in colonies and have distinct
queens and workers. For most species, queens and workers arise from a
common genome, and so caste-specific developmental trajectories must
arise from epigenetic processes. In this review, we examine the epigenetic
mechanisms that may be involved in the regulation of caste dimorphism.
Early work on honeybees suggested that DNA methylation plays a causal
role in the divergent development of queen and worker castes. This view
has now been challenged by studies that did not find consistent associations
between methylation and caste in honeybees and other species. Evidence for
the involvement of methylation in modulating behaviour of adult workers is
also inconsistent. Thus, the functional significance of DNA methylation in
social insects remains equivocal.

This article is part of the theme issue ‘How does epigenetics influence the
course of evolution?’
1. Introduction
Eusocial insects live in colonies with distinct queen and worker castes [1].
Queens produce most or all of the eggs, while workers are either totally or
partially sterile. Workers reproduce either vicariously by rearing their sisters
and brothers—the offspring of the resident queen—or, rarely, directly [2].
All termites (Blattaria: Isoptera) [3] and ants (Hymenoptera) [4] are eusocial,
although some species have secondarily lost their worker or queen caste.
A few bee and wasp (Hymenoptera) genera are eusocial [5], as are a few
ambrosia beetles (Coleoptera) [6] and gall-forming thrips (Thysanoptera) [7].

Despite their importance and inherent biological interest, the very existence
of social insects remains an evolutionary puzzle. First, their morphologically
distinct castes arise from genetically identical eggs (polyphenism). How can
alternate developmental trajectories from alike genomes stably result in such
behaviourally and morphologically distinct creatures as a massive and hyper-
fertile queen, a soldier army ant and a minor worker? Second, many insect
workers change behaviourally over their lifetime, flexibly engaging in new
roles as they mature. For example, a honeybee worker begins life engaged in
nest-bound tasks such as cell cleaning and feeding larvae, and later progresses
to foraging [8,9]. How these changes are orchestrated at the individual and
colony level has not been fully elucidated. These proximate questions also
need to be resolved in the evolutionary context: how did behavioural and
morphological castes evolve?

In the literature of insect colonies, ‘caste’ has several meanings, which we
need to clarify. In this review, we will recognize three kinds of caste: (i) morpho-
logically distinct queens and workers of the ‘highly’ eusocial insects like
termites, honeybees, stingless bees, vespine wasps and most ants. In these
species, queens and workers arise as a consequence of distinct developmental
trajectories that are irreversible. We refer to these castes as queen–worker
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(Q-W) castes; (ii) in some species, there are morphologi-
cally specialized workers such as soldier ants and
termites that are larger (especially in the head) and more
armoured than normal workers [10,11]. These we refer
to as worker subcastes; and (iii) finally, in species with
only one worker caste, there are often behavioural castes
such as reproductive and non-reproductive workers, or
nurses and foragers. Behavioural castes are generally revers-
ible and are morphologically identical. We refer to these as
behavioural castes.

Our aim in this review is to discuss whether epigenetic
mechanisms, particularly DNA methylation (hereafter
’methylation’), has played a role in the evolution of castes
in social insects. In a companion paper, we discuss epigene-
tic inheritance in social insects, and its possible role in
genomic conflict.
s.R.Soc.B
376:20200115
2. Queens and workers come from the same
genome, so differential development must
have an epigenetic basis

An animal’s body is usually generated from a single cell, the
zygote, and all of the somatic cells of the animal are a clonal
lineage. The course of development is, therefore, dependent
on epigenetic processes that permanently shut down some
genes at particular time points, while allowing others to be
expressed. These epigenetic changes are then faithfully
transmitted to daughter cells, leading to the development of
tissues and organs [12]. Similarly, queens, kings and workers,
and the specialized worker castes of ants and termites, arise
from more or less identical genomes. For the most part, any
egg can develop as a queen/king or a worker, or, where
they exist, morphologically specialized worker subcastes [13].

In termites, a combination of inhibitory factors produced
by the king and queen, together with seasonal factors, seem
to determine whether nymphs of both sexes mature as
workers or as future reproductives [14,15]. In contrast with
termites, in most Hymenopteran species, the direct cause of
differential development is nutritional [16]. Queen-destined
larvae are fed more [17] and different food [18–21], to
worker-destined larvae. In some instances, these factors are
thought to result in different reproductive and morphological
castes via perturbations to the insulin-signalling and other
growth-related pathways [22–24].
3. DNA methylation as a proposed mechanism
underlying queen/worker polyphenism

Methylation involves the attachment of a methyl group to
cytosines, often in a CG/GC (referred to as CpG) context so
that the pair of adjacent cytosines across strands are both
methylated [25]. Methylation is evolutionarily conserved
from bacteria to eukaryotes [26,27]. In insects, methylation
is restricted to gene bodies, especially at intron–exon bound-
aries and at the 50 end of genes [25,28,29]. There is a strong
association between gene function and the degree of
methylation across invertebrates, with ‘housekeeping’ genes
showing the highest levels of methylation [30] and highly
methylated genes tending to show greater sequence conser-
vation across diverse taxa [30–32]. This suggests that gene
body methylation has function, though it is unclear what
those functions may be. One proposed function is that
methylation is involved in differential gene splicing and in
regulation of expression [33–38].

Methylation is mediated by DNA methyl-transferase
(Dnmt) enzymes. Dnmt1 is thought to be responsible for
the faithful transmission of methylation states across cell div-
isions, while Dnmt3 is responsible for de novo methylation
[39]. Most social insect species examined have methylation,
as evidenced by the presence of Dnmt-coding genes in their
genomes, and evidence of methylation in their DNA
[40–42]. Therefore, methylation could potentially be involved
in regulating differential caste development and behaviour in
social insects.

In a landmark paper, Kucharski et al. [43] suggested that
methylation is the primary mechanism by which Q-W
dimorphism is orchestrated in honeybees. They proposed
that the default developmental pathway is the queen pheno-
type, and that the more Spartan diet of workers (less volume,
lower fatty acid content and, particularly, lower carbohydrate
content) relative to queen larvae [19], leads to the methylation
of genes whose expression is then changed to generate
worker morphology. Support for this hypothesis was lent
by the demonstration that the knockdown of expression of
Dnmt3 in young larvae (i.e. those that are capable of either
developmental trajectory), using RNA interference, led to
the development of the queen phenotype. This, it was
argued, is a direct result of reduced methylation.

Following the Kucharski et al. [43] paper, several studies
reported differences in methylation patterns between queen
and worker castes in bees, ants and termites (table 1). In
the honeybee, eight studies have supported such differences,
whereas three did not. One of the studies that did not show
differences was based on methylation-sensitive restriction
fragment length polymorphisms [47], a technique that has
low sensitivity. Another did not directly compare methyl-
ation patterns across castes [51], but the other [46] used
gold-standard genomic procedures.

There is a trend, not always consistent, that in studies
which have shown differentially methylated genes, methyl-
ation is higher in workers than in queens. Gene ontology
studies of honeybee genes that are differentially methylated
show that they tend to be related to metabolism regulators
[36,44,58]. This finding points to a mechanism whereby the
reduced feeding received by worker-destined larvae causes
an increased level of methylation, and the development of
the worker phenotype [59]. The most recent study of methyl-
ation levels between queen- and worker-destined larvae
showed divergent methylation levels at 3 and 4 days of
age, before equalizing at day 5.
4. Criticisms of the ‘methylation is key to
queen–worker caste polyphenism’ paradigm

If methylation is key to Q–W caste differentiation in social
insects, we can make three predictions: (i) methylation pat-
terns should consistently differ between castes particularly
at the larval/nymphal stage when differential development
begins; (ii) methylation patterns should be in the same direc-
tion for the same genes across all or most individuals of a
particular caste. For example, if we find that a gene is heavily
methylated in workers and under-methylated in queens,
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suggesting that methylation of this particular gene is causal
of caste differentiation, we would not expect too many excep-
tions to this. In particular, we would not expect to find
queens in which this target gene is heavily methylated, or
workers where it is not. Furthermore, we would expect
methylation patterns of these differentially methylated
genes to be correlated with caste and to be in a consistent
direction regardless of genotype or colony origin; and (iii)
DNA methylation should affect gene expression and/or
gene splicing. That is, to show a causality, we would like to
see that the differential methylation of the gene that we
think has something to do with caste differentiation actually
changes expression in response to methylation.

How well does the evidence stack up against these predic-
tions? Libbrecht et al. [54] have argued that evidence for
caste differences in methylation patterns may be artefacts of
insufficient biological replication. If queens and workers
are unevenly sampled from different colonies, genetic back-
grounds (e.g. patriline) or time points, this can give the
appearance of caste-specific methylation where none exists. In
studies where there has been adequate biological replication
(i.e. replicated colonies are considered), it is often the case that
genes are differentially methylated between workers and
queens in different directions in different colonies [51,60]. Strik-
ingly, many whole-genome sequencing studies that have
reported large differences in methylation between queens and
workers lackedbiological replication [36,45] or pooledbiological
replicates [52]. By contrast, the only well-replicated study [46]
did not find any differences between queen and worker castes.

Other studies have indeed found caste-specific methyl-
ation patterns across replicate colonies in honeybee larvae.
Two of these studies used methods that detected only a
small fraction of methylated sites. Welsh et al. [49] focused
on two genes, cabin-1 and nadrin-2, that were previously
identified as being differentially methylated. Shi et al. [50]
used methylated DNA immunoprecipitation-sequencing, a
procedure that detects only a small proportion of methylated
cytosines, and in a biased way [61]. In Shi’s experiment,
methylation appeared to be strongly biased towards intronic
sequences. Because most DNA methylation occurs in gene
bodies in insects [38,45,52], the significance of low levels of
differential methylation in introns is unknown.

Finally, there remains the question of function. Gene body
methylation is generally thought to regulate gene transcription
and to affect alternative splicing [38,45,62]. However, recent
studies have convincingly shown that there is no overall link
between methylation, gene expression and alternative splicing
in social insects [51,55,63]. Indeed, mounting evidence indicates
that methylation patterns are conserved during development in
honeybees [51,64,65]. These results further question the role of
methylation in caste determination.

We note that some of the above criticisms remain equiv-
ocal. For instance, the honeybee studies that have not found
differences between castes (table 1, [46,47,51]) have compared
samples from the adult stage and not the larval stage during
which the alternate queen versus worker developmental tra-
jectories are laid down. It is thus possible that queens and
workers harbour differential methylation at the larval stage
and that this causes differential gene expression [43,52], but
this differential methylation is lost during the transition to
the adult moult. Further, several of the studies that have
not found differential methylation between queen and
worker castes (table 1) were done in species that lack
morphologically different castes [54,55]. These findings in
caste-free species may be irrelevant to species like honeybees
with irreversible morphological queens and workers.

In the light of these criticisms (and the criticisms of the criti-
cisms), we conclude that the jury is still out on whether DNA
methylation plays a role in Q–W caste differentiation. Resolving
this question will require whole-genome bisulfite sequencing of
DNA from queen and worker larvae with good sequencing
depth and replication across colonies. If it can be shown that
particular genes are consistently differentially methylated in a
caste-specific manner, and this methylation affects gene
expression, then this will be conclusive evidence that methyl-
ation is involved in caste differentiation. If not, then we
should discount a role for methylation in caste determination.

Given the currently equivocal role of methylation in Q–W
caste determination, how can we interpret the fact that exper-
imental knockdown of the de novo methylation system in
honeybees reliably produces the queen phenotype in young
larvae [43]? Dnmt genes probably have functions beyond
methylation because knockdown of dnmts is lethal in the
milkweed bug where methylation is absent [66,67]. Thus, it
is possible that dnmt3 is indeed involved in caste determi-
nation [43], whereas methylation is not. A decisive
experiment might involve using RNA interference to knock
down expression of dnmt3 in honeybee larvae, followed by
whole-genome bisulfite sequencing and confirmation that
knockdown generates the queen phenotype. However, if
dnmt3 plays a direct role in caste determination, unrelated
to methylation, then this would add a confounding factor.

5. Small RNAs and chromatin modification
Small RNA (s-RNA) molecules are a class of short (18–50 bp)
non-coding RNAs that are important for the regulation of
gene expression in eukaryotes via post-transcriptional modifi-
cations tomessenger RNAs, and for direct regulation of the rate
of translation at the ribosome [68,69]. Because queens and
workers are very different animals with significantly different
gene expression profiles [70–72], it is unsurprising that a class
of molecules like s-RNAs that regulate gene expression
should also differ in abundance and kind between queens
and workers [73–75] and between worker castes [76]. Unclear
at this time is whether s-RNAs are the ‘first responders’ to
larval diet that establish caste-specific developmental patterns,
or are a downstream response to other triggers such as
methylation or hormonal regulation [77,78].

Chromatin is the DNA–protein complex of which
chromosomes are comprised. The protein component pro-
vides a supporting structure for the DNA. Post-translational
modifications to the histones of chromatin influence the
degree to which it is contracted or expanded, and this in
turn influences the expression of genes in the region [79].
Chromatin states are usually propagated across cell divisions
[80]. Chromatin modifications often reflect the methylation
state of the CpG sites in the associated DNA, that is, methyl-
ation directs chromatin modifications and vice versa (the
piggy-back model) [81,82]. Therefore, any link between
methylation and gene expression may be via histone modifi-
cation [83–86]. Queen- and worker-honeybee larvae show
caste-specific chromatin states across thousands of genes
and these are correlated with caste-specific gene expression
[87]. We are unaware of any study that has related methylation
pattern to chromatin state to gene expression.
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6. DNA methylation and behavioural castes
Another phenomenon characteristic of insect colonies that
demands both evolutionary and mechanistic explanations is
the ability of individuals to undergo profound behavioural
and physiological changes that do not include changes in
morphology. These changes can be as normal as the tran-
sition from nest-bound work to foraging that most workers
undergo as they age [9,88], to the transition from worker to
mated reproductive that occurs in some ant [89], wasp [55]
and termite [90] species. These behavioural changes are
associated with significant rearrangements of the worker’s
physiology and gene expression [91–95]. Could methylation
play a role in regulating these transitions?

In the honeybee, behavioural castes can be experimentally
created by simple manipulations of colony demography. For
example, precocious foragers can be created by removing all
the natural ones, which causes rapid maturation of nurse
workers to foraging tasks. Herb et al. [46] used an array-
based technology, verified by whole-genome bisulfite sequen-
cing, to examine the methylation patterns in same-aged nurse
workers and foragers, including foragers that had been forced
to revert to nursing. Each behavioural phenotype was associ-
ated with its own specifically methylated regions, and these
regions were enriched for gene-regulatory functions. Impor-
tantly, foragers that had reverted back to nursing showed
methylation patterns more similar to nurses than to fora-
gers. Similar findings were shown for a set of eight genes
in which methylation levels were more associated with
behavioural task than with chronological age [96]. Most
recently, ultra-deep sequencing has shown that three
genes, dynactin, nadrin and pcb1, show small but significant
differences in methylation patterns in honeybees of different
ages that perform different tasks (newly emerged, young,
nursing, foraging) [97].

In bumblebees, there are genome-wide methylation
differences between queenless (reproductively active)
workers and sterile workers with a queen [34,98]. By contrast,
there is no association between methylation level and
reproductive–non-reproductive phase in clonal raider ants
[54]. In raider ants, methylation patterns are consistent over
life, and there is no association between methylation and
gene expression [54].

In summary, some of these experiments suggest that an
ancient mechanism, methylation, is used in at least some
social insects to allow rapid, environmentally responsive
changes in gene expression and behaviour in workers
[46,59,99]. However, there is mounting evidence against the
involvement of methylation in these processes [51,54,55],
and it is now far from certain that methylation is involved
in the regulation of behaviour.
7. Associations between DNA methylation and
degree of sociality

If methylation plays a major role in sociality by providing a
mechanism by which morphological and behavioural castes
can be generated from similar genomes, then one might pre-
dict an association between the level of sociality and
methylation. ‘Sociality’ in this context is the continuum
[100] between solitary reproduction by females (e.g. in saw
flies) through small family groups with facultative reproduc-
tive skew towards one or more females (as in paper wasps),
to colonies in which large numbers of workers support a
single morphologically distinct queen who is the mother of
all individuals in the colony, as in sugar ants (Camponotus).

This question has been addressed in five studies using
increasingly sophisticated genomic techniques and better
taxon sampling. Overall, we think that the major conclusion
from these studies [47,63,101–103] is that there is no clear
relationship between the level of sociality and the extent of
methylation. The strongest association is across the phylo-
geny of bees [103], but the relationship is not clear cut
when wasps and ants are added to the picture [102]. In gen-
eral, the Hymenoptera have low levels of methylation
relative to other insect orders in which there are no social
species [41,42]. In summary, these phylogenetic analyses
emphasize that the evolutionary paths to eusociality have
followed different routes [103]. All involve increasingly com-
plex gene networks and regulatory systems, but the
mechanisms by which this complexity is regulated vary
across clades.
8. Conclusion
In this review, we have discussed the enigma of caste
determination, and the progress that has been made in deter-
mining how environmental signals, mostly nutritional, are
translated into developmental changes via epigenetic mech-
anisms. There is now confirmation that methylation levels
differ between honeybee queens and workers at the early
larval stage and that differentially methylated genes are
related to reproductive, morphological and vision systems
[52]. The remaining open question is whether the methylation
differences are functional.
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