
royalsocietypublishing.org/journal/rsta

Research
Cite this article: Groen D et al. 2021 VECMAtk:
a scalable verification, validation and
uncertainty quantification toolkit for scientific
simulations. Phil. Trans. R. Soc. A 379:
20200221.
https://doi.org/10.1098/rsta.2020.0221

Accepted: 10 November 2020

One contribution of 15 to a theme issue
‘Reliability and reproducibility in
computational science: implementing
verification, validation and uncertainty
quantification in silico’.

Subject Areas:
computer modelling and simulation,
software, statistics

Keywords:
multiscale simulations, verification, validation,
uncertainty quantification

Author for correspondence:
D. Groen
e-mail: derek.groen@brunel.ac.uk

VECMAtk: a scalable
verification, validation and
uncertainty quantification
toolkit for scientific
simulations
D. Groen1,2, H. Arabnejad1, V. Jancauskas3,

W. N. Edeling4, F. Jansson4,11, R. A. Richardson2,5,

J. Lakhlili6, L. Veen5, B. Bosak7, P. Kopta7,

D. W. Wright2, N. Monnier8, P. Karlshoefer8,

D. Suleimenova1, R. Sinclair2, M. Vassaux2,

A. Nikishova9, M. Bieniek2, Onnie O. Luk6,

M. Kulczewski7, E. Raffin8, D. Crommelin4,10,

O. Hoenen6, D. P. Coster6, T. Piontek7 and

P. V. Coveney2,9

1Department of Computer Science, Brunel University London,
London, UK
2Centre for Computational Science, University College London,
London, UK
3Leibniz Supercomputing Centre, Garching, Germany
4CentrumWiskunde and Informatica, Amsterdam, The Netherlands
5Netherlands eScience Center, Amsterdam, The Netherlands
6Max Planck Institute for Plasma Physics - Garching, Munich,
Germany
7Poznań Supercomputing and Networking Center, Poznań, Poland
8CEPP - Center for Excellence in Performance Programming,
Atos Bull, Rennes, France
9Computational Science Lab, Institute for Informatics, University of
Amsterdam, Amsterdam, The Netherlands

2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2020.0221&domain=pdf&date_stamp=2021-03-29
https://doi.org/10.1098/rsta/379/2197
mailto:derek.groen@brunel.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

10Korteweg-de Vries Institute for Mathematics, Amsterdam,
The Netherlands
11Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands

DG, 0000-0001-7463-3765; HA, 0000-0002-0789-1825; VJ, 0000-0002-6051-210X; WE, 0000-0003-4734-7960;
DS, 0000-0003-4474-0943; AN, 0000-0003-4813-9282; MKB, 0000-0002-3065-5417; OL, 0000-0003-0560-4797;
ER, 0000-0003-0359-5372; PC, 0000-0002-8787-7256

We present the VECMA toolkit (VECMAtk), a flexible software environment for single
and multiscale simulations that introduces directly applicable and reusable procedures for
verification, validation (V&V), sensitivity analysis (SA) and uncertainty quantication (UQ).
It enables users to verify key aspects of their applications, systematically compare and
validate the simulation outputs against observational or benchmark data, and run simulations
conveniently on any platform from the desktop to current multi-petascale computers. In this
sequel to our paper on VECMAtk which we presented last year [1] we focus on a range of
functional and performance improvements that we have introduced, cover newly introduced
components, and applications examples from seven different domains such as conflict
modelling and environmental sciences. We also present several implemented patterns for
UQ/SA and V&V, and guide the reader through one example concerning COVID-19 modelling
in detail.

This article is part of the theme issue ‘Reliability and reproducibility in computational
science: implementing verification, validation and uncertainty quantification in silico’.

1. Introduction
Computational models play an ever-growing role in predicting the behaviour of real-world
systems or physical phenomena [2], using equations and/or heuristics to encode the natural
laws and theories of the world we inhabit. Because models are a simplified representation of
real-world systems, they can behave differently for a variety of reasons. Key model inputs, such
as initial conditions, boundary conditions and important parameters controlling the model, are
often not known with certainty or are inadequately described [3]. For example, in the case of
human migration simulations [4], the model may require knowledge of a wide range of input
parameters, such as details of transport modes, roads, settlement populations and conflict zones,
before we can execute the simulation. However, often these parameters are not precisely known
or cannot be obtained with high accuracy.

Another source of discrepancy between the model and reality are the assumptions and
simplifications that are made as part of creating the conceptual model. Simplifications can reduce
the computational cost of models, but also make them less accurate. And assumptions are by
definition uncertain, which makes it necessary to test the model accuracy when these assumptions
are adjusted to match realistic alternative scenarios.

The appropriate level of accuracy and reliability in the results can be obtained by ensuring
not only that the computational model accurately represents the underlying mathematical model
and its solution (Verification) [5,6], but the degree to which a model is an accurate representation
of the real world based on comparisons between computational results and experimental data
(i.e. the deviation of the model from reality) (Validation) [7], and how variations in the numerical
and physical parameters affect simulation outcomes (Uncertainty Quantification). Collectively, the
processes involved in evaluating our level of trust in the results obtained from models are known
as VVUQ. VVUQ processes provide the basis for determining our level of trust in any given model
and the results obtained using it [2,8,9].

Many scientific modelling challenges involve complex and possibly multiscale, multiphysics
phenomena, the results of which are unavoidably approximate. VVUQ then becomes essential

http://orcid.org/0000-0001-7463-3765
http://orcid.org/0000-0002-0789-1825
http://orcid.org/0000-0002-6051-210X
http://orcid.org/0000-0003-4734-7960
http://orcid.org/0000-0003-4474-0943
http://orcid.org/0000-0003-4813-9282
http://orcid.org/0000-0002-3065-5417
http://orcid.org/0000-0003-0560-4797
http://orcid.org/0000-0003-0359-5372
http://orcid.org/0000-0002-8787-7256

3

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

to determine whether the results can be trusted, and whether decision makers can rely on them
to guide subsequent actions, making our simulations actionable. Indeed, the impact of scientific
computing relies directly on its trustworthiness [6], and VVUQ provides the basis for determining
our level of trust in any given model and the results obtained using it [2].

Within this paper, we describe the latest release of the VECMA toolkit. VECMA
(www.vecma.eu) is an EU-funded initiative that focuses on enabling VVUQ for large-scale and
complex simulations. The toolkit we present here facilitate the use of VVUQ techniques in
(multiscale) applications, as well as a range of Verification and Validation Patterns (VVPs) to
enable a systematic comparison of simulation results against a range of validation targets, such
as benchmarks or measurements. We review a range of related research and development efforts
in §2, and then provide a brief description of the toolkit as a whole in §3. We describe the key
aspects of each component in the toolkit in §4 and present a range of exemplar applications in §5,
while we discuss on the main performance and scalability aspects of the toolkit in §6. Lastly, we
share our main conclusions in §7.

2. Related work
Several other toolkits share a subset of the added values that VECMAtk provides. In the area
of VVUQ, a well-known toolkit is Design Analysis for Optimization and Terascale Applications
(DAKOTA)1 [10], which provides a suite of algorithms for optimization, UQ, parameter studies,
and model calibration. DAKOTA is a powerful tool, but has a relatively steep learning curve
due to the large number of tools available [11] and offers no way to coordinate resources
across concurrent runs [12,13]. Similarly, there are other toolkits that help with UQ directly,
such as UQTK [14] and UQLab.2 One particularly efficient method to handle UQ for a range
of applications is the multi-level Monte Carlo Method [15].

In the area of VVUQ using HPC, there are several other relevant tools. OpenTURNS [16]
focuses on probabilistic modelling and uncertainty management, connects to HPC facilities,
and provides calibration/Bayesian methods and a full set of interface to optimization solvers.
Uranie leverages the ROOT 3 framework to support a wide range of uncertainty quantification
(UQ) and sensitivity analyses (SA) activities using local and HPC resources. A key requirement
for performing many types of UQ and SA is the ability to effectively run large ensembles
of simulations runs. In addition to QCG-PJ, presented in this paper, there are tools such as
RADICAL-Cybertools [17] that can be used to initiate and manage large simulation ensembles
on peta and exascale supercomputers. In the area of surrogate modelling, GPM/SA [18,19] helps
to create surrogate models, calibrate them to observations of the system and give predictions
of the expected system response. There is also a portfolio of available solutions for rapidly
processing user-defined experiments consisting of large numbers of relatively small tasks. The
examples are Swift/T [20] and Parsl [21], both of which support execution of data-driven
workflows.

Another range of relevant related tools include more statistically oriented approaches. For
instance, Uncertainpy [22] is a UQ and SA library that supports quasi-Monte Carlo (QMC)
and polynomial chaos expansions (PCE) methods. PSUADE [23] is a toolbox for UQ, SA and
model calibration in non-intrusive ways [24], while DUE [25] assesses uncertain environmental
variables, and generates realizations of uncertain data for use in uncertainty propagation
analyses. PyMC3 [26] is a Python package for Bayesian statistical modelling and probabilistic
machine learning which focuses on Markov Chain Monte Carlo approaches and variational
fitting. Similarly, SimLab4 offers global UQ-SA based on non-intrusive Monte Carlo methods.

1See https://dakota.sandia.gov.

2See https://www.uqlab.com.

3See http://root.cern.ch.

4See https://ec.europa.eu/jrc/en/samo/simlab.

https://www.vecma.eu
https://dakota.sandia.gov
https://www.uqlab.com
http://root.cern.ch
https://ec.europa.eu/jrc/en/samo/simlab

4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

UQLab [27] and SAFE [28] are Matlab-based tools that provide support for UQ (using e.g. PCE)
and SA (using e.g. Sobol’s method), respectively.

3. The VECMA toolkit (VECMAtk)
The main objectives of VECMAtk are to facilitate the implementation of (a) uncertainty
quantification and sensitivity analysis patterns (UQPs) and (b) verification and validation
patterns (VVPs). The UQP implementations automate routines for uncertainty quantification
and sensitivity analysis, while the VVP implementations enable verification and validation
procedures for high performance (multiscale) computing applications. Ye et al. present the
concepts of UQP on an algorithmic level [29], while an algorithmic paper on VVPs is still in
preparation. Both implementations support remote execution on petascale and emerging exascale
resources, as well as execution on local machines. In addition, we support a range of existing
VVUQ mechanisms and provide tools for users to facilitate the adoption of VVUQ in their
applications. As we want our toolkit to be general purpose, taken up by users and flexible, we
have four main factors that shape our development approach:

(i) the need to fit into existing applications with minimal modification effort,
(ii) the need to support any application domain,

(iii) the flexible and recombinable nature of the toolkit itself, and
(iv) the geographically distributed nature of the users and particularly the developers.

As a result, we position VECMAtk as a collection of elements that can be reused and
recombined in different workflows, interlinked with stable interfaces, data formats and
application programming interface (APIs), to facilitate VVUQ in any application. VECMAtk
specifically allows users with (multiscale) applications to combine generic, lightweight patterns to
create a system-specific VVUQ approach that covers all relevant space and time scales, including
the scale-bridges between them. The exemplar applications (which we present in §5) map to all
three of the established multiscale computing patterns: Extreme Scaling (ES), Replica Computing
(RC) and Heterogeneous Multiscale Computing (HMC) [30].

(a) Release schedule and changes compared to the initial release
The VECMA toolkit is an open-source and open development project, meaning that the latest
source and development notes can be accessed at any time. In terms of releases, we have adopted
a schedule with minor and major releases. Minor releases are made publicly every three months,
are advertised within the project, and have limited amount of additional documentation and
examples. The first major release was made in June 2019; the ensuing two releases will be made
in June 2020 and June 2021, and will be public and fully advertised. They are accompanied with
extensive documentation, tutorials, examples, training events and dedicated uptake activities. In
addition to these two release types, we provide informal periodic updates to the master code
branches, documentation and the integration of the components.

Since our first major release in June 2019, all VECMAtk components have improved
scalability, a range of new features and capabilities, extended and revised application tutorials,
improved technical documentation, and a wide range of user-requested bugfixes. We present the
fundamental improvements and changes in the development of each VECMAtk component since
the first major release as part of appendix A.

4. Overview of the VECMAtk components
We present a graphical overview of the various components in VECMAtk in figure 1. VECMAtk
contains four main components: EasyVVUQ [31] simplifies the implementation and use of VVUQ
workflows with focus on large scale scenarios, FabSim3 [32] helps to automate computational

5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

user-facing

EasyVVUQ
VVUQworkflows

FabSim3
Usage of plugins

MUSCLE3
Tightly-coupled workflows

Jupyter Notebooks
Interactive Notebooks

infrastructure access

QCG-Now
Graphical interface

FabSim3
Command-line interface

QCG-Client
Command-line interface

QCG-SDK
Programming interface

coupling/composition

MUSCLE3
Cyclic file/network

coupling

FabSim3
Workflow and file compuling

definition in plugins

EQI
VVUQ/PilotJob workflows

QCG-PJ
PilotJob workflows

computing resources

VECMAtk Users

Figure 1. Overview of the main components, and their role within the VECMA toolkit. (Online version in colour.)

research activities, MUSCLE 3 [33] supports the coupling multiscale applications, and the QCG
tools5 facilitate advanced workflows, and the process of design and execution of applications,
using HPC infrastructures. All these components can be flexibly combined with other VECMAtk
and third party components to create diverse application workflows. In addition, no single
component is essential to all applications: for example, FabSim3 and QCG-Client are to a limited
degree interchangeable, and at least one application fully relies on a third party tool (the Mogp
emulator6) instead of EasyVVUQ.

In this section, we summarize each of the components that comprise VECMAtk, while
we refer to the VECMAtk website https://www.vecma-toolkit.eu/ for more detailed technical
information.

(a) EasyVVUQ
EasyVVUQ [31,34] is a Python library designed to facilitate implementation of advanced non-
intrusive VVUQ techniques, with a particular focus on high performance computing, middleware
agnosticism, along with single-scale and multiscale modelling. Generally, non-intrusive VVUQ
workflows involve sampling the parameter space of the simulation. This usually means running
the simulation multiple times. This process is tedious and error prone if done in an ad hoc manner,
and further exacerbated if the parameter space is large with a corresponding large number of
runs (e.g. of order thousands to millions of runs), or if each simulation is very computationally
expensive. EasyVVUQ allows one to coordinate the whole process—from sample generation
through execution to analysis—although the execution stage is external to EasyVVUQ, and can
be done by tools such as QCG-PilotJob, FabSim3 or Dask, or even manually. EasyVVUQ seeks to
be agnostic to the choice of execution middleware, due to the large range of possible execution
patterns that may be required in an HPC workflow. Additionally, the library carefully tracks
and logs applications of the sampling elements along the way, allowing a reasonable level of
restartability and failure resistance.

EasyVVUQ breaks down the VVUQ process into five distinct stages.

(i) Application description, which further can be divided into the following items:

(a) Encoder: responsible for producing input files for the simulation.
(b) Decoder: responsible for parsing the output files of the simulation and extracting

the needed values.
(c) Execution action: describes how the simulation is run.

5See https://www.qoscosgrid.org.

6See https://github.com/alan-turing-institute/mogp_emulator.

https://www.vecma-toolkit.eu/
https://www.qoscosgrid.org
https://github.com/alan-turing-institute/mogp_emulator

6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

patterns
campaign
formats

VVPs

pluginsplugins
FabMD

FabFlee

FabDummy

FabMUSC

patterns:
• need to be generic.
• no FabSim3 deps.
• to be plugged into

directly into FabSim
and used by other
components.

backendsbackendk s
SSH

GSISSH

base
components

<machine>

QCG

UQPs

Figure 2. High-level overview of the FabSim3 architecture, showcasing a few of the key plugins, patterns and back-end
functionalities available in the tool. Boxes in green (darker) are completed, while boxes in yellow (lighter) are working, but
subject to further extensions and improvements. (Online version in colour.)

(ii) Sampling: this step is very dependent on the VVUQ technique in question. The main task
of sampling components is to produce a list of parameter sets for the simulation.

(iii) Execution: this is handled entirely externally to EasyVVUQ.
(iv) Collation: collects the outputs of the simulations and then stores them in the EasyVVUQ

database, to be retrieved later for analysis.
(v) Analysis: perform statistical analysis on the collected data. This analysis can then inform

further actions such as collecting more samples.

EasyVVUQ currently has support for variance-driven sensitivity analysis, stochastic
collocation and polynomial chaos expansion methods, as well as more basic statistical analysis
methods such as bootstrapping. Additionally, all components of EasyVVUQ are easily extensible,
allowing users to customize every stage of the VVUQ workflow to suit their needs. Nevertheless,
for many applications the built-in components provide out-of-the-box functionality, requiring the
user only to define input and output formats and perform analysis.

(b) FabSim3
FabSim37 [32] is a Python-based toolkit for automating complex computational research activities
which has several aims: First it helps to automate and simplify the creation, management,
execution and modification of complex application workflows. To do so, FabSim3 supports
functionalities such as ensemble runs, remote executions, iterative processing and code couplings.
Second, it aims to help researchers become quicker and more systematic in handling complex
applications in particular. To support this, FabSim3 is designed to be easy to customize for use
on new machines and with new simulation codes, and automatically curates a wide range of
environment and state variables to aid the testing and debugging of application runs. As usage
examples, researchers may want to run and rerun static configurations, run a range of slightly
different workflows, define new types of complex applications altogether or construct a routine
to automatically validate their code.

FabSim3 also supports a range of adaptable mechanisms for code coupling, and domain-
agnostic code patterns that provide building blocks for enabling VVUQ in new applications. We
provide an overview of the FabSim3 architecture in figure 2.

In the context of VECMAtk, FabSim3 plays a key role in introducing application-specific
information in the Execution Layer, enabling users to combine different UQPs and VVPs, and

7See https://github.com/djgroen/FabSim3.

https://github.com/djgroen/FabSim3

7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

providing an approach to curate large sets of production runs. Also, FabSim3 can use QCG-Client
or QCG-SDK to submit ensemble runs via a ‘pilot job’ mechanism [1,35] (see §4d(ii)), which boosts
efficiency by starting and managing sub jobs without each of them needing to individually wait
for resources to become available.

(c) MUSCLE 3
The third version of the Multiscale Coupling Library and Environment [33,36] (MUSCLE 3) is
intended to simplify the coupling of temporally or spatially scale-separated submodels into a
single (distributed) simulation. At run-time, the submodels are started in parallel, and exchange
information via the network. Submodels and other simulation components are unaware of each
other as MUSCLE 3 delivers the messages to receivers given in a configuration file. The Multiscale
Modelling and Simulation Framework (MMSF, [37,38]) may be used to determine how the
submodels should be coupled given their relative spatial and temporal scales.

MUSCLE 3 supports time-scale separated macro-micro couplings, including automatically
re-running the micro model as often as needed to match the macro model’s time steps. It also
supports space scale separation, which entails coupling a single macro model to a set of micro
models, via support of sets of multiple submodel instances and special vector ports that can be
used to communicate with them. Model settings (parameters and technical configuration) are
put in the single configuration file, and are transmitted to the individual instances automatically.
Components may be inserted into the simulation that generate a parameter overlay, which
combined with vector ports and sets of instances yields an ensemble, for example, UQ. MUSCLE
3 supports a range of UQPs, including those for semi-intrusive UQ [29,39]. With MUSCLE 3, this
can be done by changing the configuration file to add a few more components and modifying the
connections; the submodels can remain unaltered.

(d) QCG tools
The QCG suite of tools help to facilitate advanced workflows, and the process of design and
execution of applications, using HPC infrastructures. Four specific QCG components form part
of VECMAtk: QCG-Client, QCG-PJ, EQI and QCG-Now, which we now describe in turn.

(i) QCG-Client

QCG-Client is a command line tool to access remote computing infrastructure. The tool allows
submission of different types of jobs, including complex workflows, parameter sweep tasks and
array jobs, on single or multiple clusters. It uses the QCG-Broker service to manage the execution
of workflows, e.g. through multi-criteria selection of resources. QCG-Client can be deployed as
a container and is in this form integrated with FabSim3. This allows users to select from both
command-line tools, QCG-Client and FabSim3, when they access QCG services.

(ii) QCG Pilot Job

To perform UQ procedures, we must be able to flexibly and efficiently execute a large number of
simulations. This is because we need a large and dynamically created parameter-space, which
in turn feeds into an ensemble of model executions to get statistically correct results. Within
VECMAtk, we use QCG-PilotJob (QCG-PJ) by default to fulfil this requirement, primarily because
it can be installed automatically by users without admin rights, and because of its scalability and
limited dependency footprint. For instance, QCG-PJ can be set up by users without requiring
other components from the QCG environment.

QCG-PJ is designed to schedule and execute many small jobs inside one scheduling system
allocation on an HPC resource. Direct submission of a large group of jobs to a scheduling system
can result in a long completion time as each single job is scheduled independently and waits in
a queue. In addition, the submission of a group of jobs is often restricted (and sometimes even

8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

prohibited) by system administrators. Some systems do support bespoke job array mechanisms,
but these mechanisms normally only allow jobs with identical resource requirements. Jobs that
are part of a multiscale simulation or application workflow by nature vary in requirements and
therefore need more flexible solutions.

To use QCG-PJ, a user submits a job with a QCG-PJ Manager instance, which is executed
like a regular job. However, unlike regular jobs this job internally manages a user-defined
workflow consisting of many sub-jobs. The manager executes commands to submit jobs, cancel
jobs and report resources usage; it may either be preset or listen dynamically to requests from
the user. QCG-PJ then manages the resources and jobs in the system, taking into account resource
availability and mutual dependencies between jobs. Users can interact with QCG-PJ either using
a file-based or network-based interface. The file-based approach works well for static scenarios
where the number of jobs is known in advance, while the network interface allows users to
dynamically send new requests and track execution of previously submitted jobs at run-time.
Although intended for HPC resources, QCG-PJ Manager also supports a local execution mode
to allow users to test their scenarios on their own machines (with requiring a scheduling system
allocation).

(iii) EQI

Many workflows involving EasyVVUQ require a large number of jobs to be executed, and
EasyVVUQ delegates this responsibility to other tools (either existing, or user created). QCG-
PJ is the main tool available in VECMAtk to fulfil that purpose, and it offers a flexible but generic
API that is less appropriate for specific use cases. To provide an API that is specifically adjusted
to EasyVVUQ, we have developed EQI, which is an acronym for the (E)asyVVUQ-(Q)CG-PJ
(I)ntegration API. This API introduces domain-oriented concepts, such as predefined tasks for
execution and encoding, that facilitate the easy integration of EasyVVUQ workflows with QCG-
PJ. With the API, users can perform VVUQ computations with QCG-PJ, invoking HPC resources.
The development life-cycle of EQI is synchronized with the releases of both EasyVVUQ and
QCG-PJ, to ensure a persistently up-to-date API.

(iv) QCG-Now

Since the traditional command-line interfaces may be perceived by many users to be too
complicated, within VECMAtk we decided to provision a easy-to-use graphical tool for users.
QCG-Now is graphical desktop programme that enables the submission and management of jobs
on HPC resources. It also supports automatic notifications, data sending and receiving. Since the
first release of QCG-Now last year, several improvements have been made: for instance it is now
integrated with the QCG-Monitoring system which allows users to track progress of execution
of their tasks directly from its graphical interface. This capability is particularly important for
VECMAtk users who want to keep track of the progress of long-lasting executions of EasyVVUQ
and QCG-PJ workflows. Another new feature allows users to store frequently used execution
schemes as quick templates for easy reuse. We present a graphical demonstration of the tool in
figure 3.

(e) VECMAtk workflows
In figure 4, we show the main components and a few examples as to how they have been
combined, leveraging added values where relevant while maintaining a limited deployment
footprint. These components can be combined, but also integrated with third party components.

Up to now, the following combinations have been particularly common:

9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

Figure 3. QCG-Now with the embedded QCG-Monitoring view. The integration with QCG-Monitoring allows users to track
progress of execution of applications in a graphical way, for example presenting dynamically updated tables, images or, as
in this screenshot, charts. (Online version in colour.)

EasyVVUQ
(in sity)

EasyVVUQ
(local)

HPC
User App

HPC processing

local processing environment HPC processing environment

MaterialsMigrationFabUQCampaign Fusion UrbanAir ISR3D

FabSim3

QCG-Client

QCG-Broker
(access via QCG-SDK)

MUSCLE3

EQI

QCG-PJ
QCG-Now

Figure 4. ‘Tube map’ showing which VECMAtk components are used in the various exemplar applications. VECMAtk
components are given in boxes, and the application tutorials are indicated using coloured lines. Note that code using the
EasyVVUQ [34] library may be located either on the local desktop for ease of use or on a remote HPC resource for improved
performance. Source: https://www.vecma-toolkit.eu/toolkit/. (Online version in colour.)

— FabSim3 + QCG-Client: enables users to submit their job to QCG-Broker to schedule them
across multiple remote (QCG-supporting) machines. Additionally, FabSim3 tool support
other job scheduling system such as SLURM,8 Portable Batch System (PBS).9

8See https://slurm.schedmd.com/overview.html.

https://www.vecma-toolkit.eu/toolkit/
https://slurm.schedmd.com/overview.html

10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

— FabSim3 + EasyVVUQ: enables users to automate the VVUQ processes into their
applications workflow. After creating their EasyVVUQ campaigns, users can convert
them to FabSim3 ensembles using a one-liner (campaign2ensemble) command and
submit the ensemble jobs through FabSim3. Then they convert results back to EasyVVUQ
using the ensemble2campaign command, where it is decoded and further analysed.

— FabSim3 + QCG Pilot Job: enables users to create and manage pilot jobs using FabSim3
automation.

— EasyVVUQ + QCG Pilot Job + EQI: enables EasyVVUQ users to execute their tasks
directly using pilot jobs.

There are also several examples of integrations with third party components. For instance,
there is an application example that uses the mogp emulator in place of EasyVVUQ,10 and
a working EasyVVUQ example that relies on Dask instead of QCG-PilotJob11 for ensemble
job submission. Other integration are indeed possible as well, and the inclusion of a different
job management and execution engine may be beneficial for individual applications and/or
resources. To name a few examples, RADICAL-Cybertools can offer exceptional performance on
machines where it is set up [17], Swift/T [20] can facilitate complex data flows with minimal
serialization while Parsl [21] is optimized for the fast and flexible execution of Python programs
and Jupyter notebooks.

As indicated in figure 1 earlier, there are four components that provide a suitable entry point
for new users to the toolkit. EasyVVUQ facilitates users that initially focus on incorporating
VVUQ in their simulations. FabSim3 is aimed at users that initially focus on enabling complex and
curated workflows, which could involve ensemble or dynamic execution. QCG-Now is intended
for users that prefer a graphical interface for managing their simulations and VVUQ workflows.
And MUSCLE3 is well suited for users whose primary concern is multiscale code coupling.

5. Exemplar applications
With VECMAtk, we aim to provide a toolkit that can be applicable to any domain/application
where UQ and SA are required, and computational modelling and simulation can be applied.
To achieve this aim, we rely on an increasing number of leading-edge scientific applications to
support the testing and development of the toolkit. Within this paper, we present a selection
of these applications which cover the following topics: (a) future energy sources, (b) human
migration, (c) climate, (d) advanced materials, (e) urban air pollution and (f) biomedicine and
(g) epidemiology. For each application we show how the toolkit provides added value in terms
of enabling UQ. In addition, we describe how we use Verification and Validation Patterns
(VVPs) to help facilitate V&V for the first two applications. In each of these concise application
descriptions, we focus on how VECMAtk is being used by a range of different applications, which
components are primarily employed/invoked, and what primary benefits the toolkit delivers for
the application users.

(a) Fusion
Thermonuclear fusion has the potential of becoming a new source of energy that is carbon-free.
The dynamics of fusion plasmas span a wide range of scales in both time and space, as, for
example, micro-instabilities formed in plasma turbulence can interrupt the overall macroscopic
transport and destroy confinement. To simulate such phenomena, we have built a multiscale
fusion workflow that includes equilibrium, turbulence and transport physics to model the plasma
dynamics [40].

9See https://www.pbspro.org/.

10See https://github.com/alan-turing-institute/mogp_emulator.

11See https://easyvvuq.readthedocs.io/en/dev/dask_tutorial.html.

https://www.pbspro.org/
https://github.com/alan-turing-institute/mogp_emulator
https://easyvvuq.readthedocs.io/en/dev/dask_tutorial.html

11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

EasyVVUQ
(in sity)

EasyVVUQ
(local)

Fusion
App

HPC processing

local processing environment HPC processing environment

Fusion Other tutorials

FabSim3

QCG-Client

QCG-Broker
(access via QCG-SDK)

MUSCLE3

EQI

QCG-PJ
QCG-Now

Figure 5. ‘Tube map’ showing which VECMAtk components are used by the Fusion application. (Online version in colour.)

Our central purpose is to ensure that the results are reproducible and can become a
reliable representation of the experiment measurements. To achieve this, it is key to use VVUQ
approaches.

We integrated UQ methods using the EasyVVUQ library and performed a parallel execution
of samples in a single batch allocation with QCG-PJ through the EQI. Those tools, available as
part of the VECMA toolkit (figure 5) and in conjunction with the coupled workflow nature of the
fusion application, have proven to be simple to use and to allow a large variety of experiments
with different methods and models (see [41] for further details). We also performed a validation
using the ValidationSimilarity VVP, which is implemented in EasyVVUQ and help us find
similarities between the probability distributions of the quantities of interest in our simulation
results and in the experimental measurements [42]. For this purpose, we can choose between
several relevant metrics, such as Hellinger distance [43], Jensen–Shannon distance which is a
symmetrized and smoothed version of the Kullback–Leibler divergence [44] and Wasserstein
metrics [45].

(b) Forced human migration
Forced migration reached record levels in 2019, and forecasting it is challenging as many forced
population datasets are small and incomplete, and armed conflicts are often unpredictable in
nature [46]. Nevertheless, forced migration predictions are essential to improve the allocation of
humanitarian support by governments and NGOs, to investigate the effects of policy decisions
and to help complete incomplete data collections on forced population movements. Through
the use of the FLEE12 agent-based simulation code, we model and forecast the distribution of
incoming refugees across destination camps for African countries [47].

The VECMA toolkit provides us with the ability to automatically construct, execute and
analyse ensemble simulations of refugee movements [48], to efficiently compute the sensitivities
of key parameters in our simulation [4], to couple different types of models to form multiscale
workflows [49] and to facilitate the rapid execution of large job ensembles on supercomputers.
We also use a VVP named EnsembleValidation to systematically validate our simulations
against data from a range of conflicts (see e.g. here [50]). This VVP performs a validation on the
output directory of each run and uses an aggregation function to combine all output validation
results into a combined metric.

12See https://github.com/djgroen/flee-release.

https://github.com/djgroen/flee-release

12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

EasyVVUQ
(in sity)

EasyVVUQ
(local)

migration
App

HPC processing

local processing environment HPC processing environment

FabFlee (conflict) FabFlee (Basic)FabFlee (SA) Other tutorials

FabSim3
(FabFlee)

QCG-Client

QCG-Broker
(access via QCG-SDK)

MUSCLE3

EQI

QCG-PJ
QCG-Now

Flee

FleeFlare

Figure 6. Tube Map showing which VECMAtk components are used in the FabFlee plugin. VECMAtk components are given in
boxes which enable users to include their added values while retaining a limited deployment footprint. The black and grey lines
define the FabFlee path using VECMAtk components for execution. (Online version in colour.)

We summarize our main application workflows in figure 6. We rely on the FabFlee plugin
in FabSim3 to automate the simulation activities required to analyse different policy decisions,
to provide the VVP functionality and to facilitate coupling with other models and data sources.
Examples include an acyclic coupling to a conflict model [49], but we are also working on a cyclic
macro–micro model for the South Sudan conflict. We also use EasyVVUQ with FabFlee to perform
sensitivity analyses for varying agent awareness levels, speed limits of refugee movements,
location move chances and other simulation parameters [4]. Lastly, we use QCG Pilot Job to
facilitate the very large number of runs required to do this analysis, which is required for our
more advanced workflows that so far involved up to 16 384 jobs.

(c) Climate
For climate modelling, the range of space and time scales present in (geophysical) turbulent
flow problems poses challenges, as this range is too large to be fully resolved in a numerical
simulation. As such, micro-scale effects on the resolved macroscopic scales must be taken into
account by empirical parametrizations (e.g. [51]). These parametrizations often involve a number
of coefficients, for which the value is only known in an approximate manner. In addition, they
are subject to the so-called model error or model-form uncertainty, which is the uncertainty
introduced due to the assumptions made in the mathematical form of the parametrization
scheme.

Within VECMA, we focus on the uncertainty in time-averaged climate statistics of geophysical
flow models, due to various assumptions made in the parametrizations. EasyVVUQ allows us
to assess the uncertainty in the output statistics due to the imperfectly known coefficients. In
addition, we currently use EasyVVUQ for uncertainty quantification of an established local
atmospheric model, DALES [52,53], which is used to simulate atmospheric processes including
turbulence, convection, clouds and rain. Here, we quantify the uncertainty in model output
from different sources, including uncertain physical input parameters, model choices and
numerical settings, and the stochastic nature of turbulence modelling. To run the EasyVVUQ
ensemble of simulations on HPC resources we use FabSim3, see figure 7. To address the more
fundamental model-form uncertainty, we are currently investigating the use of data-driven
stochastic surrogates to replace traditional deterministic parametrizations; see e.g. [55,56] for
recent results.

13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

EasyVVUQ
(in sity)

EasyVVUQ
(local)

climate
App

HPC processing

local processing environment HPC processing environment

FabUQCampaign other tutorials

FabSim3
ADE

Ocean
2D

Ocean
2D

QCG-Client

QCG-Broker
(access via QCG-SDK)

MUSCLE3

EQI

QCG-PJ
QCG-Now

Figure 7. A TubeMap showing the VECMA components used in the climate application. Here ‘FabUQCampaign’ is a plugin used
to run an ensemble of EasyVVUQ samples on HPC resources. Furthermore, ‘ADE’ and ‘Ocean2D’ are two example applications
(advection diffusion equation and a two-dimensional ocean model) for which tutorials can be found in [54]. (Online version
in colour.)

(d) Advanced materials
Developing novel advanced materials can be a very expensive and time consuming process,
often taking over 20 years from initial discovery to application.13 Chemical and material
modelling techniques are well developed for single scales, but engineering applications require
understanding across many scales [57–59]. Making actionable predictions with these modelling
techniques, to improve on the laborious experimental development process, will require
harnessing multiple simulation techniques and providing tight error bars on their predictions.

Using VECMAtk, one can generate, execute, collate and analyse ensemble simulations of
mechanical tests in an automatic fashion. This allows us to effectively gather statistics on a system
of interest and explore an input parameter space with minimal human oversight.

To do this, we use EasyVVUQ to explore an input parameter space by generating ensembles
of simulations and to collate the results into an easily analysable object. To distribute the large
number of simulations to be run in each ensemble, we use FabSim3 to automate the submission
of jobs on remote HPC resources.

(e) Urban air pollution
Predicting air quality in complex urban areas is a challenging field where researchers need to
balance accuracy against a practical turnaround time. There are numerous models for predicting
contamination transport and dispersion, ranging from simple Gaussian models (that are fast and
cheap but not necessarily accurate) to computational fluid dynamics simulations that are slower,
more costly and potentially very accurate.

In all cases the most important, and often missing part, is an accurate emission database that
contains pollutant emission rates for different types of sources: point (e.g. industrial chimneys),
line (e.g. road transportation) and areas (e.g. house heat appliances). The pollutants we consider
are NO2/NOx, SO2 and two types of particulate matter (also known as floating dust): PM2.5
for particles 2.5 µm or less in diameter and PM10 for particles 10 µm or less in diameter. We

13See https://www.mgi.gov/.

https://www.mgi.gov/

14

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

EasyVVUQ
(in sity)

EasyVVUQ
(local)

UrbanAir
App

HPC processing

local processing environment HPC processing environment

UrbanAir Other tutorials

FabSim3

QCG-Client

QCG-Broker
(access via QCG-SDK)

MUSCLE3

EQI

QCG-PJ
QCG-Now

Figure 8. ‘Tube map’ showing which VECMAtk components are used by the UrbanAir application. (Online version in colour.)

use a mesoscale weather prediction model WRF [60] and an all-scale geophysical flow solver
EULAG [61] in our multiscale simulation [62] to address uncertainties coming from incomplete
emission database, and to provide a quantitative air quality prediction [63].

We use VECMAtk to automate sampling, ensemble generation, execution of simulation codes
on HPC machines, collating results and post-execution analysis. This automation simplifies the
provision of better prediction results, because we analyse many different initial conditions and
can automatically provide mean results (or some weighted ones) from all simulations. We are also
able to run sensitivity analysis of the input parameters to identify and select the most important
ones, thus limiting the number of required ensembles for future runs.

In terms of tools, we rely on EasyVVUQ, coupled with QCG-PJ using EQI. Using Python
we define the parameter space to be sampled, application to be run in HPC environment,
hardware requirements (e.g. number of nodes and cores), and the parameters to be analysed after
simulations ended. We then use QCG client and QCG-PJ to submit and control jobs on the HPC
resources, EasyVVUQ to generate the samples, EQI for enabling the samples to be executed with
QCG-PJ and EasyVVUQ to analyse the results. We summarize our workflow in figure 8.

(f) Biomedicine
In-stent restenosis (ISR) is the renewed occurrence of arterial stenosis (narrowing of an artery)
after it was initially treated by installing a metal stent, as a result of excessive cell growth. The
results of uncertainty and sensitivity analysis for a two-dimensional model of in-stent restenosis
(ISR2D) are presented in [64]. Improved effectiveness of uncertainty propagation was achieved
by applying a semi-intrusive metamodelling method and the results are demonstrated in [65]
and in [66].

Current research on the design of the UQ and SA experiments for the three-dimensional
model of the ISR model (ISR3D) is ongoing. The ISR3D model is implemented using MUSCLE 3
discussed in §4c, which allows performing more advanced semi-intrusive algorithms. In
particular, we plan to train a metamodel on the fly and combine that with a cross-validation test
of the effect of the approximation error on the results of the micro model.

(g) Coronavirus modelling
Since 2019, the world has been severely affected by the spread of the SARS-CoV-2 coronavirus,
and the COVID-19 disease it causes. Although many models are able to approximate the viral

15

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

spread on the national level, few solutions are available to forecast the spread on a local level,
e.g. in towns or city boroughs. Within the HiDALGO project14 we are working on the Flu And
Coronavirus Simulator (FACS)15 to help address this challenge.

We use VECMAtk primarily to systematically validate the code, analyse parameter
sensitivities, execute ensemble simulations to account for aleatory uncertainty in the code, and
to easily produce ensemble forecasts which involve a wide range of scenarios, applied to a range
of boroughs in London.

To achieve this, we primarily rely on FabCovid19, which is a FabSim3 plugin, as well as
QCG-PJ. Both tools combined allow us to automate these tasks, and seamlessly create, run and
post-process ensemble simulations. We also use EasyVVUQ to analyse parameter sensitivities. To
demonstrate in what way the VECMA toolkit adds value to our application in a concrete way, we
present an small example sensitivity analysis study in appendix B.

6. Toolkit performance and scalability
The VECMA toolkit has been developed for use with large supercomputers, and therefore needs
to be both fast and scalable. In this section, we present a range of key performance aspects of
the toolkit, and discuss the advantages and limitations of VECMAtk in terms of scalability and
exascale readiness.

The main performance-critical aspects of the toolkit involve:

(a) The sampling of parameter values and creation of large numbers of simulation inputs.
(b) The submission, execution and retrieval of large ensembles of simulation jobs.
(c) The efficient movement of data between local and remote resources.
(d) The efficient movement of data between coupled models.

We will now briefly discuss the performance-related characteristics of VECMAtk in relation to
these four potential bottlenecks:

Sampling parameter values and creating large numbers of simulation inputs. There are multiple ways
in which EasyVVUQ helps with the issues involved in sampling many and expensive simulation
outputs. First of all, EasyVVUQ uses an SQL backend database that can handle 10000s of samples
or more. It also tracks the status of job execution, allowing users to cope with hardware failures
by restarting failed jobs without having to rerun successful ones. Furthermore, EasyVVUQ allows
one to sample in stages—appending more samples if results are not yet sufficiently robust,
without losing the results already in the database. Lastly, EasyVVUQ can delegate the ensemble
job submission to other scalable components, such as Dask or QCG-PJ. These components then
execute part or all of the simulations on HPC resources.

Submission and execution management of large ensembles of simulation jobs. Many scientific
applications need to run large ensemble simulations (1000+ runs) to perform UQ and SA, which
cannot be executed as individual jobs on most supercomputers due to scheduler constraints, and
require a pilot job mechanism such as QCG-PJ. QCG-PJ has been shown to efficiently execute
10000 jobs with less than 10% overhead, even if those jobs only last for one second each.16

To improve the FabSim3 ensemble submission performance, we integrated it with QCG-PJ
and enabled multi-threaded job submission from the local machine. To demonstrate the benefit
of this, we measured the total elapsed time of the job submission to a remote machine for the
epidemiology17 application. Owing to limitation of maximum number of submitted job per user18

14See http://hidalgo-project.eu.

15See https://facs.readthedocs.io.

16See VECMA Deliverable 5.2: https://www.vecma.eu/wp-content/uploads/2019/12/VECMA_D5.2_First-Report-Infra
structure_PSNC_20191208.pdf.
17See https://github.com/djgroen/FabCovid19.

18The maximum number of jobs a user can have running and pending at a given time is 5000. If this limit is reached, new
submission requests will be denied until existing jobs in this association complete.

http://hidalgo-project.eu
https://facs.readthedocs.io
https://www.vecma.eu/wp-content/uploads/2019/12/VECMA_D5.2_First-Report-Infrastructure_PSNC_20191208.pdf
https://www.vecma.eu/wp-content/uploads/2019/12/VECMA_D5.2_First-Report-Infrastructure_PSNC_20191208.pdf
https://github.com/djgroen/FabCovid19

16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

1 2 3 4 5 6 12 24 36

0

5

10

15

20

no. threads

0

2

4

6

8

10

12

sp
ee

dU
p

sp
ee

dU
p

execution time speedUp execution time speedUp

1 2 3 4 5 6 12 24 36

0

50

100

150

200

no. threads

el
ap

se
d

tim
e

(m
in

)

el
ap

se
d

tim
e

(m
in

)

0

5

10

15

(a) (b)

Figure 9. Time required to submit 15121/4865 jobs with FabSim3 (with/without QCG-PJ) relative to the number of job
submission threads used. Graph is made using average of 10 repetition of each ensemble size. Please note that, here we only
measure the job submission overhead, so, queuing time and job execution on computing nodes are not considered in our test.
(a) ensemble size= 15121, QCG-PilotJob= True, (b) ensemble size= 4865, QCG-PilotJob= False. (Online version in colour.)

Table 1. Comparison of the three main ensemble job submission approaches in VECMA, in terms of general usability, whether
files are staged to and from the remote resource as part of the approach, the need for remote deployment work and the overall
performance.

submission overhead
remote remote

approach usability file stage? deployment? per 100 jobs per 1000 jobs

FabSim3 only excellent yes not needed 40–90 s not attempted
. .

FabSim3 + QCG-PJ excellent yes user-space only 33–36 s 250–300 s
. .

QCG-PJ only good no user-space only <5 s 40 s
. .

on the Eagle supercomputer, we use ensembles sizes of 4865 and 15 121 runs, and use up to 36
threads for the submission process. We enabled pilot jobs for the larger ensemble, but not for the
smaller ensemble. We present the results of this scalability test in figure 9.

For FabSim3 ensembles without the use of QCG-PJ, we find that the job submission overhead is
2-3 seconds per job when using a single thread, but decreases to less than a second per job when
using four or more threads. When using FabSim3 with QCG-PJ, the job submission overhead
reduces by a factor 2 for ensembles with 100 jobs to about 0.35 s per job. The overhead further
diminishes for larger ensembles, as we measure an overhead of about 0.275 s per job for ensembles
with 1000 jobs. In table 1, we compare the three main ensemble submission approaches in VECMA
in terms of performance, usability and in regards to the need of any remote deployment.

Efficient movement of data between local and remote resources. Large simulations, as well as large
ensembles of smaller simulations, are often accompanied by the production of large amounts
of complex data. Within the VECMA project, we find that the organizing and re-organizing of
these data are a cognitively intensive task that is prone to human error if not automated. Both the
FabSim3 and EasyVVUQ tools provide a range of data structure conventions that transparently
automate low-level data management aspects, allowing users to focus on the complexities that
occur at higher levels. For instance, FabSim3 automatically curates input and output and while
EasyVVUQ automates the encoding and decoding of simulation files. In addition, FabSim3 and
QCG-Client automatically perform file staging to and from HPC resources.

In terms of performance, we chose to focus less on optimizing file transfer rates (although
FabSim3 and QCG-Client do support GridFTP), and more on limiting the number of file transfers
altogether. The clearest example of this optimization is the tight integration of EasyVVUQ directly
with QCG-PJ. Using EQI, users can use HPC resources to generate, run and analyse their

17

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

simulation ensembles for VVUQ purposes, and do this iteratively and dynamically within a single
Python script. In this way, all the computations are brought to where the data are, and input
files only need to be staged in once in advance, even if the workflow contains a large number of
(dynamic) iterations.

The efficient movement of data between coupled models. MUSCLE 3 is primarily positioned to
address this bottleneck, and provides added value for instance by eliminating the need for file
I/O in the coupling.

7. Conclusion
In this paper, we have presented the VECMA toolkit for the verification, validation and
uncertainty quantification (VVUQ) of single and multiscale applications. As showcased by the
wide range of applications that use the toolkit already, VECMAtk is unique in its ability to
combine a wide range of VVUQ procedures with a streamlined automation approach, and
trivially accessible capabilities to execute large job ensembles on pre-exascale resources. In
addition, VECMAtk components can be flexibly combined, allowing users to take advantage of
parts of the toolkit while retaining a very limited deployment footprint.

As part of this paper, we have described a number of exemplar applications from a diverse
range of scientific domains (fusion, forced migration, climate, advanced materials, urban air
pollution, biomedical simulation and coronavirus modelling), all used by researchers today. All
these examples are open source and accompanied with tutorials on http://www.vecma-toolkit.
eu/, allowing new users to exploit them as building blocks for their own applications.

Through the VECMA toolkit, we aim to make VVUQ certification a standard practice and
to make it simpler to quantify uncertainties, parameter sensitivities and errors in scientific
simulations. VECMAtk is used to establish these procedures irrespective of the application
domain, allowing key VVUQ algorithms to be reused across disciplines. Because VVUQ is
essential to ensure that the key simulation results are indeed actionable, the VECMA toolkit is
an important tool to help ensure that scientific simulations can be responsibly used to inform
decision-making.

Data accessibility. This article has no additional data.
Competing interests. We declare we have no competing interests.
Funding. This work was supported by the VECMA project, which has received funding from the European
Union Horizon 2020 research and innovation programme under grant agreement no. 800925. The
development of MUSCLE3 and its respective description was supported by The Netherlands eScience Center
and NWO under grant no. 27015G01 (e-MUSC project). The development of the migration and coronavirus
modelling applications was supported by the EU-funded HiDALGO project (grant agreement no. 824115).
The calculations were performed in the Poznan Supercomputing and Networking Center.

Appendix A. Improvements since first VECMAtk release
In table 2, we present the fundamental improvements and changes in the development of each
VECMAtk component since the first major release.

Appendix B. Demonstration of a single example VVUQ analysis: COVID-19
application
To demonstrate the added value offered by VECMAtk more concretely, we showcase one specific
VVUQ procedure example, using the Flu And Coronavirus Simulator. We perform sensitivity
analysis across six different input parameters of FACS19 to identify their sensitivity relative to
our quantity of interest (QoI). In table 3, we provide the default value for each parameter along

19See https://facs.readthedocs.io.

http://www.vecma-toolkit.eu/
http://www.vecma-toolkit.eu/
https://facs.readthedocs.io

18

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

Table 2. The list of modifications and enhancements in the development of each VECMAtk component since the first annual
release in June 2019.

VECMAtk Component list of improvements and changes in development

FabSim3 —added support for multi-threaded job management

— added automated installation and configuration of FabSim3 on different OS

—fixed synchronizing/copying for a large number of files and folders

— vastly improved the performance of run_ensemble

—revamped the documentation
. .

EasyVVUQ —added support for vector-valued quantities of interest

— developed an extensive unit testing suite

— added support for Daska as an execution back-end

— improved sparse-grid Stochastic Collocation sampler

— dimension-adaptive Stochastic Collocation sampler
. .

QCG Pilot Job —developed the node agent for more efficient launching of jobs across many nodes

— added more optimal way of handling iterative jobs

— increased the test base and test code coverage

— simplified execution of bash scripts as Pilot Job’s tasks

—bugfixes for execution of multi-node Pilot Jobs and OMP jobs
. .

MUSCLE3 —newly added; contributed by the e-MUSC project

— submodel coupling for spatial and/or temporal scale separation

— submodel instance sets and ensembles

—messages may contain grids, lists, dictionaries and basic types

— support for Python, C++, Fortran and MPI, with tutorials and API documentation

— automatic building of its dependencies on a variety of platforms
. .

EasyVVUQ-QCGPilotJob —provided a new API that simplifies the execution of EasyVVUQ scenarios using the QCG Pilot Job
system

— introduced a newmechanism to support custom encoders usage

—made available a detailed tutorial that can be helpful for new users
. .

QCG-Now —developed an internal view for monitoring of applications (integration with QCG-Monitoring)

—provided quick-template functionality for frequently submitted tasks
. .
aSee https://dask.org.

with the range of likely values. We use the Chaospy library20 in EasyVVUQ to generate samples
from the input parameters. Specifically, in this example we used the stochastic collocation method
with a sparse-grid sampling plan of 15 121 samples, which we then convert to simulation inputs
using the EasyVVUQ encoder, and submit to the HPC resource using FabSim3. Once execution
has concluded, we then decode and collate the results and perform a Sobol sensitivity analysis
relative to our QoI (number of deaths over time).

We present the first-order Sobol sensitivity indices for each parameter in table 3 and in
figure 10. These global sensitivity indices [67] measure the fraction of the output variance (over
time here), that can be attributed to a single input parameter. During the first 20 days, all
parameters except for the (non-mild) recovery period have a significant effect on the number
of deaths. However, as the simulation progresses, the number of deaths is mainly sensitive to the

20See https://pypi.org/project/chaospy.

https://dask.org
https://pypi.org/project/chaospy

19

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

Table 3. Defining parameter space for the uncertain parameters of the Flu And Coronavirus Simulations (FACS).

parameters type default value uniform range

infection rate float 0.07 (0.0035, 0.14)
. .

mortality period float 8.0 (4.0, 16.0)
. .

recovery period float 8.0 (4.0, 16.0)
. .

mild recovery period float 8.05 (4.5, 12.5)
. .

incubation period float 3.0 (2.0, 6.0)
. .

period to hospitalization float 12.0 (8.0, 16.0)
. .

0 20 40 60 80 100 120 140 160 180

0

0.2

0.4

0.6

0.8

1.0

days

fi
rs

t o
rd

er
So

bo
l

in
de

x

infection rate
mortality period
recovery period
mild recovery period
incubation period
period to hospitalization

Figure 10. The first-order Sobol indices for each of the uncertain parameters of the Flu And Coronavirus Simulations (FACS) for
the London Borough of Brent. (Online version in colour.)

infection rate (which describes how quickly the infection spreads) and the mild recovery period
(which describes how long people with mild COVID remain ill and infectious).

References
1. Groen D et al. 2019 Introducing vecmatk-verification, validation and uncertainty

quantification for multiscale and hpc simulations. In Int. Conf. on Computational Science, Faro,
Portugal, pp. 479–492. Berlin, Germany: Springer. (doi:10.1007/978-3-030-22747-0_36)

2. Roy CJ, Oberkampf WL. 2011 A comprehensive framework for verification, validation, and
uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 200,
2131–2144. (doi:10.1016/j.cma.2011.03.016)

3. National Research Council of the National Academies. 2012 Assessing the reliability of
complex models: Mathematical and statistical foundations of verification, validation, and
uncertainty quantification. National Academies Press. (doi:10.17226/13395)

4. Suleimenova D, Arabnejad H, Edeling WN, Groen D. 2021 Sensitivity-driven simulation
development: a case study in forced migration. Phil. Trans. R. Soc. A 379, 20200077.
(doi:10.1098/rsta.2020.0077)

5. Schwer LE. 2009 Guide for verification and validation in computational solid mechanics. In the
20th Int. Conf. on Structural Mechanics in Reactor Technology. New York, NY: American Society
of Mechanical Engineers. See https://repository.lib.ncsu.edu/bitstream/handle/1840.20/
23659/3_paper_2010.

6. Oberkampf WL, Roy CJ. 2010 Verification and validation in scientific computing. Cambridge, UK:
Cambridge University Press.

7. Simmermacher T, Tipton G, Cap J, Mayes R. 2015 The role of model V&V in the
defining of specifications. In the Conf. Proc. of the Society for Experimental Mechanics Series,

https://doi.org/doi:10.1007/978-3-030-22747-0_36
https://doi.org/doi:10.1016/j.cma.2011.03.016
https://doi.org/doi:10.17226/13395
https://doi.org/doi:10.1098/rsta.2020.0077
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/23659/3_paper_2010
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/23659/3_paper_2010

20

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

Orlando, FL (eds H Atamturktur, B Moaveni, C Papadimitriou, T Schoenherr). Model
Validation and Uncertainty Quantification, vol. 3. pp. 257–263. Cham, Switzerland: Springer.
(doi:10.1007/978-3-319-15224-0_27)

8. Binois M, Gramacy R, Ludkovski M. 2018 Practical heteroscedastic Gaussian process
modeling for large simulation experiments. J. Comput. Graph. Stat. 27, 808–821. (doi:10.1080/
10618600.2018.1458625)

9. Baker E, Gramacy R, Huang J, Johnson L, Mondal A, Pires B, Sacks J, Sokolov V. 2020
Stochastic simulators: an overview with opportunities. (http://arxiv.org/abs/2002.01321)

10. Adams BM, Bohnhoff WJ, Dalbey KR, Eddy JP, Eldred MS, Gay DM, Haskell K, Hough
PD, Swiler LP. 2009 DAKOTA, a multilevel parallel object-oriented framework for design
optimization, parameter estimation, uncertainty quantification, and sensitivity analysis:
version 5.0 user’s manual. Sandia National Laboratories, Technical Report. SAND2010-2183.
(doi:10.2172/991841)

11. Lin G, Engel DW, Eslinger PW. 2012 Survey and evaluate uncertainty quantification
methodologies. Pacific Northwest National Lab.(PNNL), Richland, WA (United States).
(doi:10.2172/1035732)

12. Foley SS, Elwasif WR, Bernholdt DE, Shet AG, Bramley R. 2010 Many-task applications in
the integrated plasma simulator. In the 3rd Workshop on Many-Task Computing on Grids and
Supercomputers, pp. 1–10. IEEE. (doi:10.1109/MTAGS.2010.5699425)

13. Elwasif WR, Bernholdt DE, Pannala S, Allu S, Foley SS. 2012 Parameter sweep and
optimization of loosely coupled simulations using the DAKOTA toolkit. In the 15th Int. Conf.
on Computational Science and Engineering, Nicosia, Cyprus, pp. 102–110. Piscataway, NJ: IEEE.
(doi:10.1109/ICCSE.2012.24)

14. Debusschere B, Sargsyan K, Safta C, Rai P, Chowdhary K. 2018 UQTk: a flexible
Python/C++ Toolkit for Uncertainty Quantification. Albuquerque, NM: Sandia National Lab.
(SNL-NM).

15. Giles M. 2015 Multilevel Monte Carlo methods. Acta Numerica 24, 259–328. (doi:10.1017/
S096249291500001X)

16. Baudin M, Dutfoy A, Iooss B, Popelin A. 2015 Open TURNS: an industrial software
for uncertainty quantification in simulation. In Handbook of uncertainty quantification (eds
R Ghanem, D Higdon and H Owhadi). Cham, Switzerland: Springer. See http://arxiv.org/
abs/1501.05242.

17. Balasubramanian V, Jha S, Merzky A, Turilli M. 2019 Radical-cybertools: middleware building
blocks for scalable science. See http://arxiv.org/abs/1904.03085.

18. Gattiker JR. 2008 Gaussian process models for simulation analysis (GPM/SA) command,
function, and data structure reference. Los Alamos National Laboratory, Technical Report
LA-UR-08-08057. See https://www.lanl.gov/org/docs/gpmsa-command-ref.pdf.

19. Gattiker J, Myers K, Williams B, Higdon D, Carzolio M, Hoegh A. 2017 Gaussian
process-based sensitivity analysis and Bayesian model calibration with GPMSA.
In Handbook of uncertainty quantification, pp. 1–41. Cham, Switzerland: Springer.
(doi:10.1007/978-3-319-11259-6_58-1)

20. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT. 2013 Swift/T: large-
scale application composition via distributed-memory dataflow processing. In 2013 13th
IEEE/ACM Int. Symp. on Cluster, Cloud, and Grid Computing, pp. 95–102. (doi:10.1109/CCGrid.
2013.99)

21. Babuji Y et al. 2019 Parsl: pervasive parallel programming in python. In Proc. of the 28th
Int. Symp. on High-Performance Parallel and Distributed Computing (HPDC ’19). Association for
Computing Machinery, New York, NY, USA, 25–36. (doi:10.1145/3307681.3325400)

22. Tennøe S, Halnes G, Einevoll GT. 2018 Uncertainpy: a python toolbox for uncertainty
quantification and sensitivity analysis in computational neuroscience. Front. Neuroinformatics
12, 1–29. (doi:10.3389/fninf.2018.00049)

23. Lawrence Livermore National Laboratory. 2016. Non-intrusive uncertainty quantification:
PSUADE. Livermore, CA: Lawrence Livermore National Laboratory. See https://computing.
llnl.gov/projects/psuade-uncertainty-quantification.

24. Hittinger JA, Cohen BI, Klein RI. 2010 Uncertainty quantification in the fusion simulation project
verification and validation activity. Livermore, CA: Lawrence Livermore National Laboratory.
(doi:10.2172/1119966)

https://doi.org/doi:10.1007/978-3-319-15224-0_27
https://doi.org/doi:10.1080/10618600.2018.1458625
https://doi.org/doi:10.1080/10618600.2018.1458625
http://arxiv.org/abs/2002.01321
https://doi.org/doi:10.2172/991841
https://doi.org/doi:10.2172/1035732
https://doi.org/doi:10.1109/MTAGS.2010.5699425
https://doi.org/doi:10.1109/ICCSE.2012.24
https://doi.org/doi:10.1017/S096249291500001X
https://doi.org/doi:10.1017/S096249291500001X
http://arxiv.org/abs/1501.05242
http://arxiv.org/abs/1501.05242
http://arxiv.org/abs/1904.03085
https://www.lanl.gov/org/docs/gpmsa-command-ref.pdf
https://doi.org/doi:10.1007/978-3-319-11259-6_58-1
https://doi.org/doi:10.1109/CCGrid.2013.99
https://doi.org/doi:10.1109/CCGrid.2013.99
https://doi.org/doi:10.1145/3307681.3325400
https://doi.org/doi:10.3389/fninf.2018.00049
https://computing.llnl.gov/projects/psuade-uncertainty-quantification
https://computing.llnl.gov/projects/psuade-uncertainty-quantification
https://doi.org/doi:10.2172/1119966

21

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

25. Brown JD, Heuvelink GBM. 2007 The data uncertainty engine (DUE): a software tool for
assessing and simulating uncertain environmental variables. Comput. Geosci. 33, 172–190.
(doi:10.1016/j.cageo.2006.06.015)

26. Salvatier J, Wiecki TV, Fonnesbeck C. 2016 Probabilistic programming in Python using
PyMC3. PeerJ Comput. Sci. 2, e55. (doi:10.7717/peerj-cs.55)

27. Marelli S, Sudret B. 2014 UQLab: a framework for uncertainty quantification in Matlab. In
the 2nd Int. Conf. on Vulnerability, Risk Analysis and Management, Liverpool, UK, pp. 2554–2563.
(doi:10.1061/9780784413609.257)

28. Pianosi F, Sarrazin F, Wagener T. 2015 A Matlab toolbox for global sensitivity analysis.
Environ. Model. Softw. 70, 80–85. (doi:10.1016/j.envsoft.2015.04.009)

29. Ye D, Veen L, Nikishova A, Lakhlili J, Edeling W, Luk OO, Krzhizhanovskaya VV, Hoekstra
AG. 2021 Uncertainty quantification patterns for multiscale models. Phil. Trans. R. Soc. A 379,
20200072. (doi:10.1098/rsta.2020.0072)

30. Alowayyed S, Groen D, Coveney PV, Hoekstra AG. 2017 Multiscale computing in the exascale
era. J. Comput. Sci. 22, 15–25. (doi:10.1016/j.jocs.2017.07.004)

31. Jancauskas V, Lakhlili J, Richardson RA, Wright DW. 2020 EasyVVUQ. See https://github.
com/UCL-CCS/EasyVVUQ.

32. Groen D, Bhati AP, Suter J, Hetherington J, Zasada SJ, Coveney PV. 2016 FabSim: facilitating
computational research through automation on large-scale and distributed e-infrastructures.
Comput. Phys. Commun. 270, 375–385. (doi:10.1016/j.cpc.2016.05.020)

33. Lourens V. 2020 MUSCLE 3: the multiscale coupling library and environment. See https://
github.com/multiscale/muscle3.

34. Richardson RA, Wright DW, Edeling W, Jancauskas V, Lakhlili J, Coveney PV. 2020
EasyVVUQ: a library for verification, validation and uncertainty quantification in high
performance computing. J. Open Res. Softw. 8, 1–8. (doi:10.5334/jors.303)

35. Luckow A, Santcroos M, Weidner O, Merzky A, Maddineni S, Jha S. 2012 Towards a common
model for pilot-jobs. In Proc. of the 21st Int. Symp. on High-Performance Parallel and Distributed
Computing, pp. 123–124.

36. Veen LE, Hoekstra AG. In press. Easing multiscale model design and coupling with muscle 3.
Computational Science – ICCS 2020. Berlin, Germany: Springer.

37. Borgdorff J, Falcone J, Lorenz E, Bona-Casas C, Chopard B, Hoekstra AG. 2013 Foundations of
distributed multiscale computing: formalization, specification, and analysis. J. Parallel Distrib.
Comput. 73, 465–483. (doi:10.1016/j.jpdc.2012.12.011)

38. Chopard B, Borgdorff J, Hoekstra AG. 2014 A framework for multi-scale modelling. Phil.
Trans. R. Soc. A 372, 20130378. (doi:10.1098/rsta.2013.0378)

39. Nikishova A, Hoekstra AG. 2019 Semi-intrusive uncertainty propagation for multiscale
models. J. Comput. Sci. 35, 80–90. (doi:10.1016/j.jocs.2019.06.007)

40. Luk OO, Hoenen O, Bottino A, Scott BD, Coster DP. 2019 ComPat framework for multiscale
simulations applied to fusion plasmas. Comput. Phys. Commun. 239, 126–133. Elsevier.
(doi:10.1016/j.cpc.2018.12.021)

41. Lakhlili J, Hoenen O, Luk OO, Coster DP. 2020 Uncertainty quantification for multiscale
fusion plasma simulations with VECMA toolkit. In Computational Science - ICCS 2020 (eds
V Krzhizhanovskaya et al.). Lecture Notes in Computer Science, vol. 12143. Springer, Cham.
(doi:10.1007/978-3-030-50436-6_53)

42. Luk OO, Lakhlili J, Hoenen O, von Toussaint U, Scott BD, Coster DP. 2021 Towards
validated multiscale simulations for fusion. Phil. Trans. R. Soc. A 379, 20200074.
(doi:10.1098/rsta.2020.0074)

43. Nikulin, Mikhail S. 2001 Hellinger distance, vol. 78. Springer, NY: Encyclopedia of mathematics.
44. Kullback S, Leibler RA. 1951 On information and sufficiency. Ann. Math. Stat. 22, 79–86.

(doi:10.1214/aoms/1177729694)
45. Villani C. 2016 Optimal transport: old and new. Berlin, Germany: Grundlehren der

mathematischen.
46. Groen D. 2016 Simulating refugee movements: where would you go? Procedia Comput. Sci. 80,

2251–2255. (doi:10.1016/j.procs.2016.05.400)
47. Suleimenova D, Bell D, Groen D. 2017 A generalized simulation development approach for

predicting refugee destinations. Sci. Rep. 7, 13377. (doi:10.1038/s41598-017-13828-9)
48. Suleimenova D, Bell D, Groen D. 2017 Towards an automated framework for agent-based

simulation of refugee movements. In The Proc. of the 2017 Winter Simulation Conf., Las Vegas,

https://doi.org/doi:10.1016/j.cageo.2006.06.015
https://doi.org/doi:10.7717/peerj-cs.55
https://doi.org/doi:10.1061/9780784413609.257
https://doi.org/doi:10.1016/j.envsoft.2015.04.009
https://doi.org/doi:10.1098/rsta.2020.0072
https://doi.org/doi:10.1016/j.jocs.2017.07.004
https://github.com/UCL-CCS/EasyVVUQ
https://github.com/UCL-CCS/EasyVVUQ
https://doi.org/doi:10.1016/j.cpc.2016.05.020
https://github.com/multiscale/muscle3
https://github.com/multiscale/muscle3
https://doi.org/doi:10.5334/jors.303
https://doi.org/doi:10.1016/j.jpdc.2012.12.011
https://doi.org/doi:10.1098/rsta.2013.0378
https://doi.org/doi:10.1016/j.jocs.2019.06.007
https://doi.org/doi:10.1016/j.cpc.2018.12.021
https://doi.org/doi:10.1007/978-3-030-50436-6_53
https://doi.org/doi:10.1098/rsta.2020.0074
https://doi.org/doi:10.1214/aoms/1177729694
https://doi.org/doi:10.1016/j.procs.2016.05.400
https://doi.org/doi:10.1038/s41598-017-13828-9

22

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200221

..

NV (eds WKV Chan, A DAmbrogio, G Zacharewicz, N Mustafee, G Wainer, E Page), pp. 1240–
1251. Piscataway, NJ: IEEE. (doi:10.1109/WSC.2017.8247870)

49. Groen D, Bell D, Arabnejad H, Suleimenova D, Taylor SJE, Anagnostou A. 2019 Towards
modelling the effect of evolving violence on forced migration. In the 2019 Winter Simulation
Conf. (WSC), pp. 297–307. (doi:10.1109/WSC40007.2019.9004683)

50. Suleimenova D, Groen D. 2020 How policy decisions affect refugee journeys in South
Sudan: a study using automated ensemble simulations. J. Artif. Soc. Soc. Simul. 23, 14.
(doi:10.18564/jasss.4193)

51. Gent PR, Mcwilliams JC. 1990 Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr.
20, 150–155. (doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2)

52. Heus T et al. 2010 Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES)
and overview of its applications. Geosci. Model Dev. 3, 415–444. (doi:10.5194/gmd-3-415-2010)

53. Jansson F, Edeling W, Attema J, Crommelin D. 2021 Assessing uncertainties from physical
parameters and modelling choices in an atmospheric large eddy simulation model. Phil. Trans.
R. Soc. A 379, 20200073. (doi:10.1098/rsta.2020.0073)

54. Edeling W, Groen D. 2019 FabUQCampaign. See https://github.com/wedeling/
FabUQCampaign.

55. Edeling W, Crommelin D. 2020 Reducing data-driven dynamical subgrid scale models by
physical constraints. Comput. Fluids 201, 1–11. (doi:10.1016/j.compfluid.2020.104470)

56. Crommelin D, Edeling W. 2020 Resampling with neural networks for stochastic
parameterization in multiscale systems. (http://arxiv.org/abs/2004.01457)

57. Vassaux M, Sinclair RC, Richardson RA, Suter JL, Coveney PV. 2020 Toward high fidelity
materials property prediction from multiscale modeling and simulation. Adv. Theory Simul. 3,
1–18. (doi:10.1002/adts.201900122)

58. Vassaux M, Richardson RA, Coveney PV. 2019 The heterogeneous multiscale
method applied to inelastic polymer mechanics. Phil. Trans. R. Soc. A 377, 20180150.
(doi:10.1098/rsta.2018.0150)

59. Suter J, Sinclair R, Coveney P. 2020 Principles governing control of aggregation and
dispersion of graphene and graphene oxide in polymer melts. Adv. Mater. 32, 2003213.
(doi:10.1002/adma.202003213)

60. Chen F et al. 2011 The integrated WRF/urban modeling system and its applications to urban
environmental problems. Int. J. Climatol. 31, 273–288. (doi:10.1002/joc.215810.1002/joc.2158)

61. Prusa JM, Smolarkiewicz PK, Wyszogrodzki A. 2008 EULAG a computational model for
multiscale flows. Comput. Fluids 37, 1193–1207. (doi:10.1016/j.compfluid.2007.12.001)

62. Wyszogrodzki A, Miao S, Chen F. 2012 Evaluation of the coupling between mesoscale-WRF
and LES-EULAG models for simulating fine-scale urban dispersion. Atmos. Res. 118, 324–345.
(doi:10.1016/j.atmosres.2012.07.023)

63. Wright DW et al. 2020 Building confidence in simulation: applications of EasyVVUQ. Adv.
Theory Simul. 3, 1900246. (doi:10.1002/adts.201900246)

64. Nikishova A, Veen L, Zun P, Hoekstra AG. 2018 Uncertainty quantification of
a multiscale model for in-stent restenosis. Cardiovasc. Eng. Technol. 9, 761–774.
(doi:10.1007/s13239-018-00372-4)

65. Nikishova A, Veen L, Zun P, Hoekstra AG. 2019 Semi-intrusive multiscale metamodelling
uncertainty quantification with application to a model of in-stent restenosis. Phil. Trans R. Soc.
A 377, 20180154. (doi:10.1098/rsta.2018.0154)

66. Ye D, Nikishova A, Veen L, Zun P, Hoekstra AG. 2020 Non-intrusive and semi-intrusive
uncertainty quantification of a multiscale in-stent restenosis model. (http://arxiv.org/abs/
2009.00354)

67. Saltelli A, Ratto M, Andres T, Saisana M, Tarantola S. 2008 Global sensitivity analysis: the primer.
New York, NY: John Wiley & Sons.

https://doi.org/doi:10.1109/WSC.2017.8247870
https://doi.org/doi:10.1109/WSC40007.2019.9004683
https://doi.org/doi:10.18564/jasss.4193
https://doi.org/doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
https://doi.org/doi:10.5194/gmd-3-415-2010
https://doi.org/doi:10.1098/rsta.2020.0073
https://github.com/wedeling/FabUQCampaign
https://github.com/wedeling/FabUQCampaign
https://doi.org/doi:10.1016/j.compfluid.2020.104470
http://arxiv.org/abs/2004.01457
https://doi.org/doi:10.1002/adts.201900122
https://doi.org/doi:10.1098/rsta.2018.0150
https://doi.org/doi:10.1002/adma.202003213
https://doi.org/doi:10.1002/joc.215810.1002/joc.2158
https://doi.org/doi:10.1016/j.compfluid.2007.12.001
https://doi.org/doi:10.1016/j.atmosres.2012.07.023
https://doi.org/doi:10.1002/adts.201900246
https://doi.org/doi:10.1007/s13239-018-00372-4
https://doi.org/doi:10.1098/rsta.2018.0154
http://arxiv.org/abs/2009.00354
http://arxiv.org/abs/2009.00354

	Introduction
	Related work
	The VECMA toolkit (VECMAtk)
	Release schedule and changes compared to the initial release

	Overview of the VECMAtk components
	EasyVVUQ
	FabSim3
	MUSCLE 3
	QCG tools
	VECMAtk workflows

	Exemplar applications
	Fusion
	Forced human migration
	Climate
	Advanced materials
	Urban air pollution
	Biomedicine
	Coronavirus modelling

	Toolkit performance and scalability
	Conclusion
	References

