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1. Introduction
In this article, we investigate current research and dissemination practices to advance
understanding and facilitation of the independent reproduction of published results with
the same code, data and inputs, and following the same methods. We use the definition of
‘reproducible’ given in the National Academies of Science, Engineering and Medicine 2019 report
‘Reproducibility and Replicability in Science’ [1]:

We define reproducibility to mean computational reproducibility – obtaining consistent
computational results using the same input data, computational steps, methods, code, and
conditions of analysis; and replicability to mean obtaining consistent results across studies
aimed at answering the same scientific question, each of which has obtained its own data.
In short, reproducibility involves the original data and code; replicability involves new data
collection and similar methods used by previous studies.

These definitions follow the ‘really reproducible research’ standard introduced by Jon
Claerbout in 1994 [2] which has subsequently been developed through a rich history of
dedicated research [3–8]. Using this definition of reproducibility means we are concerned with
computational aspects of the research, and not explicitly concerned with the scientific correctness
of the procedures or results published in the articles. The generation and dissemination of
reproducible research is an important, even essential, step for assessing the scientific correctness
of computational research, however, since it imbues the computational methods that support
scientific claims with transparency and verifiability. Beyond the correctness of scientific claims,
poorly engineered code can impede scientific progress by reducing incentives to share research
artifacts such as code and data [9], and if they are shared, inhibiting the ease of reproduction and
verification of results that rely on them [10,11].

We build on our own previous work that evaluates the potential for reproducing published
results in 306 computational physics articles [10]. From this work, we examine seven articles to
understand barriers to reproducibility more deeply [12–18]. These seven articles cover a relatively
diverse set of topics and use a variety of computational platforms. Our efforts reproducing these
articles allow us to define three broad principles to follow when developing reproducible research
along with twelve novel guidelines that can be used to apply these principles. We illustrate
the importance of the principles and the corresponding guidance through a series of eighteen
vignettes taken from our experience investigating the articles. For five of the articles, the authors
gave us permission to share their code, and we provide Reproduction Packages implementing our
guidances. The Reproduction Package we define is derived from our empirical research in this
article and fills gaps in previous efforts to design and describe the dissemination of linked data,
code and results by providing detailed specifications for directory structure, documents and
information, as described by our 12 guidelines. Packaging and dissemination for reproducible
research has a long history, going back to seminal contributions by Claerbout & Karrenbach [19],
Buckheit & Donoho [3], King [4], and Gentleman & Temple Lang’s Research Compendium in
2004 [20]. Since then a fruitful line of scholarly contributions on packaging and publishing
reproducible research has developed, for example, [21–30].

This article proceeds as follows. After contextualizing our contribution in the Previous
Work section, we describe the methodology we used when reproducing each article in the
Experimental Design and Methods section. In the Results section, we present the findings
from our research reproduction experience. In the Discussion section, we turn our empirical
reproduction experiences into principles for the practice and dissemination of reproducible
computational research, guidance to follow these principles, and our Reproduction Package
description. We also include vignettes of our reproducibility experiences that illustrate our
principles and guidance. We compare and contrast our approach with existing literature in the
Discussion section and propose ways scientists can leverage our principles and guidance. Finally,
we leave the reader with some concluding remarks and avenues for future research.
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2. Previous work
The broad question of reproducibility of published scientific results has long been examined (see,
e.g. [31–33]) and our scope in this article is limited to examining computational reproducibility [1],
a concept that has emerged over the last several decades. In 2010, the Yale Law School Roundtable
on Data and Code Sharing published a manifesto urging more transparency in computationally
and data-enabled research and presenting a set of recommendations to enable reproducibility [34].
Peng explains the value of code sharing in 2011 [35]:

[E]very computational experiment has, in theory, a detailed log of every action taken by
the computer. Making these computer codes available to others provides a level of detail
regarding the analysis that is greater than the analogous noncomputational experimental
descriptions printed in journals using a natural language.

In 2016, a set of seven recommendations, the Reproducibility Enhancement Principles (REPs),
were published to enable transparency and reproducibility in computational research, and guide
researchers and policy makers [36]. Recent work has pointed out public confidence in science can
be eroded through a perceived lack of reproducibility of the results [37].

Reproducibility is a complex subject affecting every step in the scientific discovery and
dissemination process, including trends [38] and publication bias [39]. In the computational
context, when code and data can be extensive, there may simply not be sufficient space in a
publication to completely describe the experimental set-up and discovery process. If authors do
not or cannot share critical data and computational details, this can prevent reproduction and
verification of their work and impede comparisons of any independent re-implementations of
the experiment.

With recent efforts showing some high profile works failing to reproduce [40–42], attempts
have been made to determine why such works fail to reproduce [43,44], what policies can be taken
to decrease reproduction failures [36,45] and whether such policies are effective [11,42,46]. Despite
these efforts, scientific results remain challenging to reproduce across many disciplines [11,41,47–
58]. We return to these issues in the Discussion section, when we contrast our work with previous
and related efforts.

3. Experimental design and methods
We build directly on our previous work investigating the state of reproducibility in the field
of computational physics [10]. There we examined 306 articles from 10 volumes of the Journal
of Computational Physics (JCP), and studied how articles treat their code along with their
manuscript text. From the articles and through email requests, we were able to amass code and
data for 55 of these 306 articles. Spending a maximum of four hours on each of the 55 articles, we
were able to reproduce some aspects of 18 articles but we were unable to reproduce any article’s
complete set of results. In this work, we attempt to reproduce five of those articles for which we
have associated artifacts, allocating a maximum of 40 human hours instead of 4, and use this
experience to deduce guiding principles to enable computational reproducibility. The 40 h were
measured via stopwatch and did not include computational time. In addition to running authors’
experiments, our work included looking up references, emailing and communicating with the
authors, and reading necessary background material in order to understand, implement, or fix
code we received. Our reproduction team consisted of one postdoc, one graduate student, and
one undergraduate student, from computational fields. We estimate human error when starting
and stopping the watch to be at most 8 h or 20% in our maximum measured time, based on the
non-precise nature of starting and stopping the watch consistently. Our reproductions proceeded
through four steps:

(i) Assess targeted results: We break each article’s figures and tables into a set of discrete
computational experiments to be reproduced.
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(ii) Survey the associated code and data: We examine any available code and data and
attempt to associate these artifacts with the corresponding computational experiments.

(iii) Modify and write code to run computational experiments: We ran existing code when
possible, adapted code for the computational experiments which were missing code, and
wrote new code for examples not covered by the received code.

(iv) Automate computational experiments and visualizations: Scripts were then written to
run the computational experiments and visualizations to produce figures and tables that
either exactly matched, or approximated as closely as we could, those in the original
article.

Throughout the reproduction process, we maintained notes in a dedicated notes.txt file,
available in the open repositories listed in the Data Accessibility statement (we also provide data
and code we developed and the original authors’ code when we have permission to do so). We
tracked our steps, any roadblocks or difficulties encountered, our solutions to those problems,
a running count of what had been reproduced and an estimate of how much of the article
we reproduced. This was measured as a percentage of the number of discrete computational
experiments identified in step (i). Once we exhausted our allotted time on an article, we
restructured the code, scripts, and data into a sharable package described in the following section.

Another group member then used the package to re-execute the code on a different platform
and compare the results against the initially obtained values and to check the package for clarity.
For each package, we also developed a Dockerfile defining a Docker image with the necessary
code to run the computational experiments. Containerization is also well known to assist the
reproducibility of computational experiments [59].

Finally, using the results from each article, we produced a set of software tests which can be run
on the Travis Continuous Integration (CI)1 system. CI is a software engineering practice widely
used in industrial and open-source software development [60–62] that works by compiling and
executing a set of tests after code changes. A major benefit of such tests for scientific workflows
is to highlight points of poor usability, and to know when changes to the code affect scientific
findings [63–67].

(a) Description of chosen articles
We choose five articles from our previous work based on preliminary assessments regarding
the potential reproducibility of their results [10]. While reproducing (two of) these articles, we
encountered an additional two articles upon whose methods the results depended, and added
them to this study. See table 1 for a detailed breakdown.

Article 1: A fast marching algorithm for the factored eikonal equation.
Written in the Julia programming language, this article implements a fast marching algorithm

to solve the factored eikonal equation [12]. This article was promising because the authors made
their code easily available, implemented some software engineering techniques, and their code
reproduced one table from the article easily.

Article 2: A fast accurate approximation method with a multigrid solver for two-dimensional fractional
sub-diffusion equation.

This article defines and implements a new multigrid method for the two-dimensional
fractional sub-diffusion equation in the C/C++ programming language [13]. Their method is
compared against existing methods to establish its speed and accuracy. We selected this article
because the authors gave us code that did not require any external dependencies.

Article 3: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation.
Written in Matlab, the authors introduce a new pseudo-spectral method for solving the

nonlinear Schrödinger equation [14]. Their method was compared against existing methods to
evaluate its speed and accuracy. We selected this article because the authors provided code

1https://travis-ci.org.

https://travis-ci.org
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Table 1. Origin of featured articles in this study.

DOI origin

10.1016/j.jcp.2016.08.012 [12] JCP Study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1016/j.jcp.2016.07.031 [13] JCP Study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1016/j.jcp.2016.10.022 [14] JCP Study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1016/j.jcp.2016.11.009 [15] JCP Study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1016/j.jcp.2016.10.049 [16] JCP Study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1016/j.ces.2015.04.005 [17] found while trying to reproduce [68]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.1016/S0377-0427(03)00650-2 [18] found while trying to reproduce [14]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

that did not require external dependencies and produced several rows from the article’s tables.
Unfortunately, the authors did not give us permission to share this code.

Article 4: A structure-preserving scheme for the Kolmogorov–Fokker–Planck equation.
Written in the Python partial differential equation (PDE) solving framework Fenics [69],

this article introduces a new numerical scheme for solving the Kolmogorov–Fokker–Planck
equation [15]. We chose this article because the code we received from the authors is clear to
read and understand. Unfortunately, the authors did not give us permission to share this code.

Article 5: Single-node second-order boundary schemes for the lattice Boltzmann method.
Written in the C/C++ programming language, this article introduces a new way of dealing

with boundaries in lattice Boltzmann methods [16]. We chose this article since we had already
reproduced portions of it in our previous work.

Article 6: An extended quadrature-based moment method with lognormal kernel density functions.
With code written using the C/C++ framework OpenFOAM [70], this article presents a new

method for solving population balance equations [17]. We referred to this article to learn the
OpenQBMM tool in service of reproducing a different article [68]. We had success reproducing
this article, and so it was included.

Article 7: A modification of Newton’s method for non-differentiable equations.
Written in Octave, this article presents an implementation of Newton’s method for non-

differentiable equations [18]. We encountered this article while attempting to implement a
competing method from another article [14]. We included this article as its simplicity led to easy
reproduction.

4. Results
We present three sets of results in turn: Reproducibility Principles and Guidance, the Reproduction
Package and Vignettes. The following three principles for enhancing the reproducibility of
computational results were derived from our experimental work reproducing the articles studied.

P1. Provide transparency regarding how computational results are produced. While a
typical article does a good job of conveying the scholarship of the method, namely how
the method should work theoretically, a theoretical description of any method alone is
not enough to determine what the implementation should be. Methods described in the
article can be linked to the fragments of the code implementing the method, and data can
be linked to analysis code.

P2. When writing and releasing research code, aim for ease of (re-)executability.
Transparency alone, however, is not enough. Production of each aspect of the article
should also be scripted, and locating the right script to call should be easily done. These
scripts should contain any necessary parameters for any computational experiments and
be clearly and concisely labelled. Additionally, the specification of resources required is

https://doi.org/10.1016/j.jcp.2016.08.012
https://doi.org/10.1016/j.jcp.2016.07.031
https://doi.org/10.1016/j.jcp.2016.10.022
https://doi.org/10.1016/j.jcp.2016.11.009
https://doi.org/10.1016/j.jcp.2016.10.049
https://doi.org/10.1016/j.ces.2015.04.005
https://doi.org/10.1016/S0377-0427(03)00650-2
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important since other scientists may not have the necessary hardware to complete the
computational experiments.

P3. Make any code upon which the results rely as deterministic as possible. Re-executing
computational experiments should produce exactly the same results as a previous
run whenever possible. Software dependencies and versions should be determined, as
changes in these dependencies may result in changes in results. If random number
generators are used, capture seed information and allow them to be set at the start of a
run. Unfortunately, bit-wise reproducible results may not be possible because of inherent
non-determinism related to parallelization of an algorithm and associated reduction
error, for example, [71]. (This principle is inspired by Rule Ten in [72]).

We present a set of guidelines that put the principles into practice. Like the principles, these
results are derived from our experience reproducing the scientific results from the target articles.
Recommendations are presented for each guidance.

G1. Make all artifacts that support published results available, up to legal and ethical
barriers. Authors should make sure all artifacts, such as code and data, they used as part
of their computational experiments are available and properly cited whenever possible.
Code released by the authors should also come with an appropriate license so users can
understand what they can and cannot do with the published code [73].

Recommendations:

— Make code open-source and available on widely used open-source software
development platforms e.g. GitHub.com or bitbucket.org.

— Use an open-access, long-term storage repository capable of issuing DOIs, such as
Zenodo.org, to share datasets.

— Select an open license to allow the greatest flexibility in collaborations. The MIT
or BSD (or similar) licenses are acceptable for code sharing; for data sharing, we
recommend the CC0 Public Domain Mark; and CC-BY License for text and media
as recommended by the Reproducible Research Standard [73].

— If licensing, export control, confidentiality (e.g. HIPAA protection), or excessive size
prevents an artifact from being shared, consider producing a synthesized version of
data that can be shared. Reporting results for this dataset as well will allow users to
verify that the code is working properly even without the primary dataset.

Principles: P1, P2, P3. Source article: [12].

G2. Connect published scientific claims to the underlying computational steps and
data. Provide a master script that runs all aspects of the computations reported in
the publication. Providing this script makes clear to others how the computational
experiments are meant to be run to reproduce the findings from the article. Whenever
possible, authors should use the same terminology in their code as in their article. For
example, if input data is filtered by a pre-processing method, it should be called by the
same name in the code as in the article (or should be commented appropriately). Such
practice makes clear the connection between methods mentioned in the article and those
used in code.

Recommendations:

— Endeavour to make parameters used for each experiment easily understood by the
user. Provide clear explanations if their purpose is not obvious.

— Ensure no interactivity is needed. Requiring the user to interact with the script
requires the user to know aspects of the experiment that may not be obvious.

— Implement the master script in a scripting language. It can be written in shell,
Python, Matlab, or another appropriate language, as long as it easy to run.

http://Zenodo.org
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— For general-purpose software/libraries, include scripts that properly use that
software and reproduce results from the article.

Principle: P1. Source article: [68].

G3. Specify versions and unique persistent identifiers for all artifacts. Authors should use
version control for their work. When they do, they should specify information to uniquely
identify the precise code they used when producing the results. When using a version
control system, there is usually a commit hash or revision number that uniquely identifies
each version. Without version control, identification can be done by specifying the base
software version used along with any patches that have been applied.

Recommendations:

— Use some form of version control, for example, a tool like Git or Mercurial.
— If version control use is not possible, save different versions of their code explicitly

with version numbers. Mention explicitly the version used to produce results for
publication.

— In the event that a simulation cannot be re-done after a bug fix, for example, because
resources have already been exhausted, then provide multiple commit hashes or
unique identifiers that have been used.

Principle: P1. Source article: [17].

G4. Declare software dependencies and their versions. Software frameworks are often
convenient or necessary to perform scientific computations. Many frameworks depend
on other software packages for their functions, but each of these dependencies may
evolve over time at different rates. The authors should provide detailed version
information for each of these dependencies; such information will make it possible to
reconstruct the original software stack used to produce the results.

Recommendations:

— Package the code into a Docker [74] image or other container solution such as
Vagrant or Singularity [75], which can ‘save’ all necessary dependencies of a
computational experiment. Prepare the Docker image using a Dockerfile rather
than manually, which captures the knowledge of all dependencies needed to use the
computational experiment.

— Use a package management system such as Spack [76] or Conda.2 These systems
require building all necessary dependencies, and they track the version information
of those dependencies as well.

— Use a build system (described in detail later in this article), which enforces an
understanding of what the necessary dependencies are for the computational
experiments and forces explicit build code to accommodate dependencies.

Principles: P2, P3. Source articles: [15,17,18].

G5. Refrain from using hard coded parameters in code. When several computational
experiments are conducted by varying one or more parameters, authors should provide
a method to define these values at runtime (the time the program is executed). While
prior guidance concerning computational scripts is related, it is important to design such
scripts to allow for other scientists to change parameters easily and run the experiment
again.

2https://conda.io.

https://conda.io
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Recommendation:

— Design computational experiments to either take parameters and arguments from
the command line or have them defined in another file, especially when function
invocation orderings are important. Documentation and help options are good ways
to inform the user of the existing options.

— If parameters are hard coded to achieve compile-time optimization, add compilation
of the simulation program to the master script mentioned above. This allows the
user to easily configure the hard coded parameters, but also achieve compile-time
optimization.

Principles: P1, P2. Source articles: [13,16,17].

G6. Avoid using absolute or hard-coded filepaths in code. Absolute file paths such as
C:\Project\Dataset or /home/user/Dataset are almost certain not to work on
a different system from the one where the experiments were initially run. Authors
should use file paths defined relative to the current directory, e.g. ./Dataset or
./data/Dataset.

Recommendations:

— Start file paths with . or ..

— Look for common giveaways of absolute file paths like a specific username or the
name of an external hard drive and eliminate them to create relative file paths.

Principle: P2.

G7. Provide clear mechanisms to set and report random seed values. When working with
algorithms which rely on random number generators, the authors should implement
their script to allow the user to set the initial seed value. Setting the seed value allows
the same computational results to be produced on subsequent runs of the program.
Furthermore, the authors should report the random seed they used for the results
presented in their publication.

Recommendations:

— Make sure the seed value can be set and report the seed value used for the article
experiment.

— Avoid setting the seed value to changing quantities like the time, or allowing the
user to disable such setting.

— Allow the user to set the seed value, for example, by providing an option passable
through the command line.

Principle: P3.

G8. Report expected errors and tolerances with any published result that include any
uncertainty from software or computational environments. Not all results can be made
bit-wise reproducible (exactly the same as what was published down to every bit!),
resulting in differences between what the author expects and what the code produces
(error). In these cases, a tolerable level of error (or tolerance) should be determined
based on the application and/or scientific background of the problem. Authors should
report that error bound and/or implement a test incorporating the error bound. If a user
produces a result different from that published and with no tolerance stated, they may
believe they have produced the result incorrectly when they have not.

Recommendations:

— Re-run the experiments with slightly different inputs to quantify how the results
change. Experiments involving parallelized code may not even need different inputs
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to observe changes in results as parallelism usually has some non-determinism that
can be quantified.

— Provide a script that checks the produced numbers to see whether they are within a
tolerance instead of checking that they equal the exact expected values.

Principle: P3. Source articles: [13,18].

G9. Give implementations for any competing approaches or methods relied upon
in the article. When making performance arguments against competing methods,
authors should provide details about how the competing method is implemented and
performance tested [77].

Recommendation:

— Include the competing code used as part of the artifacts shared. If the authors of
the competing code do not give permission to share, point to where the code can
be found, including specific version or commit information. Sharing patches to a
publicly available software version is important.

Principle: P1. Source articles: [13,14].

G10. Use build systems for complex software. When creating complex software, installation
procedures can become complex. Even when code consists of a single .cpp file,
compiling the code may require linking with additional libraries that may not be clear
to users besides the authors. Authors should provide clear instructions for how to install
the software.

Recommendation:

— Use a build system, such as GNU Make3 or CMake4 for C/C++ code, to build the
code [78].

— Building in a containerized environment can help expose any hidden software
dependencies. For example, Python modules may exist in the author’s Python
environment, and are not explicitly installed.

Principle: P2. Source articles: [13,16].

G11. Provide scripts to reproduce visualizations of results. Authors should provide scripts
that produce the figures and tables not produced by hand. Existence of such scripts allows
other scientists to see what software is necessary to produce the figures and tables as
well as what steps are needed. In our experience, it is frequently assumed that scientists
will be able to produce plots as published on their own when the procedure is not clear
(such as for a scientist in an adjacent domain). The effort involved in such reproductions
without explicit instructions through scripting can be extraordinarily time-consuming or
outright impossible. We create this guidance to underscore that it is essential to provide
visualization and other scripts as well as those recreating numerical results.

Recommendation:

— Provide a clearly identifiable script that creates each figure or table.

Principle: P2. Source articles: [12,14,15,17,79].

G12. Disclose resource requirements for computational experiments. Cutting edge research
often requires the use of large amounts of computing resources, whether in the form
of huge RAM or many computational nodes. As a basic step, authors should report the

3https://www.gnu.org/software/make/.

4https://cmake.org.

https://www.gnu.org/software/make/
https://cmake.org
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hardware on which they ran the computational experiments. If possible, including a small
test case that can be run by users with conventional hardware is a good step towards not
only testing that the code works well, but also allowing others to verify that they can get
and run the code correctly before moving to large computational resources.

Recommendations:

— Report the hardware on which the experiments were run to obtain the results in the
article.

— When running the code, use the time command to measure how long the
experiment takes and report this time as a rough estimate for the expected runtime
of the experiment.

Principle: P2. Source articles: [12,14,15].

(a) The Reproduction Package: reproducibility and open access
The Reproduction Package defines a set of technical standards for the dissemination of reproducible
computational research that includes digital artifacts, and extends many previous efforts [21,24,
27,80–82]. We first propose a minimal requirement on the directory structure:

Project Directory

README

LICENSE

run.sh

run_all.sh

Dockerfile

.travis.yml

expected_output

computational_effort.md

which is defined as follows:

— README: A simple document explaining the reproducibility package and how to use it to
reproduce results. It contains at a minimum:

• Code description
• Link to the original research article
• Directions on how to cite this work
• A description of any software dependencies
• A description of how to execute the computational experiments from the original

research article.

— LICENSE: An essential component is a license telling the user how they are allowed to
use the code, following e.g. the Reproducible Research Standard [73].

— run.sh: This script is intended to reproduce the computational experiments in the
article that can be run in under 1 h with a reasonably modern desktop computer, with
information about expected runtime.5

— run_all.sh: This script runs all the computational experiments in the article. In some
cases, this script is not needed as experiments are fast enough to be fully included in
run.sh.

— Dockerfile: This file helps to make clear how to build the code and any dependencies
needed. This file also includes information on running the computational experiments.

5All articles in this study were tested on a desktop computer with an i7-6900K CPU, 32GB of RAM, and running the Arch
Linux operating system.
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— .travis.yml: This script integrates the code with Travis CI. This step shows the reader
how to run the experiments.

— expected_output: A directory to store expected output from computational
experiments. We recommend only storing finished results that appear in the associated
publication such as tables and figures. Other artifacts, such as datasets, may present
size limitations for version control systems such as Git. There could be multiple
directories containing expected output perhaps categorized by output type such as
expected_tables.

— computational_effort.md: This document informs the reader of the computational
effort and resources required to execute each experiment. It can warn the reader if some
calculations will take a very long time or require boutique environments.

We call this abstracted format for sharing the code and data a Reproduction Package. In our
experience, the Reproduction Package format can be applied to any software and other artifacts
packaged for reproducibility. It extends previously established standards and recommendations
by including standard ways of storing expected output and reporting expected computational
effort [24,27,83]. We also improve on previous methods by increasing the flexibility of the format.
By not creating requirements around code and helper script locations, the format can be applied
more easily to more situations, increasing the likelihood of adoption. This change is crucial
for languages such as Ruby or Julia whose packages expect a specific directory structure. For
every article we studied, verification of the results by another team member from the output
we produced took less than 5 h of human work. We believe this improvement in time from 40 h
shows the value added to the code by the restructuring process induced by the Reproduction
Package.

In addition to sharing the code and data as a Reproduction Package on GitHub, we also include
in our packages information specific to our reproduction efforts for the original article, such as
the notes.txt mentioned previously. We also include a plot of our time spent on reproducing the
results for the article and the results yielded by the efforts.

We encourage readers to download our Reproduction Packages, run the code and examine how
they have been built. Our goal is to provide clear examples showcasing the release of scientific
artifacts that enable others to build, run, and verify the results before extending them.

(b) Vignettes illustrating principles and guidance
To illustrate the guidance just presented, we created a set of vignettes from our experience with
the seven scientific articles that demonstrate how the problems we encountered can be overcome
by following our guidelines. Each illustrative vignette focuses on a single article, though it may
apply to more than one. With these condensed stories we aim to show the result of what were
dozens of hours of work, as shown in figure 1, and point to gaps encountered by assiduous
authors. Occasionally, we reached insurmountable roadblocks, also described in the vignettes.

(i) Vignette 1: Missing dataset prevents reproduction

Near the end of their article, the authors perform several computational experiments using a
geological model published on a CD with a book [12,84]. We tried to get this book, but the
nearest copy was in Barcelona, far from our location, making collecting the book prohibitively
time-consuming. Without this model, we could not complete the figures that relied on this
data, preventing us from full reproduction of the article even before reaching our 40 h limit. We
commend the authors, however, as the details they provided allowed us to reproduce the other
results in their work. Guidance: G1.
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Figure 1. Our efforts to reproduce each article took varying amounts of time (up to 40 h) and yielded varying levels of success.
We tracked our progress on each article by noting when significant events occurred and how much of the article we had
reproduced at each of these points. Progress is measured by first enumerating the number of computed numbers within tables
and plots within figures, referred to as ‘assets’. We rate our completion of each article as the percentage of assets that have
been reproduced. Details about which assets were completed when are recorded in each Reproduction Package with a file
namednotes.txt. We present the completion percentage over time for each article in this study. The solid line is for article [18],
the dotted line is for [14], the long dashed line is for [17], the short dashed line is for [16], the long dash dotted line is for [13], the
short dash dotted line is for [15] and the long dash double dotted line is for [12]. For each figure, the x-axis is time measured in
hours; the y-axis is the completion measured in percentage. Occasionally, we reached insurmountable roadblocks, terminating
our reproduction effort prematurely (before 40 h had been spent). (Online version in colour.)

(ii) Vignette 2: Choice of root matters

In [18], we attempted to reproduce several numbers reported in the article. However, our
computed numbers were slightly different than those reported. Our inspection found that the
differences were due to a choice of root in the solving of a polynomial equation. One part of the
procedure required choosing the smallest root of an equation. However, the authors seem to have
chosen a slightly larger root than the smallest one, which led to a discrepancy between our results.
This experience indicates the need for authors to provide the exact inputs and data used to run
their computations. Guidance: G1.

(iii) Vignette 3: Finding input by parsing images introduces variance in output

Reproducing results from [17] required extracting moments from a distribution published in a
prior work. Initially, we had trouble finding which article contained the distributions but the
authors were able to point us to the correct location. The authors themselves stated they had used
a plot digitizer program to extract this distribution. We also used a plot digitizer,6 and extracted
the necessary moments. The results produced from this procedure, however, differed from those
published in the article. Unfortunately, the moment inversion algorithm is very sensitive to input
differences, especially in the higher-order moments. This means variations in digitization (for
example those produced by using a plot digitizer which requires human intervention) can affect
the resulting inverted distribution, sometimes significantly, as in our case. Guidance: G1.

6https://automeris.io/WebPlotDigitizer/.

https://automeris.io/WebPlotDigitizer/
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(iv) Vignette 4: Original version of code unavailable

In one article, figures 12 and 13 seemed to be an application of the moment inversion algorithm
mentioned in the previous vignette, this time testing the method with many nodes and an analytic
solution [17]. We found that the first three subfigures we reproduced generally matched well
with the article. However, beyond these subfigures, the inversion algorithm failed and produced
strange results. Additionally, these failures occurred with large numbers of nodes, possibly
indicating a numerical instability. Figure 14 references a function f (σ ) for each of four cases.
We interpreted this to mean the function from the article’s equation (23), however, this led to
rather different results. The lack of clarity regarding this function meant we could not resolve
these differences ourselves before our allotted 40 h time limit ran out. The authors communicated
readily with us and we learned that they wrote their software with Matlab. Without access to their
Matlab code, and without additional time to converse, we were unable to resolve either of these
issues. Guidance: G2.

(v) Vignette 5: Code provides a check on article correctness

In an article we studied, two numerical examples are presented [17]. These examples are
distinguished primarily by changes in two source functions, f and p, involved in the Laplacian
calculation.

From the authors we received code that contains two primary computational experiments:
a file named example2.cpp, and a file named example3.cpp (although there is no example
3 in the article). example2.cpp was initially commented out, and further inspection revealed
that it did not resemble either examples 1 or 2 from the article. example3.cpp seemed to be a
near perfect match for example 2 from the article. However, we noticed some differences between
the code and the article. Close inspection revealed a typo in the article’s definition of example 2,
however the code in example3.cpp was correct. We demonstrate the error and correction below:

f (x, y, t) = Γ (4)xyt3−α

Γ (4 − α)
− exp(xy + x2 + y2)t3

→ Γ (4)xyt3−α

Γ (4 − α)
− (x2 + y2) exp(xy)t3. (4.1)

Once we determined that neither example2.cpp nor example3.cpp contained code directly
related to example 1, we went about taking code from the given examples and implementing
example 1 ourselves. Changing f and p functions accordingly yielded correct results for
example 1. In total, we matched three computational experiments with the examples from the
article: example1.cpp, example2.cpp, and example3.cpp (contains the extra example we
received from the authors). Despite the difficulties we had figuring out what code was for which
section of the article, the authors’ code was easy to compile and run and thus it was easy to spot
and fix this issue. Guidance: G2.

(vi) Vignette 6: Inconsistency between analytic computations and equations

In one article we studied, after determining how to run the computational scripts using the correct
parameters from the article, we managed to get results that were close but not quite the same as
reported [15]. We resorted to a careful inspection of the reported analytic solutions in the article
and their derivations to better understand whether the options we were passing to the simulation
code were correct. This inspection revealed inconsistencies in the reported analytic solutions. For
example, we discovered an error in equation (20) from the article [15]. The denominator should

read
√

1 + 4t + 4
3 t2 + 4

3 t3 + 4
3 t4 instead of

√
1 + 4t + 4

3 t2 + 4
3 t2 + 4

3 t4. This equation is passed to
the primary program as an option on the command line. Had the authors provided clear scripts
for their experiments, we believe it would have been easier to determine whether they included
this mistake in their experiment or whether it is a simple typo only in the paper. Guidance: G2.
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(vii) Vignette 7: Lack of computational scripts leads to confusion

Although the code given by authors ran without crashing, we could not reproduce the output
reported in article [15]. Further inspection of the code, and especially how aspects of the
simulation were determined, revealed a possible issue with resolution setting. In the article, the
variable N defines the size of finite elements within the mesh to be such that N elements fit along
the side of the computational domain. The parameter N (from the code) seemingly is also the
number of elements along the side of the domain. However, the code uses a library for mesh
generation which computes the finite-element size using N as the number of elements along the
diameter of a bounding circle, rather than along the side of the domain. This means that to set
N from the article to 128, we need to set N to 177 which is ∼ √

2N. After this change, our results
matched the article’s more closely. Had the authors included succinct scripts, the link between N
and N would have been clear. Guidance: G2.

(viii) Vignette 8: Lack of driver code results forces us to learn a framework

Scientists sometimes release general libraries implementing their methods. For example, ideas
from an article we studied were used in the implementation of OpenQBMM,7 an extension to
OpenFOAM8 [17]. Despite test cases inside OpenQBMM explicitly mentioning this article, it
was not clear to us how several of the figures were generated. While this general library has
code that can perform all or nearly all necessary computations, not all computations were easily
exposed and accessible. Extensive work and communication with the authors was necessary to
produce several figures and numbers from the article. (The authors used the GitHub platform
to great effect for this!) General use libraries are typically developed with a purpose different
from reproducibility of published results. For ease of use, developers may try to wrap low-level
functionality away from the user, making it hard to reproduce all aspects of the original articles.
While use cases may be hard to predict, if authors include test cases from articles that rely on their
libraries, missing features or bugs affecting the code output could be more quickly discovered.
Guidance: G2.

(ix) Vignette 9: Inconsistency between article-described algorithm and code prevents full
reproduction of results

Upon close inspection of one article and the code we received, we found their implemented
algorithm differed from that described in the article in two ways [13]. First, the multigrid
algorithm was named Vcycle_BLTDTDB, and its gross structure did not resemble that described
in the article. Second, the smoothing algorithm in the article is named ZLGS, which is different
from that mentioned in the code: AXLGS. We carefully inspected this code, but we could not
with certainty say that the implemented method is the same as the article-described algorithm.
Within our 40 h time limit, we were able to re-implement the multigrid method as described in the
article but not the smoother. After these changes, differences between our code and the reported
values from the article were now within 1–5% of the reported error value. We also point out that
the authors wrote their code in an easy-to-read, logical fashion, making the structure of their
algorithm clear through their function calls. This clear structure made re-organizing the code as
described above straightforward. Guidances: G2, G3.

(x) Vignette 10: Visualization scripts stored in Git history, not explicitly

The authors of one article we studied shared a substantial amount of code for their article through
GitHub, but we could not find the code for the figures [12]. Inspecting their commit history
revealed past plotting scripts that were removed. We recovered those scripts and were able to
develop visualization scripts that reproduced the figures in the article. While our work on these

7https://github.com/OpenQBMM/OpenQBMM.

8https://openfoam.org/.

https://github.com/OpenQBMM/OpenQBMM
https://openfoam.org/
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figures would have proceeded more quickly had the visualization scripts been provided in the
released code, the authors’ use of version control allowed us to produce the figures. Guidances:
G3, G11.

(xi) Vignette 11: Fragile scripts require detailed version specifications

Utilizing ParaView’s Python plotting system, we produced several figures from article [15].
Attempting to reproduce these figures on another machine using a slightly different version
of ParaView revealed the fragility of these scripts. The Python scripting API implemented in
ParaView breaks frequently. Produced scripts are only useful with the version of ParaView which
created them unless there is extensive debugging. In our case, the scripts originally developed
using ParaView 5.5.2 did not work on either ParaView 5.0.1 (available with Ubuntu 16.04),
or ParaView 5.4.1 (available with Ubuntu 18.04). It is important to report the version of the
underlying software used (along with the scripts) so results can be reproduced without crashes.
Guidance: G4.

(xii) Vignette 12: Dependency uncertainty adds to confusion about reproduction failure

Reproducing one article requires the Fenics framework, which contains more than 40
dependencies [15]. We opted to first attempt to use the latest version of Fenics to avoid
complications related to building old versions of these dependencies. This attempt required
updating several function calls to Fenics that had been updated since the article’s code was
written. Ultimately, we ran into a mismatch between our calculated L2 error and that reported
in the article. We used the code that calculates this error as given to us by the author, so the
difference does not originate from us changing the code in some way. Consistently across all
computational experiments we performed, we did not match the article’s reported error values
and we were unable to track down the source of these differences. One possible factor could be
differences between versions of not only Fenics but any of its many dependencies.

In order to see whether any of these differences could be attributed to the updated version
of Fenics we were using, we built and used Fenics v. 1.5.0, which the author claimed was the
version that they used. This was a lengthy process that forced us to devise and apply many
specific patches to make certain dependencies build with our more modern compiler. In the end,
however, using the older version of Fenics did not resolve the differences we were seeing. While
we made an effort to use only ‘period’ versions of packages for these dependencies, it is possible
that we did not find the right versions of some of them. The difference in versions may be what is
causing the difference in results, but without the definitive list of dependencies and their versions
we cannot know for sure. Guidance: G4.

(xiii) Vignette 13: Julia deprecation efforts force us to fork modules

During the preparation of this manuscript, several Julia modules deprecated Julia 0.6. Within
Julia modules, a file ‘REQUIRES’ details the necessary Julia module dependencies for that
module. This deprecation came by changing the line ‘julia 0.6’ to ‘julia 0.7’ within the
modules PyPlot.jl (an official module) and jInv.jl ([12]). This change caused Julia to crash
with an error complaining about package incompatibility when running the code and data for
article [12].

There is a setup script within our code and data package for an article we studied which
ensures acceptable versions of various modules are installed before running the rest of the
code [12]. We initially believed that specifying older versions of these problem modules (versions
which would still work with Julia 0.6) with appropriate Julia code would resolve this issue,
however, it did not. Our close inspection of Julia 0.6’s package management source code revealed
the latest version of a package is always downloaded and checked for compatibility before the
specified version. While this may get fixed in later versions of Julia, we opted to find a way
around this problem and preserve our use of Julia 0.6. Further inspection of the Julia source code
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revealed that a GitHub repository containing a Julia module can be specified. We were thus able
to fork these modules and set their master branches to versions which supported Julia 0.6. Once
the setup code was adjusted to point to our versions of these modules, the code package worked
again. Rather than completely changing Julia, or duplicating the modules we needed, we focused
on those modules causing us problems. We cannot therefore guarantee that our code package
for Julia will not break again in this manner. Because of the nature of Julia’s package system at
version 0.6, a better solution is not apparent at this time. Guidance: G4.

(xiv) Vignette 14: Different library versions can lead to different results

For one article, we re-implemented the proposed method using Octave, producing the same
results to machine precision [18]. We found that the results could change depending on the
version of Octave being used. For our initial experiments, we installed the latest version of Octave
available to our platform, namely, v. 4.4.1. However, porting our experiments into Travis CI,
we found slightly different numbers for two values (0.00837733 vs. 0.00837735, and 0.41411889
vs. 0.41411902), as well as different output styles. Trial and error revealed a different version
of Octave as the culprit. Initially, we used Ubuntu 14.04 for Travis; Octave v. 3.8.1 is available
for that version of Ubuntu. Trying Ubuntu 16.04 gave us access to Octave v. 4.0.0; differences in
values went away, but the different output styles remained. Building a more sophisticated script
to compare output results to expected results allows us to handle the output formatting issue.

In this case, the differences we encountered were fairly small (∼10−7). However, more serious
software changes can easily lead to much larger differences. Based on this experience, we
determined that, when publishing results, it is imperative to share the versions of software used.
Without this information, small differences can lead to uncertainty as to whether the results were
reproduced properly. Another way to head off this issue is to provide an expected range of error.
Had the authors mentioned that we should expect a computational error of 1%, we would not
have been worried by the differences we observed. Guidances: G4, G8.

(xv) Vignette 15: Hard-coding of parameters leads to confusion and difficulty reproducing experiments

The authors of one article were responsive to our requests for code [16]. We discovered, however,
that it was necessary to change hard-coded values to get the reported results for different
experiments. Unfortunately, it was difficult to determine which variables in the code had to be
changed for which experiments from reading the code. The authors had comments in their code,
but the comments were not written in English (we later received translations of these comments
from the authors). We eventually had to analyse the equation structure in the code to find where
the appropriate changes should be made. In total, it took us several hours to test and determine
which variables (in the code) should be changed for each computational experiment. These hours
of work would not have been necessary, if the critical variables could be set on the command line.

We found that the use of compiled languages such as C/C++ imply additional care to avoid
compile-time constants when they are tied to varying properties of the computational experiment.
For example, when performing experiments that vary the grid resolution for some discrete
computational method, this resolution should not be coded as a compile-time constant unless
there is a compelling performance reason. In most cases, compile-time constants of this type can
be avoided, and we demonstrate how to do it with the Reproduction Package we produced for one
article we studied [16].9 Guidance: G5.

(xvi) Vignette 16: Irreproducibility of the prior method can render published comparisons impossible

This article sought to show that the author’s new method has better performance and
accuracy compared to a traditional method [14]. The authors provided us immediately with an
implementation of their method upon request. We quickly verified their reported performance
for their method. However, we did not get an implementation of the competing method. We

9https://github.com/ReproducibilityInPublishing/j.jcp.2016.10.049.

https://github.com/ReproducibilityInPublishing/j.jcp.2016.10.049
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Figure 2. Reproduction of figure 5c from article [15] after the transformation with conspicuous empty spaces. (Online version
in colour.)

attempted to re-implement the competing method after referencing materials on how the method
should be implemented [18,85]. Unfortunately, our implementation efforts did not match those
reported in the article. The error our implementation achieved was several orders of magnitude
worse than that reported in the article. We resorted to asking the authors for the implementation of
the competing method as well, but we did not get any response. Without this implementation, we
were unable to verify the reported accuracy and performance gains of this new method (although
we could verify the direction of the gains). We also ran into this problem with another article we
studied [13]. In that case, we were able to produce an implementation of the competing method.
Guidance: G9.

(xvii) Vignette 17: Reproducibility issues for visualizations using ParaView

In an article, several two-dimensional density plots are presented [15]. However, the software
used to produce those figures is not described. The code that the authors provided to us did
not include any scripts for creating the plots either. Instead, while reading documentation for
Fenics, we found a likely candidate to be the ParaView plotting suite. Utilizing ParaView’s Python
scripting interface, we could produce figures similar to those from the article and store Python
scripts to recreate them. We achieved success with all such figures, except figures 5c, 5d, and 7c.
For each of these figures, we needed to perform a variable transformation. ParaView supports
variable transformations, but points in the new domain mapping to values not in the old domain
are not interpolated with ‘0’ values, resulting in strange stretched rectangular plots with large
empty spaces not present in the article. By plotting the original version of the plot underneath
the transformed version, this problem was avoided. We demonstrate this effect in figures 2 and 3.
Presumably, the authors had to perform similar actions with their visualization scripts, and had
we received such scripts, we could have performed this step more easily. Guidance: G11.
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Figure 3. Reproduction of figure 5c from article [15] after the transformation and with conspicuous empty spaces removed.
(Online version in colour.)

(xviii) Vignette 18: RAM shortage prevents completion of table data computation

An article presents a table of the proposed method’s accuracy performance as computational
grid resolution increases [15]. Unfortunately, we could not reproduce the last row of the table,
which required more memory than available on the system we were using (32 GB RAM, Arch
Linux, i7-6900K). The authors did not report the amount of memory they used for their results.
We also encountered this issue in another article we studied [12], and in previously mentioned
prior work [86,87]. Guidance: G12.

5. Discussion
We begin our discussion by situating these results within previous work. Many articles have
put forward recommendations for publishing computational research and scientific software, and
we present our recommendations as an extension of these results. We then discuss the software
Reproduction Packages we are releasing with this article. We next discuss incentives for researchers
and how they may help or hinder the adoption of the guidelines we motivate here. We then
consider how the structure of our study can potentially limit the scope to which the guidelines
are applicable. Finally, we discuss our use of Travis CI in the scientific research context.

(a) Relationship to prior work
We build on prior work in infrastructure/tools and also in policy/practice recommendations.
New tools and standards can help authors make their work more reproducible. Our approach
endeavours to complement and extend the existing body of work, including the generation
of and reliance on a broader set of empirically derived findings regarding current practices in
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computational research to derive principles, guidance, and the technical specifications developed
for the Reproduction Package.

In the infrastructure and software tool space, there are myriad different approaches that can
help increase reproducibility. Containerization technology like Docker [74] and Singularity [75]
allow the scientists to bundle operating system components, software dependencies, and scripts
together into a convenient package which can be run on most modern computing platforms.
Systems like ReproZip [88] make this even easier by simplifying the containerization phase for
some types of scientific workflows. Package management systems such as Conda10 and Spack [76]
manage nearly the entire dependency stack of a given application. These types of programmes
are capable of building all necessary software in a managed way. Workflow management systems
can capture detailed experiment provenance information for reproducibility and allow scientists
to define the workflow of their computational experiments more robustly [89–96]. How to execute
computational experiments is made clearer when using such systems. Literate programming
systems such as Jupyter [97] allow the authors to weave both narrative and code together,
alleviating problems associated with defining computational experiments and linking code to
theoretical descriptions. More integrated approaches such as RECAST [98] take advantage of
the science of a specific field to allow published analyses to be more easily reproduced. Efforts
like Whole Tale [99] aim to create an integrated environment where whole scientific workflows
can be written, stored, run, and reproduced, with many components of enabling reproducibility
automated.

Discovery and dissemination specifications from efforts such as Popper [24], Big Data Bags [82]
and the Whole Tale project’s Tale specification [27], delineate guidance and tools to help scientists
conform to more reproducible research practices. These efforts build on reproducibility packages
aimed at releasing artifacts associated with reproducible scientific results and developed as
early as 1992 [19,21,22,25,26,28,100]. In this work, we provide a novel technical specification
for a Reproduction Package. This extends previous efforts in two ways. The Reproduction Package
endeavours to provide concrete guidance on publication details important for reproducibility.
Although groundbreaking at the time, previous efforts such as [100,101] provided abstract notions
rather than technical specifications for code and data sharing for reproducibility. Through our
novel specification we extend the guidance provided by earlier efforts, such as Whole Tale’s ‘Tale’.
By building on ideas from [24,102], the Reproduction Package integrates important guidance on the
directory structure for the research code within the container and computational environment that
enables reproducibility and eases discovery pipeline comparisons with other research efforts.

Workshops such as the ICERM Workshop on Reproducibility in Computational and
Experimental Mathematics [103,104], WSSSPE [105], P-RECS (Practical Reproducible Evaluation
of Systems) or convened committees [106], bring together stakeholders around reproducibility
issues. We extend these discussions in the current work, as well as discussions in the published
literature [28,72,107–111]. Like previous work [72,107], we provide guidelines, and we also
contribute an explicit framing with the three fundamental principles we present. For example,
Rule Ten from [72] indicates that identical results should be produced when given identical
inputs, and we have extended this to a general principle (our third) and introduced an
allowance for differences arising from inherent non-determinism, for instance, computational
non-determinism such as scheduling, concurrency, parallelism, or hardware differences among
reproducibility runs. Sandve et al.’s Rule Six (‘For Analyses That Include Randomness, Note
Underlying Random Seeds’) [107] is extended in our Guidance G7 ‘Provide clear mechanisms to
set and report random seed values’ even though our articles did not use random seeds since this
is an important guidance and another application of scripting in the service of reproducibility. In
addition, we note that avoiding interactivity in general is desirable for reproducibility and make
this point in Guidance G11 with reference to scripting analysis and visualization steps. We do not
make any specific recommendations in general about what tools authors should or should not use
in their own work, other than to say that the computational aspects should be open. Software and

10https://conda.io.

https://conda.io
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tools can change rapidly, and this work seeks to contribute principled guidance that can remain
relevant beyond any specific set of tools or infrastructure.

(b) Incentives regarding the principles and guidance
Following our recommended guidance has costs, so we discuss the incentives for the authors to
follow these guidelines. On average it took us about 35 h per article to reproduce the findings
to some reasonable degree. This amount of time may seem daunting for authors to spend on
work which ostensibly appears to be completed, however we believe that our time estimate over-
approximates what the authors themselves may experience when trying to enable reproducibility
as their research progresses; our estimate is closer to what they might encounter if they attempted
to reuse their work, say, a year in the future. Moreover, our team did not always have the domain
knowledge or experience with the workflow of the code, unlike the authors, which affected the
time it took us to reproduce the findings. As has been noted elsewhere, authors may forget
important details of the computational workflow if not explicitly recorded at the time, what part
of their code does what, what input parameters were used or how they were estimated, and in
what order each aspect of their code must be executed [6,112].

We believe that if the principles and guidance outlined in this article are followed from the
start of a project several gains can be made. Firstly, the accumulated time spent on these activities
will be less than 35 h. Secondly, future reuse of the work will be significantly easier which has
the effect of lowering barriers to collaboration and building on previous work. Gains from these
factors can make new student onboarding and collaboration with other groups more efficient, as
well as imparting greater confidence that the results are computationally correct.

(c) Implementation of CI tests
As discussed previously, for each of the seven articles, we constructed tests to be run on Travis CI,
a service for continuous integration (CI) available at https://travis-ci.org. We constructed these
tests based on our attempts at reproducing the results from the articles. In general, we found it
very easy to implement tests which involved simply building and running the code successfully
on Travis. We implemented tests that compared the results of the computational experiments
against previously computed known answers, which took us 2–4 h per article. In fact, most of the
time used for these articles consisted of writing an appropriate tool to parse output from these
computational tests and then compare it to the known results, the problem sometimes called
‘test oracles’ [113]. The varied nature of the output of each individual test made it impossible
to write a general-purpose solution, so each test required a customized solution. With these
CI tests, a researcher looking to use these code bases will be able to execute the tests on their
own machines and know that they have the correct code performing the correct calculations to a
specified level of accuracy. Where and how that accuracy level may be precisely set is a question for
future work.

Another issue that can arise with implementing CI tests is that researchers may write some
flaky tests, which are tests that can non-deterministically pass or fail when run on the same version
of code [114]. In general, flaky tests can mislead developers during software development: a flaky
test that fails after a code change may not indicate a bug in the change, because the test could have
failed even before the change. Prior work identified a number of reasons why tests are flaky in
traditional software, e.g. concurrency, floating-point computations, or randomness [114]. While
we did not encounter flaky tests when we implemented our own CI tests for the cases in this
work, those common reasons can show up in code that researchers write for their experiments,
easily leading to flaky tests. Thus, flaky tests can present challenges for reproducibility in the
research code. Prior work in the software engineering domain proposed techniques to detect and
fix flaky tests [115,116]; implementing such techniques to automatically detect and fix flaky tests
in research code is a question for future work.

https://travis-ci.org
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(d) Limitations of our work
Our work focuses on articles published in the Journal of Computational Physics. While we believe
our guidelines can generalize well to other fields of study, it is possible specific projects may
modify the guidance and recommendations. We are confident the three principles can provide
overarching direction and the Reproduction Package can be widely implemented successfully.

Since we interacted with authors and attempted to implement missing features or methods
ourselves, our work describes only what is possible given 40 h of human time and solid
motivation to reproduce the results. It’s possible that different results would be achieved if the
researcher reproducing the results was more skilled in the given field than us, or didn’t have time
to implement anything themselves, or if the authors were more or less responsive to requests for
comment. We endeavoured to provide a clear exposition of how much effort is needed to gain at
least some amount of reproducibility under specific circumstances.

As mentioned in the Methods section, our time measurement was subject to human error. Our
experience indicates that more results are unlikely to be reproduced in just a few additional hours
of work after 40. Further compounding uncertainty here is the fact that over time we gained skill
in reproducing these articles. It is possible that an hour of time on the last article we reproduced
was more productive than an hour of time spent on the first article.

6. Conclusion
In our experience, the articles and approaches studied in this work showcase widespread
issues with scientific code sharing throughout the scientific community. As discussed in
the Incentives section, the routine production of fully reproducible published results is not
common practice. From our empirical investigations, we contribute three broad principles for
reproducible computational research: provide transparency regarding how computational results
are produced; when writing and releasing research code, aim for ease of (re-)executability; and
make any code upon which the results rely as deterministic as possible. We present 12 guidelines
that implement the principles, 18 vignettes demonstrating how these guidelines were derived,
and several openly available code packages as exemplars of these recommendations and the
Reproduction Package.

While we had some difficulty reproducing work published by our initial five target articles
[12–16], and then the two related articles [17,18], in the end we were able to regenerate numerically
identical results to some of those in the articles, and visually similar figures. Our success was in
no small part due to the high-quality code and interest we received from the authors of the original
five papers.

Through our experiences reproducing these articles, we extend previous efforts to elucidate
principles to enable the research community to design and release better research software.
Principles are necessarily broad, and we accordingly produce more focused guidance for
implementation. Supporting and illustrating our choices for our set of guidelines, we also
present a series of vignettes showcasing our experiences with reproductions. The guidelines
allow us to develop a technical specification called the Reproduction Package for the dissemination
of research code, and we published each of the seven reproductions we carried out in this
work as a Reproduction Package. Improving software quality is known to reduce costs and
increase productivity in the software industry [117,118], and we believe following the technical
specifications given by the Reproduction Package can strengthen the scientific record and accelerate
the rate at which new research can be completed, verified, and extended in the research
community.

We believe our findings generalize to computationally- and data-enabled research, since the
articles we studied represent different computational problems, needs and approaches. Although
they do not represent every approach, consider an article which details an effort to reproduce
work in computational biology [119] where the authors highlight many of the same issues we
encountered.
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With an improved understanding of problems with computational reproducibility in a broader
set of domains, patterns in code and scripts emerge that can make previous work easier and
faster to reproduce. Our goal in proposing clear guidance for how to set up, write and share code
and scripts such as the run.sh script is to facilitate general solutions to frequently encountered
issues. For example, what assumptions should be made when creating these scripts, such as the
hardware or computational environment, how the scripts should be formatted, and what level
of documentation should be available within the scripts. Guidelines of this type, which we have
endeavoured to provide, can create consistency and reproducibility in computational experiments
across the community.

Publishers could provide a template for the master run script run.sh and check the
internal structure of software packages that the authors submit to be published alongside their
article, thus extending existing standards [7]. While many journals have requirements for data
compliance [120], scientists may not adhere to such standards [121]. How publishers should
reward and incentivize researchers to comply with standards for reproducibility deserves more
study in the future.

Finally, improved use of software testing in the scientific context is an area with increasing
interest [63]. As an example, in one article we studied [17], several figures utilize a moment
inversion method. A diversity of tests would stress the algorithm and form a potential basis
for automated testing of the underlying method. Further research focused on finding out what
elements form appropriate tests of scientific code is needed. Ensuring published results are
reproducible remains a challenging [119,122] and fruitful area for future research.
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