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Abstract

Introduction: Toxicity of chemotherapy drugs is the leading cause of poor therapeutic outcome
in many cancer patients. Gastrointestinal (Gl) toxicity and hepatotoxicity are among the most
common side effects of current chemotherapies. Emerging studies indicate that many
chemotherapy-induced toxicities are driven by drug metabolism, but very few reviews summarize
the role of drug metabolism in chemotherapy-induced Gl toxicity and hepatotoxicity. In this
review, we highlighted the importance of drug metabolizing enzymes (DMES) in chemotherapy
toxicity.

Areas covered: Our review demonstrated that altered activity of DMEs play important role in
chemotherapy-induced Gl toxicity and hepatotoxicity. Besides direct changes in catalytic
activities, the transcription of DMEs is also affected by inflammation, cell-signaling pathways
and/or by drugs in cancer patients due to the disease etiology.

Expert opinion: More studies should focus on how DMEs are altered during chemotherapy
treatment, and how such changes affect the metabolism of chemotherapy drug itself. This mutual
interaction between chemotherapies and DMEs can lead to excessive exposure of parent drug or
toxic metabolites which ultimately cause GI adverse effect.
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1 Introduction

Currently, gastrointestinal (GI) toxicity and hepatotoxicity are among the main reasons for
the chemotherapeutic failures. Those adverse effects lead to dose reduction and therapy
cycle discontinuation, which negatively impact the therapeutic outcomes of chemotherapy
(1). Though several management strategies have been developed, the prevalence of these
side effects remain high. Serotonin receptor antagonists and peripherally acting p-opioid
receptor agonists (e.g., loperamide) have been primarily used for treating vomiting and
diarrhea, respectively. However, for other toxicities such as mucositis, colitis, steatosis, and
hepatitis, very few effective prophylaxis treatments are available. Irinotecan (CPT-11), a
topoisomerase | inhibitor, not only induces steatohepatitis but also causes grade 3 and 4
diarrhea in 25% of colorectal cancer patients, while the occurrence of 5-fluorouracil-induced
(5-FU)-induced diarrhea is around 40% (2,3). HER-2 inhibitors used for breast cancer
adjuvant treatment gives concerning safety profile as well: neratinib has extremely high
occurrence of diarrhea (~95%) and lapatinib results in severe hepatotoxicity due to reactive
metabolism (3). It is acknowledged that deficit of drug metabolizing enzymes (DMES)
contributes to the toxicities of many chemotherapy drugs. For example, cardio- and
neurotoxicity of 5-FU, a thymidylate synthase inhibitor, is associated with
dihydropyrimidine dehydrogenase (DPD) deficiency (4). Uridine-glucuronosyltransferase
(UGT) 2B7 polymorphism has been suggested as a potential predictor of epirubicin-induced
cardiotoxicity (5). However, overexpression of DMEs may account for chemotherapy-
induced toxicity as well, if reactive metabolites are generated. The role of DMEs in
chemotherapy-induced Gl toxicity and hepatotoxicity is not well-studied, and it remains
unclear how many chemotherapy-induced Gl and hepatic toxicities are due to altered DME
activity. Tao et al. recently found that irinotecan led to down-regulation of hepatic DME
gene expression in mice (6). Understanding the role of DMEs in chemotherapy toxicity may
prevent or attenuate the dysregulation of DMEs during chemotherapy treatment and reduce
the adverse effects of chemotherapy drugs.

In this review, we describe the role of DMEs in chemotherapy-induced Gl and hepatic
toxicities, especially focused on reactive metabolism, altered expression of DMEs,
polymorphism of DMEs and gut microbiota-mediated drug metabolism (Figure 1). We also
discuss the regulation of DMEs by nuclear receptors, inflammatory signaling and Wnt/p-
catenin signaling. These regulators and cellular pathways may be affected by
chemotherapies. By the end, we provid examples of anti-cancer drugs, of which the GI
toxicity and hepatotoxicity are mainly driven by drug metabolism.

2 Intestinal DMEs involved in drug metabolism-induced toxicity

Although small intestine in humans has been thought to be the main absorption site for
orally administrated drugs, its metabolism function has been neglected. It has been assumed
that the majority of first-pass metabolism happens in liver, but the role of intestinal
metabolism in drug-drug interaction and Gl toxicity is raising more concerns than ever
before. It has been recognized that the ATP-binding cassette transporters of enterocytes are
involved in the disposition of many chemotherapy drugs (7). However, the role of DMEs in
Gl tract has been largely overlooked. To the best of our knowledge, cytochromeP450 (CYP)
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and UDP-glucoronosyltransferase (UGT) families are the predominant DMESs existing in
human gut (8).

2.1 Cytochrome P450 (CYP) enzymes in intestine

To date, several studies have been done to quantify the CYP content in human small
intestine, which show a mean protein concentration ranging from 20 to 210 pmol/mg. This
indicates that the intestinal CYP level is highly variable. The distribution of CYPs along
small intestine is not uniform. Total CYP content in humans slightly increases from
duodenum to jejunum and then decreases in ileum. Moreover, the expression of CYP
enzymes varies within small intestinal villus, where highest concentration is found in
differentiated enterocytes and the lower concentration in goblet cells (9). In human
enterocytes, CYPI1AIL, CYP2C, CYP2D6, CYPZE1L, CYP3A4, and CYP3A5 mRNAs were
detected, whereas other important isoforms including, CYP1AZ, CYPZA6, CYPZB6,
CYP3A7, and CYP4BIwere not detectable.(10) Immunoblotting shows that CYP3A4 and
CYP3AS5 enzymes are predominantly expressed in human duodenum and jejunum (10). Due
to the high expression level, intestinal CYP3A enzyme is important for the metabolism of
orally administrated drugs. Generally, the mucosal clearance of midazolam is strongly
correlated with CYP3A activity. It is reported that the CYP3A content in duodenum,
jejunum and ileum were 44%, 32% and 24% of total hepatic CYP3A content, respectively
(112). Likewise, within human small intestine, midazolam clearance was remarkably lower in
the distal portion than the proximal part (11). Several studies show that for certain drugs and
nutrients, intestinal CYP3A causes more profound impact than transporters in oral
bioavailability. It is reported that CYP3A but not P-gp plays a relevant role in the /n vivo
intestinal clearance of leniolisib, a §-phosphoinositide-3 kinase inhibitor (12).

2.2 UDP-glucoronosyltransferase (UGT) family in intestine

Human UGT family has generally been classified into four subfamilies, including UGT1,
UGT2, UGT3 and UGT8. Although liver is thought to be the main organ harboring most of
UGT enzymes, increasing importance has been placed to the role of intestinal UGT in
xenobiotic detoxification and first-pass metabolism. Unlike other UGT enzymes
predominantly expressed in liver, in human, UGT1A10 and 2B17 were found mainly in Gl
tract. In human small intestine, UGT1A1, UGT1A8and UGT1Aé6 account for 31%, 4% and
5% respectively of total UGT1A mRNA content (13). In colon, the percentage of UGT1A1
and UGT1A8expression levels are 27% and 9% of total UGT1A level (13). UGT1A7is
only detected in the proximal portion of Gl tract such as esophagus and stomach, but barely
detectable in distal Gl tract like colon.

3 Hepatic DMEs involved in drug metabolism-induced toxicity

It is well-known that hepatic DMEs mainly consists of phase | and phase 1l enzymes. Phase

| enzymes, mainly composed of CYPs, generally catalyze oxidation and reduction, whereas
phase Il enzymes mediate the conjugation by adding large hydrophilic molecules to facilitate
drug elimination. Of the 57 putatively functional human CYPs only the CYP1, 2, and 3
families are involved in the metabolism of xenobiotics, covering 70-80% of all drugs,
whereas 2A6, 2D6, 2B6, and 2C19 are less abundant. The UGT enzymes are responsible for
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the majority of phase Il metabolism. UGT enzymes not only catalyze xenobiotics but also
endogenous molecules including bilirubin and steroids. This metabolic pathway is
particularly variable due to the polymorphisms in the promoter of UGT-encoding genes. It is
acknowledged that other than on-target and off-target effects, drug metabolism plays vital
role in drug safety issues. Thus, there is a need to consider pharmacogenetics during new
drug development. In addition, there are increasing concerns regarding the impact of cancer
and associated inflammation on DMEs in patients taking chemotherapy.

3.1 Reactive metabolism and toxicity

Emerging evidence indicates that many of the intermediates generated from phase |
metabolism is more active than the parent drug, and such by-products potentially cause
undesired consequences.

3.1.1 CYP-mediated reactive metabolism—Acetaminophen (APAP) is one of the
most classic examples causing hepatotoxicity due to reactive metabolism. In the cases of
overdose, APAP undergoes CYP-mediated oxidation rather than sulfation to generate
electrophilic intermediate, N-acetyl-p-benzoquinonimine (NAPQI) (14). Subsequently,
NAPQI accumulates and covalently binds to a series of critical proteins leading to
mitochondrial dysfunction (14). Nowadays, it is known that reactive quinone imine and
quinone are responsible for most of the reactive metabolism-induced toxicity (15). Quinone
imines and quinones react as Michael’s acceptors with cell proteins or DNA to promote
inflammation and subsequent cell death.(15) Quinone imines and quinones also have high
redox potential to form reactive oxygen species (ROS) (15). ROS triggers necrosis which
leads to potential gut and liver injury. Mechanism-based inhibition is another CYP-involved
reactive metabolism and causes withdrawal of many marketed drugs. Formation of a reactive
metabolite in the catalytic pocket of CYP enzyme may lead to the loss of enzyme activity
via the modification of CYP apoprotein. The case of tienilic acid and its isomer is an
example of such inhibition. Rademacher et a/. pointed out that tienilic acid-induced toxicity
is initiated with mechanism-based inhibition (16). The 3-thenoyl regioisomer of tienilic acid,
2,3 dichloro-4-(thiophene3-carbonyl)-phenoxy]-acetic acid, is metabolized by CYP2C9 to
generate reactive thiophene-S-oxide intermediate (16). Thiophene-S-oxide intermediate
forms covalent adduct with CYP2C9 to diminish the enzyme function and initiate immune-
mediated liver injury (16).

3.1.2 Flavin containing monooxygenase (FMO)-mediated reactive
metabolism—In addition to CYP family, flavin containing monooxygenase (FMO) is also
frequently involved in a variety of toxic metabolism. FMOs oxidize drugs containing a soft-
nucleophile, usually nitrogen or sulfur. FMO does not require a reductase to transfer
electrons from nicotinamide adenine dinucleotide phosphate (NADPH) and the catalytic
cycle of FMO is strikingly different from CYPs (17). Recently, Petriello et a/. demonstrated
a novel diet-toxin interaction that results in high risk of cardiovascular toxicity (18).
Exposure to dioxin-like polychlorinated biphenyls (PCBs) is strongly correlated with
increased risk of cardiotoxicity, as hepatic FMO3 generates trimethylamine N-oxide
(TMAO) poisoning to cardiovascular system. It is reported that PCBs increased FMO3
mRNA level and promoted TMAO plasma concentration in mice. Therefore, high risk of
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cardiovascular disease associated with the pollution with PCBs is likely due to the induction
of FMO3 by PCBs leading to stimulation of TMAOQ formation.

3.1.3 Sulfotransferases (SULT)-mediated reactive metabolism—
Sulfotransferases generate electrophilic metabolites from numerous dietary compounds,
environmental pollutants and drugs, often leading to carcinogenicity. Shibutani et a/.
discovered that a-hydroxytamoxifen was a substrate of hydroxysteroid SULT, resulting in
tamoxifen DNA adducts (19). The most well-studied SULT-mediated toxic metabolism is
sulfation of furfuryl alcohol. Furfuryl alcohol, existing universally in foods, induces
remarkable damage in small intestine. Monien ef a/. found that furfuryl alcohol was
converted by intracellular sulfa-conjugation to 2-sulfooxymethylfuran, an electrophile
reacting with DNA (20) The main DNA adducts, N2-(furan-2-yl)-methyl-2’-deoxyguanosine
(N2-MFdG) and N6-(furan-2-yl)-methyl-2’-deoxyadenosine (N6-MFdA) were detected in
mice dosed with furfuryl alcohol (20). Using transgenic mice, Sachse et a/. further reported
that the knockout of Su/tial led to significant decrease in DNA adducts in all tissues,
whereas SultlaZ depletion slightly attenuated the toxicity of furfuryl alcohol and the effect
was limited to kidney and small intestine (21). Besides, SULTSs are reported to be involved in
5-hydroxymethylfurfural, methyleugenol and aloe-emodin activation, which causes either
hepatocarcinogenesis or /n vitro cytotoxicity (22).

3.2 Polymorphism in DMEs and toxicity

It is known that polymorphism in DMEs contributes to interindividual variability in drug
metabolism capacity and risk of toxicity (Figure 1). It is reported that genetic polymorphism
of inosine triphosphate pyrophosphatase (ITPA) is a determinant factor in mercaptopurine
metabolism and related toxicity (23). An et al. reported that patients with N-
acetyltransferase 2 (282TT, 590AA and 857GA\) alleles had higher susceptibility to anti-
tuberculosis drug-induced hepatotoxicity (24).

3.2.1 CYP polymorphism and toxicity—CYP family, especially CYP3A5 CYP2C9,
CYP2C19, and CYP2ZD6 are highly polymorphic genes. Such polymorphisms can cause a
higher risk of drug metabolism-associated toxicity. CYP2AG6 is a highly polymorphic gene
which has currently 38 CYP2A6 alleles and many single nucleotide polymorphisms (SNPs).
CYPZA6*2is a SNP and CYPZA6#*4is a gene deletion variant. Both alleles result in the
decreased CYP2AG catalytic activity. As CYP2AG6 is a major catalyst of nicotine
metabolism, cigarette smokers of CYP2A67*4 allele are more susceptible to higher nicotine
blood concentration. Such correlation was confirmed in a genome-wide association study in
which a very significant association of nicotine-induced liver injury and CYP2ZA6%*4 loci was
found (25). Likewise, a strong correlation was found between the risk of voriconazole-
induced hepatotoxicity and CYP2C19 mutant in Asian population (26).

3.3.2 UGT polymorphism and toxicity—UGT1ALl is the most abundantly expressed
UGT isoform in liver. The UGT1A1 promoter contains a functional polymorphic TATA box
(A(TA)s5/6/7/8TAA) (27). Among these four A(TA)ssg/7/8TAA alleles, A(TA)gTAA and
A(TA)7TAA are universal in all populations (28). Phenotype studies showed that the
A(TA);TAA allele is associated with Gilbert’s syndrome, characterized by reduced
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UGT1AL activity as well as higher risk of irinotecan-induced toxicity (29). Barbier et a/.
reported that chenodeoxycholic acid, an endogenous activator of farnesoid X receptor
(FXR), elevated UG T2B4 expression level in human primary hepatocytes (30). Promoter
deletion studies demonstrated that FXR activators stimulated UG 7284 transcription via a
bile acid response element, termed B4-BARE (30). Agonists of peroxisome proliferator-
activated receptor (PPARS) have also been shown to stimulate UG 7284 expression in
HepG2 and Huh?7 cells. Further studies showed that PPAR agonists activated UGT72B4
promoter via DR1 PPAR response element (31).

3.3.3 Polymorphism of other DMEs and toxicity—Mammalian FMOs exist as six
gene families and the major FMO isoform in human liver, FMO3, is responsible for N-
oxygenation of trimethylamine (TMA). Great number of FMO3 mutant alleles have been
described and associated with a disease termed trimethylaminuria (TMAU). The TMAU
patient excretes large amounts of TMA in urine and sweat (17). The contribution of FMO3-
mediated N-oxygenation in drug metabolism may be underestimated, as the N-oxide
generated by FMO3 can be reduced back to the parent amine by CYP enzymes or other
reductases (17). Tamoxifen, estrogen modulator with tertiary amines is reported to undergo
such metabolism. By this mechanism, FMO-mediated N-oxygenation provides a reservoir of
parent drug to prolong its action, but for TMAU patients this reservoir effect may be
eliminated (17).

Thiopurine methyltransferase (TPMT) metabolizes the thiopurine drug, 6-mercaptopurine
(6-MP) that is used as a prodrug to treat leukemia and Crohn’s disease. Aberrantly high level
of 6-MP cause myelosuppression and myelotoxicity (32). It is known that TPMT activity
can be predicted by genotyping and 7PMT polymorphism is correlated to the risk of 6-MP
toxicity. Based on several observational studies, heterozygosity or homozygosity for variant
TPMT alleles yields odds ratios for myelotoxicity of 4.3 and 20.8 respectively. In fact,

TPMT genotyping prior to administration of 6-MP is recommended by the FDA (32).

4 Gut microbiota-mediated chemotherapy toxicity

Several studies have reported that the gut microbiota modulated the host response to
anticancer drugs by affecting drug efficacy and/or causing toxicity. Meanwhile,
chemotherapies of cancer patients are known to have profound impact on the structure,
diversity and abundance of gut microbiome. The complicated network between host
immunity, gut microbiome and chemotherapy drugs remains to be fully understood. It is
possible that gut microbiome may modulate the drug metabolism of anti-cancer drugs in a
mutual manner (Figure 1). Alexander et al. recently summarized five key mechanisms
driving such modulation between microbiota and drugs as ‘TIMER’ conceptual framework:
Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced
diversity (33). This perspective was supported by Selwyn et al’s study, which showed that
hepatic Cyp3a gene expression was remarkably down-regulated in germ-free mice and
treatment with probiotics significantly altered the level of several DMEs in liver (34).
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4.1 Gut microbiota-mediated drug metabolism

The gut microbiota has the capability of performing a wide range of metabolic reactions on
drugs, including reduction, hydrolysis and acetylation etc. A common example of gut
microbiota-mediated drug metabolism is the reduction of antibacterial prodrugs derived
from sulfanilamide, like prontosil and neoprontosil that both contain azo-dyes bearing the
functional group diazenyl R-N=N-R’(35). Clostridiaand Eubacteria were found to perform
reduction upon azo-dyes and nitro-polycyclic aromatic hydrocarbons (35). Gut microbiome
also shows nitro-reductase activity, which reduces nitro groups to amines. This is important
for benzodiazepines derived drugs such as nitrazepam, clonazepam, and bromazepam (35).
One of well-studied examples of gut microbiota-mediated nitro reduction is digoxin. It is
recently found that the production of the metabolite, dihydrodigoxin, was highly variable
inter-individually. The urinary excretion of dihydrodigoxin appeared to be stable over time
after either taking single dose or multiple doses. However, when subjects were dosed with
erythromycin, a broad-spectrum antibiotic, the renal elimination of dihydrodigoxin was no
longer observed. Later, the microbe responsible for the reduction of digoxin was identified
as Eubacterium lentum, although it was noted that the correlation between its presence and
the production of dihydrodigoxin varies (36). Haiser et al. further revealed the role of a
cardiac glycoside reductase (CGR) in such reductive metabolism. This CGR was found in
the type strain of Eubacterium lena but not in nonreducing strains and its expression can be
inhibited by dietary arginine, which explains the highly variable correlation between bacteria
presence and production of metabolites (37).

Both the host and gut microbiota use hydrolytic enzyme to break down large molecules into
smaller fragments for further metabolism. Hydrolase catalyzes the addition of a water
molecule to the substrate, followed by bond cleavage. The most abundant microbial
hydrolases in GI tract are proteases, glycosidases, and sulfatases. Whereas small intestine is
dominated by pancreatic serine proteases, the colon mainly contains microbial cysteine- and
metalloproteases (38). To improve poor solubility, many drugs are administered as prodrugs
containing phosphate or sulfate ester, but the hydrolytic enzymes of gut microbiome readily
act on these phosphate or sulfate moieties. In the case of laxative sodium picosulfate, which
is administered as a disulfate, its efficacy depends on its conversion to the 4,4’-
dihydroxydiphenyl-(2 pyridyl)-methane catalyzed by gut bacteria (39). The de-sulfation
appears to be mediated by a novel sulfotransferase, rather than a sulfatase, and required the
presence of phenolic compounds like phenol, acetaminophen, tannic acid, or flavonoids (40).

4.2 Chemotherapy toxicity driven by gut microbiota-mediated drug metabolism

It is well recognized that most of chemotherapy toxicity results from the parent drug or
hepatic metabolites. However, with increasing evidence revealing the importance of gut
microbial metabolism, it is reasonable to evaluate the role of gut microbiome in
chemotherapy-induced toxicity. The drug-drug interaction between sorivudine and 5-FU is a
well-studied example. Sorivudine is hydrolyzed to (E)-5-(2-bromovinyl)-uracil (BVU)
through bacterial hydrolysis. Subsequently, BVU inhibits hepatic dihydropyrimidine
dehydrogenase (DPD), the main enzyme responsible for detoxifying 5-FU. The co-
administration of sorivudine and 5-FU leads to robust increase in systemic concentration of
5-FU, which cause fatal toxicity (41). Nakayama et a/. demonstrated that the production of
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BVU is mainly mediated by Bacteroides species and administration of ampicillin,
metronidazole, or a cocktail of antibiotics reduced BVU exposure in rats (42). Bacterial
mediated de-conjugation is involved in irinotecan-induced Gl toxicity like diarrhea. The
reactive metabolite of irinotecan, SN-38 is detoxified by hepatic UGT1AL to generate its
glucuronide form SN-38G, and SN-38G is excreted into Gl tract via bile duct. In the Gl
tract, SN-38G can be transformed back to SN-38 via deconjugation by bacterial -
glucuronidases, which results in the enterohepatic circulation of SN-38. It is well-established
that the deconjugation of SN-38G in the gut and the enterohepatic circulation of SN-38 is
responsible for the Gl toxicity of irinotecan (43). It is reported that bacterial p-
glucuronidases in colon is produced by specific species of the Enterobacteriaceae family,
such as Escherichia coli, Lactobacillus, Streptococcus and Clostridium as well as the
Actinobacteria family, like Bifidobacterium dentium (44). Irinotecan-induced dysbiosis is
characterized by an increase in the Enterobacteriaceae family including £. coliand
Clostridium spp (45). Further studies in rats showed that Clostridium spp. was the main
species translocating to mesenteric lymph nodes and spleen accompanied with irinotecan-
induced diarrhea (46). Based on these studies, bacterial p-glucuronidases inhibitors are
believed to protect patients from irinotecan-induced diarrhea. However, non-specific
inhibitors of intestinal bacterial B-glucuronidases cause accumulation of glycosaminoglycan
in host tissues which is known as mucopolysaccharidosis type VII (45).

5 Regulation of DMEs

In addition to typical drug-drug interaction, certain pathological condition also leads to
altered DMEs activity (47). The most extensively studied mechanisms are inflammatory
signaling and Wnt/p-catenin signaling. Inflammatory responses involve toll-like receptors
and cytokine receptors, whereas Wnt/B-catenin signaling showcase impact through the
crosstalk with transcription factors and nuclear receptors (Figure 2). Such non-canonical
regulation potentially leads to undesired effect like reduced drug clearance and higher risk of
drug toxicity.

5.1 Regulation by nuclear receptors and transcription factors

It is known that DMEs expression is primarily regulated by nuclear receptors and
transcription factors. For instance CYP3A family genes is regulated by a large family of
nuclear receptors like pregnane X receptor (PXR), constitutive androstane receptor (CAR),
retinoic acid receptor (RXR) the glucocorticoid receptor (GR), the vitamin D receptor
(VDR), peroxisome proliferator-activated receptors (PPARa and PPARY), hepatocyte
nuclear factor 4a (HNF4a), FXR, and nuclear factor erythroid-related factor 2 (Nrf2) (48).
The function of those nuclear receptors not only depends on the binding of endogenous
ligands like steroids and bile acids, but also is activated by a wide range of xenobiotics. The
classic examples inducing CYP gene expression via nuclear receptors in humans include
rifampicin, phenobarbital etc. In liver, the transcription factors regulating phase 11 enzymes,
especially UGT family, are similar to the ones controlling CYP genes. However, recently it
was noted that the tissue-specific transcriptional regulation of UGTs involves different
mechanism. Gregory et al. reported that caudal-related homeodomain protein 2 (CDX2)
controls intestinal expression of UGT1A8, 1A10and 2B7(49). The most recent study
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pointed out that such CDX2-regulating UGT upregulation requires cooperation with HNF4a
(50). In addition to regulating CYP families and UGTs, ligand-activated nuclear receptors
regulate other DMEs as well including SULT, carboxylesterase (CES) and glutathione S-
transferase (GST) (51).

5.2 Regulation by inflammation: Toll-like receptors and proinflammatory cytokines

Increasing studies indicate that most of hepatic DMEs decrease during inflammation,
resulting in lower drug clearance. For xenobiotics mainly cleared by hepatic metabolism,
this can lead to excessive drug exposure and increased risk of toxicity. Induction of DMEs is
much less common during inflammation, but such rare induction will result in drug
inefficacy, of which the example is increased CYP2A6 during certain inflammation (52).
Emerging evidence shows that toll-like receptors (TLRs) and cytokine receptors play the
main role in such regulation. Binding of pathogen-associated molecular patterns (PAMPS) or
damage-associated molecular patterns (DAMPS) enable TLRs to activate intracellular
kinases that ultimately stimulates the expression of proinflammatory cytokines such as
interferons (IFNs), interleukin (IL)-1p, IL-6, and tumor necrosis factor (TNF)-a (Figure 2).
In the liver, TLRs are widely expressed on monocytes, macrophages like Kupffer cells and
hepatocytes (53). TLR4 is the receptor for bacterial lipopolysaccharide (LPS), and acts as
the main sensor for gram-negative bacterial infections (54). In mice, LPS administration
resulted in the downregulation of several CYP mRNAs as well as decreased Ugtlal, Sult?al
and CesI and 2expression (55). Also, retinoid X receptor a (RXRa), one of the most
important nuclear receptors in regulating DME expression, was also reduced upon LPS
exposure. These effects were diminished in C3H/HeJ mice carrying a naturally null mutation
of TLR4 (56). TLR4 is known to activate two distinct downstream pathways, one is through
the adaptors, TIRAP (Toll/interleukin-1-receptor-domain-containing adaptor protein) and
MyD88 (Myeloid differentiation primary response 88), which leads to the release of pro-
inflammatory cytokines, and the second one is mediated by the adaptors, TRIF (TIR-domain
containing adaptor protein inducing interferon-g) and TRAM (TRIF related adaptor
molecule), which leads to the induction of IFN (57). However, Ghose et a/. reported that
LPS downregulated Cyp3alland Ugtlal in TIRAP™~ mice as well as TRIF~/~ mice,
suggesting that the TIRAP- and TRIF-dependent pathways can function independently in
suppressing CYP (56,58). Recently, TLR4 was recently found to play a role in drug-drug
interaction, in which paclitaxel upregulates irinotecan-related DMESs in a TLR4-dependent
manner (59).

In addition to TLRs, proinflammatory cytokines like IL-6, IL-1 and TNF-a all get involved
in the regulation of DMEs. Studies in primary rat hepatocytes demonstrated that IL-1, TNF-
a, and IL-6 all downregulated the mRNA of CypZc11 (60). In human hepatocytes, CYPIAZ,
2C, 2E1, and 3A expression were downregulated by IL-1B, IL-6, or TNF-a respectively
(61). Furthermore, Aitken ef al. reported that IL-6 downregulated CYP2B6, 2C8, 2C19,and
3A4 with different efficacies in human hepatocytes (62). In vivo evidence showed that in the
absence of IL-6, null mice had no decrease in CYP mRNAs upon LPS exposure (61).
Injection of polyclonal IL-6 antibodies in arthritic mice reversed the downregulation of
hepatic CYP3A enzymes (61). Likewise, 7nfrZand 7nfr2 double knockout or TNF-a =/~
mice exhibited minimal changes in CYP expression with LPS injection (63). Recently,
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cytokines-mediated CYP inhibition has been observed in chemical-induced colitis. Hu et a/.
reported that mouse hepatic CYP1A2, 2B1, 2C6, 2C11, 2E1 and 3AL1 activities were all
reduced in dextran sulfate sodium-induced colitis model (64). Likewise, Erdmann et al.
found that in patients with inflammatory bowel diseases, the gene expression of several
intestinal DMEs including CYP2C9, UGT1A1 were decreased (65). In addition, it was
reported by Mallick et a/. that obesity-induced inflammation led to increased reactive
metabolites which may cause higher risk of irinotecan toxicity (66). All those studies
highlight the role of proinflammatory cytokines in altering drug metabolism and its
consequences.

5.3 Regulation by Wnt/g-catenin signaling

The Wnt/B-catenin signaling is an evolutionarily conserved, highly complex pathway and is
critical for liver development, differentiation and cellular homeostasis. The protein, B-
catenin encoded by gene CTNNBI is the central player in canonical Wnt pathway. In the
absence of Wnt ligands, cytosolic B-catenin is sequestered in the cytoplasm by a protein
complex consisting of adenomatous polyposis coli protein (APC) and glycogen synthase
kinase 3p (GSK3p) (67). p-catenin is phosphorylated by GSK3p. Once Wnt binds with
fizzled receptor on membrane, the activation of fizzled receptor will release p-catenin from
the protein complex and facilitate its nuclear translocation (Figure 2) (68). In addition to its
role in prenatal liver development, recent work highlighted that Wnt/p-catenin pathway was
closely associated with ammonia metabolism, bile acid homeostasis and drug detoxification
(69). Itis increasingly recognized that Wnt/B-catenin signaling contributes significantly to
the regulation of CYP enzymes, independent of inflammatory pathways (70). The initial clue
suggesting the role of B-catenin in regulating CYP gene expression came from the studies
using a phenobarbital-induced carcinogenesis model. Loeppen et al. first demonstrated that
glutamine synthetase was up-regulated in CtnnbI-mutated mouse liver tumors and served as
a carcinogenesis marker. Later, they found that in glutamine synthetase positive tumors,
several CYP isoforms increased as well, such as CYP1A, CYP2B, CYP2C and CYP2E1
(71). Recently, Briolotti e a/. demonstrated that activation of B-catenin signaling by
incubating primary mouse hepatocytes with GSK3p inhibitor led to an increase in Cyplal,
2b10, and 2Ze1 mRNA levels, due to the induction of aryl hydrocarbon receptor (AhR) or
PXR (72). In mice with liver-specific knockout of CtnnbI gene, CyplaZand Cyplel
expression was depleted. Sekine et a/. also described reduced level of Cyp2c29 mRNA in
Ctnnb1 knockout mice, whereas no changes were seen in the mRNA levels of Cyplaland
Cyp3all(73).

6 Chemotherapy drugs causing gastrointestinal toxicity and
hepatotoxicity

The importance of drug metabolism in chemotherapy-induced Gl toxicity and hepatotoxicity
has been barely highlighted before. Here we discuss the detailed toxicological mechanism of
a series of chemotherapy drugs, of which the Gl and hepatic side effect is driven by reactive
metabolism (Table 1, Figure 3). Reactive metabolism is found among alkylating agents,
antimetabolites, topoisomerase inhibitors and tyrosine kinase inhibitors.
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6.1 Cyclophosphamide

Cyclophosphamide is an inactive prodrug for leukemia and lymphomas, which causes
unpleasant Gl symptoms, such as: nausea, vomiting, diarrhea, and mucositis of both
intestine and mouth (1). Its hepatic metabolism into active form and other harmful
metabolites is directly responsible for both the therapeutic and adverse effects of the drug.
The metabolism of cyclophosphamide begins with its hydroxylation to 4-
hydroxycyclophosphamide by various hepatic CYP enzymes, mainly CYP2B6, CYP2C9,
CYP3A4 and great number of other minor enzymes (74). 4-hydroxycyclophosphamide is in
equilibrium with aldophosphamide. Aldophosphamide diffuses out of the liver and enters
peripheral tissues, where it spontaneously undergoes B-elimination to form reactive
metabolites, phosphoramide mustard and acrolein (75). Phosphoramide mustard is a
derivative of nitrogen mustards that are nonspecific DNA alkylating agents. Phosphoramide
mustard contains two highly unstable and reactive chloroethyl groups that are readily
eliminated to form a cyclic aziridinium ion. This cyclic aziridinium ion is prone to attack
nucleophilic DNA molecules such as guanine. Aziridinium can make two linkages to
guanine and cross link DNA both within and between strands (76). This results in cell cycle
interruption and inhibition of cell growth. Rapidly growing GI mucosal epithelium can
become damaged as a result of phosphoramide mustard. The tissue can atrophy and undergo
inflammation through production of IL-1 and activation of the NF-xB/IKK pathway (77).
The concurrent immunosuppression or destruction of neutrophils and alteration of the gut
microbiome also leads to risk for bacterial infection of the Gl tract and mouth.
Cyclophosphamide-induced diarrhea can be attributed to malabsorption of water and other
nutrients due to destruction of the Gl barrier. Also, hyperplasia of goblet cells occurs which
leads to excessive mucus secretion. The lack of absorption of compounds causes osmotic
diuresis, which causes diarrhea in addition to the increased secretions.

6.2 5-Fluorouracil

It has been reported that 5-fluorouracil (5-FU), an antineoplastic agent to treat multiple solid
tumors including colorectal, breast and pancreatic cancers, causes severe Gl toxicity due to
decreased metabolic clearance in some patients, which is primarily caused by
dihydropyrimidine dehydrogenase (DPD) deficiency. Wei et a/. reported that in lymphocyte
DNA, a G to A point mutation at the 5’-splicing site of consensus sequence leads to the
skipping of entire exon during RNA transcription and processing (78). Hereby, they
suggested that genotyping for the G to A splicing point mutation could be used to predict 5-
FU toxicity. Paolo et al. further demonstrated that DPD activity in peripheral blood
mononuclear cells (PBMNC) is not necessarily correlated to 5-FU disposition and incidence
of 5-FU toxicity, but hepatic DPD activity and pharmacokinetics of 5-FU metabolite, 5-
fluoro-5,6-dihydrouracil should be measured to monitor toxicity (4). Schwab et a/. reported
interesting interaction between gender and the predictability of DPD in 5-FU-induced Gl
toxicity. A pronounced correlation between DPYD genotype and 5-FU toxicity was found in
male patients, but in female population 5-FU toxicity was independent of DPYD genotype
(79). In addition to DPD, the same group indicated that methylene tetrahydrofolate reductase
(MTHFR) 677C = T was also correlated with better response to 5-FU chemotherapy and
higher risk of Gl toxicity (79). The mechanism of action of 5-FU is inhibiting thymidylate
synthase (TS) which catalyzes the conversion of deoxyuridylate to deoxythymidylate for
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DNA synthesis (80). Pullarkat ef a/. found that 75 genotype predicts not only 78 mRNA
level in tumors but also in normal liver tissue. Individuals homozygous for the triple repeat
variant (L/L) had higher TS expression than those homozygous for the double repeat variant
(S/S). Patients having S/L and S/S genotype are more vulnerable to 5-FU toxicity compared
to those with L/L genotype (80). Recently, Alfzal ef a/. pointed out that combination of
polymorphisms in multiple genes were better predictor for 5-FU Gl toxicity rather than
monitoring polymorphism in single gene (81). Currently, 5-FU dose is determined based on
body surface area (BSA). Prado et a/. argued that dose adjustment of 5-FU using BSA did
not reduce toxicity. They suggested that a cut-off point of 20 mg 5-FU/kg of lean body mass
was an effective predictor of 5-FU toxicity (82). Daniele et a/. reported that patients orally
dosed with glutamine were protected from 5-FU-induced Gl toxicity, along with increased
intestinal absorption and lower permeability (83,84).

6.3 Irinotecan

Since its first approval as topoisomerase | inhibitor in 1998, irinotecan has been widely used
for treating colorectal, pancreatic, and lung cancers (85). Irinotecan is featured by severe Gl
toxicities and significant interindividual variability in pharmacokinetics. After being
administrated via IV infusion, irinotecan generates SN-38 in liver and gut, a much more
potent reactive metabolite, to achieve its efficacy. At physiological pH, the lactone-ring of
irinotecan and SN-38 is hydrolyzed to carboxylate isoform, but when pH drops below 6 the
reaction shifts reversibly (86). As only the lactone form shows anti-cancer activity, minor
changes in pH will cause huge difference in the efficacy and pharmacokinetics of irinotecan.
Conversion of irinotecan to SN-38 is mainly mediated by hepatic carboxylesterase (CESs1,
2). CES2 is reported to have higher affinity for irinotecan than CES1 and is therefore the
major enzyme involved in this metabolism (86). In liver SN-38 is inactivated via
glucuronidation to yield SN-38G by UGT1A family enzymes and subsequently excreted into
bile (86). UGT1AL, UGT1A7 and UGT1AQ9 are the major hepatic isoforms detoxifying
SN-38 to generate SN-38G. Emerging evidences point out that the polymorphism in UGT
family genes and the imbalance of gut microbiota significantly contribute to irinotecan-
induced toxicities. UGT1A1, the main enzyme responsible for SN-38 inactivation, is highly
variable in different patients. Such unpredictable variability is due to the polymorphism of
TATA box in UGT1A1 promoter. The presence of seven TA repeats, which is termed as the
A(TA)7TAA allele and known as UGT1A1*28variant, is associated with lower level of
UGTI1A1expression. UGT1AI*28occurs more frequently in African population and
Caucasian population, compared to Asian population (87). Such polymorphism leads to
higher risk of irinotecan-induced diarrhea in African-originated population.

Although several attempts have been made to attenuate irinotecan-induced Gl toxicity, the
clinical benefits of those strategies are not as satisfactory as expected. In a phase | trial
conducted by Innocenti et a/, a combination of cyclosporine and phenobarbital was tested.
Cyclosporine, an ABCC2 (ATP-binding cassette transporter) and ABCBL1 inhibitor was used
to inhibit SN-38 excretion into bile, and phenobarbital was added to induce UGT1A1 (88).
Cyclosporine plus phenobarbital showed 75% reduction of SN-38 AUC but minimal
decrease in diarrhea incidence (88). Alternatively, it was reported that activated charcoal and
calcium aluminosilicate clay effectively absorbed SN-38 in intestine. The activated charcoal
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has been found to reduce the incidence of irinotecan-induced diarrhea significantly in a
phase |1 study (89). Since oxidative stress are involved in chemotherapy-induced toxicity,
several antioxidant herbal medicines have been evaluated in vivo in attenuating irinotecan-
induced mucositis (90,91). Recently, several preclinical studies showed novel drug delivery
may diminish irinotecan Gl toxicity. Liu ef a/. reported that in pancreatic cancer mouse
model, lipid bilayer-coated mesoporous silica nanoparticle attenuate irinotecan-induced
mucositis without compromising efficacy, via decreasing systemic drug leakage and
increasing drug concentrations at the tumor sites (92).

6.4 Tyrosine kinase inhibitors

Reactivation and mechanism-based inhibition are the two typical mechanisms involved in
drug metabolism-induced toxicity. The most common reactive metabolites derived from
tyrosine kinase inhibitors (TKIs) include benzoquinone-imine, nitroso compound and
dealkylates. The electrophilic benzogquinone-imine moiety resulting from CYP-mediated
oxidation of aniline has been reported in several TKIs metabolism, like dasatinib, erlotinib,
gefitinib, and lapatinib (93). Alkylamines are known to undergo CYP-mediated oxidation to
generate reactive nitroso compounds that induce toxicity. O- and N-dealkylation are
common drug metabolism pathways leading to aldehyde derivatives. Drugs containing
primary alcohols and tertiary cyclic amines can also produce iminium and aldehyde
metabolites via oxidation (93).

6.4.1 Lapatinib—In 2008, the U.S. FDA issued a black box warning for lapatinib
idiosyncratic hepatotoxicity, which was observed during post-market surveillance. Lately,
several clinical trials reported that hepatobiliary abnormalities, including grade 3 and 4
ALT/AST elevation (aspartate transaminase and alanine transaminase) were observed in
breast cancer patients treated with lapatinib (94). Several research groups reported that
inhibition of CYP3A4 by lapatinib was time-, concentration-, and NADPH-dependent.
Addition of GSH did not affect the rate of inactivation, which suggests that the reactive
metabolite of lapatinib was formed and inactivated by the enzyme prior to its release from
the active site (95). Castellino ef a/. pointed out that incubation of either lapatinib or its
dealkylated metabolite with human liver microsomes in the presence of GSH resulted in the
formation of a reactive metabolite-GSH adduct (95). Additionally, Hardy et a/. showed that a
high-activity CYP3A5 genotype resulted in increased formation of the reactive metabolite-
GSH conjugate /n vitro (96). This suggests that genetic polymorphisms of CYP3AS5 could
affect the pharmacokinetics of lapatinib and impact the incidence of hepatotoxicity /n vivo
(96).

6.4.2 Gefitinib—Gefitinib, a first-generation EGFR TKI has been widely used to treat
non-small cell lung cancer (NSCLC). However, server Gl and pulmonary toxicities limit its
therapeutic benefits. Li et al. showed that gefitinib can be bioactivated in hepatic, intestinal,
and pulmonary microsomes to form reactive metabolites (97). Two CYP-dependent
gefitinib-GSH adducts were detected in vitro, and CYP 1A1 and 3A4 were found to be
mainly responsible for formation of adducts. Additionally, when incubating human
pulmonary microsomes with gefitinib, a 12-fold increase in gefitinib-GSH adduct was
detected in the microsomes from smokers over nonsmokers, which agrees with CYP1A1
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being induced by cigarette smoke. Li et al. proposed that the mechanism of reactivation
involved oxidative defluorination of gefitinib to form quinone-imine (97). Using
recombinant CYP isoforms, CYP3A4 inhibitor, and S9 from Cyp3a-null mice, Liu et al.
showed that CYP3A is the major enzyme contributing to the formation of aldehydes, GSH
adducts, and primary amines from gefitinib (98). Further studies showed that CYP1A2,
CYP2C, CYP2D6 and CYP3A4 all are capable to transform gefitinib into its iminium
metabolite (98). Ma et a/. reported that in NSCLC patients treated with gefitinib, CYP3A5
(rs776746/CYP3A5*3) was associated with severe diarrhea and hepatotoxicity. As for CYP
reductase, the enzyme required for electron transfer to CYP, polymorphism Polymorphisms
of cytochrome P450 reductase (the enzyme required for electron transfer to CYP, POR
(rs17685/POR*11, rs1057868/POR*37) were associated with severe hepatotoxicity (99).

6.4.3 Other tyrosine kinase inhibitors—Bonvin et a/. reported that acute hepatitis
induced by dasatinib is due to the mechanism-based inhibition of CYP3A enzymes (100).
Another research group showed that dasatinib-GSH adducts were detected when GSH and
dasatinib were co-incubated in human liver microsomes (101). Dasatinib is reported to be
activated by the formation of quinone-imine and imine-methide intermediates. The quinone-
imine is formed via hydroxylation at the para-position of the 2-chloro-6-methylphenyl ring
followed by further oxidation (101). More recently, it was reported that reactive
intermediates are formed during the metabolism of erlotinib and the intermediates covalently
conjugate to the cysteine group of GSH. CYP3A4 was found to be the primary enzyme
responsible for the reactivation of erlotinib (102). CYP3A4 and CYP3AG5 are irreversibly
inactivated by erlotinib in a time- and concentration-dependent manner. The oxidation of
erlotinib by CYP generates an epoxide that can react with the sulfhydryl group of cysteine
(102). Using a biomimetic catalytic system composed of a metalloporphyrin and a single
oxygen atom donor, Paludetto et a/. identified several toxic metabolites of sunitinib and
pazopanib. The metabolism profile of such metalloporphyrin-based catalyzation is identical
with the incubation of human liver microsomes. Among these metabolites, aromatic
aldehyde derivatives were unambiguously characterized as the intermediate causing toxicity
(103).

7 Chemotherapy drugs altering DMEs

It is increasingly recognized that the chemotherapy induced hepatotoxicity is due to not only
DMESs generating reactive metabolites but also owning to inhibition of DMEs by the drug
itself. The most well-studied inhibitory mechanism is direct inhibition and mechanism-based
inhibition (Table 2). Mechanism-based inhibition is caused by reactive metabolites that have
the potential to permanently inactivate DMEs. One of the typical cases is the mechanism-
based inhibition of CYP3A4 by lapatinib. Teng et a/. suggested that lapatinib is an
inactivator of CYP3A4 most likely via the formation and further oxidation of its O-
dealkylated metabolite to a quinone imine that covalently modifies the CYP3A4 apoprotein
and/or heme moiety (104). Later Barbara ef a/. showed that mechanism-based inhibition of
CYP3AA4 by lapatinib involved the formation of quasi-irreversible metabolic intermediate
complex (105). Such metabolic intermediate complex formation is mediated via N-
hydroxylation of the secondary amine group in lapatinib. Saracatinib is metabolized by
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CYP3A4 and in vitro experiments showed that saracatinib is a CYP3A time-dependent
inhibitor, which may account for saracatinib nonlinear pharmacokinetics via CY3A
autoinhibition (106). Recently, Filppula et a/. used CYP3A4 and CYP2C8 probe substrate to
demonstrate that sunitinib exhibited a strong inhibitory effect on CYP3A4 and a weak
inhibition of CYP2C8 (106). In addition to the inhibition of enzymatic catalysis, emerging
evidence indicate that chemotherapy may alter DMEs on transcription level via cellular
pathways. Harmsen et a/. demonstrated that paclitaxel, erlotinib, tamoxifen, ifosfamide,
flutamide and docetaxel all activated PXR, while only strong PXR activation leads to
increased CYP3A4 expression in human colon cancer cells (107). Mallick et a/. reported that
dysfunction of TLR4 attenuated paclitaxel-induced Cyp3a11and Ugtlial expression in
primary mouse hepatocytes, since paclitaxel is the agonist of both TLR4 and PXR (59). This
study reveals the complexity of crosstalk between TLR4 and PXR pathways in regulating
DMEs, while TLR4 activation generally reduce the level of DMEs; PXR activation induce
the expression levels of DMEs but inhibit TLR4 signaling (108). Most recently, Tao et al.
reported that the expression of Ugtlalin mouse liver is suppressed during irinotecan-
induced steatosis likely in a TLR-dependent manner (6). Although the detailed mechanism
underlying this discovery remained to be further explored, it provides a new perspective that
DMEs may be influenced by chemotherapy on multiple levels.

8 Conclusion

Drug metabolism-induced Gl toxicity and hepatotoxicity have been significant obstacles
during the development of chemotherapies for years and remain unresolved yet. Such
adverse effects not only hamper therapeutic outcome but also make patients suffer from poor
quality of life. Most of drug metabolism-induced toxicity of chemotherapy drugs are
attributed to the reactive metabolites. However, increasing studies reveal that intestinal
DMEs and gut microbiota also contribute to those toxicities. Intestinal DMEs mainly reduce
the bioavailability of oral drugs, whereas microbiota may deactivate or reactivate
chemotherapy drugs. Intriguingly, gut microbiota was recently found to affect the gene
expression of hepatic DMEs. Those findings indicate that the gut microbiota is involved in
chemotherapy drug metabolism and related toxicity. In addition to drug-drug interactions,
polymorphisms, diseases states, such as inflammation and tumor burden all alter the
expression and activity of DMEs via multiple pathways like TLRs/MyD88 and Wnt/f-
catenin signaling. Those changes in DMEs can ultimately lead to chemotherapy Gl toxicity
and hepatotoxicity. In addition, chemotherapy drug itself affects DMEs profoundly as well,
which demonstrates that the interaction between drugs and DMEs is a mutual process.
Chemotherapy drugs may inhibit DME activity by adduct formation or mechanism-based
inhibition. It may also regulate the gene expression of DMES via activation of TLRs or
nuclear receptors. Among current anticancer drugs, antimicrotubular agents like docetaxel
and paclitaxel have the potential to change both expression and activity of DMEs. Tyrosine
kinase inhibitors-induced GI and hepatic toxicities are largely owning to benzoquinone-
imine moiety mediated DME inhibition. By understanding the role of DMEs in
chemotherapy-induced toxicity, we may tailor the dose regimen to avoid excessive drug
exposure and develop novel approaches to attenuate the dysregulation of DMES due to
chemotherapies.
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9 Expert Opinion

Emerging evidence indicate that DMESs are the central player in many cases of
chemotherapy-induced Gl toxicity or hepatotoxicity, whereas the impact of altered
expression and activity of DMEs on chemotherapy toxicity remains to be fully understood.
Such research gap slows the development of new therapeutics and leads to poor therapeutic
outcome in cancer patients. Moreover, it is increasingly realized that polymorphism, gut
microbiome, diseases states, e.g. inflammation, tumor burden, as well as chemotherapy drug
itself all can change the gene expression and activity of DMEs. Given that DMEs is
regulated by numerous factors, it is challenging to predict undesired drug metabolism when
drug candidates are evaluated /7 vitro and in laboratory animals that are oversimplified
compared to the clinical scenario. Moreover, species differences make it difficult to explore
how human DMEs change when cancer patients undergo aggressive chemotherapy.
Targeting these changes in DMEs may reduce or prevent undesirable effect of chemotherapy
drugs. However, current prophylaxis of chemotherapy-induced Gl side effect follows
standardized guideline and barely consider the contribution of DME to toxicity response. In
general, accurate prediction and effective prevention remain as two main unachieved goals in
the area of chemotherapy toxicity. To address those two concerns, the first step is to
understand the molecular mechanism driving DME alteration in the cancer patients having
chemotherapies.

As to predict toxic drug metabolism, hepatocytes sandwich culture and organ-on-chip are
becoming prevalent method nowadays. In recent years, hepatocytes sandwich culture starts
being accepted by pharmaceutical industry as supreme tool to detect drug-drug interaction
and drug metabolism-related pitfall during drug discovery (109). Kumar et al. recently
demonstrated that sandwich cultured hepatocytes showed more similar proteomic profile of
transporters with liver tissues than suspended hepatocytes (110). Also, hepatocytes cultured
in this way are relatively sensitive to the inducers of CYP and efflux transporters (111).
Thanks to the advances in bioengineering, human organ-on-a-chip provides robust platform
to simulate drug-DME interaction /n vitro. Latest liver-on-a-chip model successfully
composed hepatic spheroids, extracellular matrix and biliary system to establish in vitro
homeostasis (112). Kim et al. recently fabricated a novel gut-on-a-chip model consisting of
intestinal epithelium, peripheral blood mononuclear cells and microbes to mimic intestinal
inflammatory bowel disease (113). Such human organ-on-a-chip technology incorporates
variable influence of inflammation and microbes on hepatic and intestinal DMEs. It reduces
use of animal and provides more confirmatory evidence for clinical study design. Besides /in
vitro screening platform, recent success in the development of humanized mouse offers
unprecedented /n vivo model for drug metabolism and toxicity study. Today, humanized
CYP3A mice, humanized UGTL1A mouse and humanized PXR or PPAR-y mice are all
commercially available for laboratory research about drug-drug interaction and toxic drug
metabolism (114-116). Those humanized mice not only address the species-specific
differences between rodents and humans, but also significantly improve the predictability of
preclinical results. Such advantages make hepatocyte sandwich culture, organ-on-chip as
well as humanized mouse as powerful assets to predict drug metabolism-induced toxicity.
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Currently, most anti-diarrhea medicines are empirical therapies and the protective effect in
clinical setting is not satisfactory. From our perspective, DMES can be a promising target for
tackling such drug safety issue. Given that intestinal inflammation usually come along with
chemotherapy-induced Gl toxicity and inflammation itself reduces DME, anti-inflammatory
agents are probably a solution to this side effect. As C/EBPa (CCAAT/enhancer-binding
protein alpha) is crucial in downregulating DMEs during inflammation, agonist of C/EBPa
may attenuate relevant DME deficiency (117). In addition to inflammation, tumor burden,
microbiome and drug-drug interaction all have potential to reduce DMES in cancer patients,
so it is difficult to customize prophylactics for each individual case. In recent studies, it was
found that modifying diet can increase DME level and showed promising protective effect
against irinotecan-induced steatosis (118). Although there are still a lot to be validated, this
preliminary study inspires us that dietary approach can be a safe, effective and flexible
method to halt chemotherapy toxicity by targeting DMEs.

Here we highlight the importance of DMEs in chemotherapy-induced gastrointestinal
toxicity and hepatotoxicity. We demonstrate that the interaction between anticancer drugs
and DMEs occur mutually. Thorough understanding of drug-DME interaction enables us to
overcome the gap in translating toxicity study from bench to bed. Most importantly deeper
insight into the regulation of DMES in cancer patients help us achieve the goal of
personalized medicine and maximize the therapeutic benefit of current chemotherapies.
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Article Highlights

Both intestinal and hepatic drug-metabolizing enzymes (DMEs) contribute to
chemotherapy-induced gastrointestinal (GI) toxicity and hepatotoxicity.

Altered activity of DMEs leads to excessive accumulation of parent drug or
generation of reactive metabolites and consequently cause Gl and hepatic
toxicities.

Alterations in DME activities depends on the regulation of DME gene
expression and genetic polymorphism of DME.

Gene expression of DMEs is regulated by nuclear receptors, transcription
factors that cross talk with inflammatory markers and other intracellular
signaling pathways.

Gut microbiota are involved in drug metabolism-induced toxicity by
mediating reactive metabolism and by changing the expression of DMEs.
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Polymorphism  Diseases Xenobiotics Diet Lifestyle

Microbiota

Altered intestinal and/or hepatic drug metabolism mediates chemotherapy-induced toxicity
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Fig 2. Regulation of DMEs expression by diseases and toxicity
Abbreviations: TNF-a.: tumor necrosis factor-a., IL-6: interleukin-6; TIRAP: Toll/

interleukin-1-receptor-domain-containing adaptor protein, TRIF: TIR-domain-containing
adapter-inducing interferon-p, JINK: c-Jun N-terminal kinases, NF-xB: nuclear factor x-
light-chain-enhancer of activated B cells, IKK: IxB kinase, GSK3p: Glycogen synthase
kinase 3p, APC: Adenomatous polyposis coli protein, PXR: Pregnane X receptor, CAR:
Constitutive androstane receptor, LXR: Liver X receptor, AhR: Aryl hydrocarbon receptor,
RXR: Retinoid X receptor.
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Chemotherapy drugs causing Gl toxicity or hepatotoxicity due to reactive metabolites
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