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Abstract

Purpose of Review—Low-grade inflammation drives elevations in blood pressure (BP) and 

consequent target organ damage in diverse experimental models of hypertension. Here, we discuss 

recent advances elucidating immune-mediated mechanisms of BP elevation and associated target 

organ damage.

Recent Findings—Inflammatory mediators produced by immune cells or target organs act on 

the kidney, vasculature, skin, and nervous system to modulate hypertension. For example, cells of 

the innate immune system, including monocytes, neutrophils, and dendritic cells (DCs), can all 

promote BP elevation via actions in the vasculature and kidney. Macrophages expressing VEGF-C 

impact non-osmotic sodium storage in the skin that in turn regulates salt sensitivity. Within the 

adaptive immune system, activated T cells can secrete tumor necrosis factor-alpha (TNF-α), 

interleukin-17a (IL-17a), and interferon-gamma (IFN-γ), each of which has augmented BP and 

renal damage in pre-clinical models. Inversely, deficiency of IL-17a in mice blunts the 

hypertensive response and attenuates renal sodium retention via a serum- and glucocorticoid-

regulated kinase 1 (SGK1)–dependent pathway. Linking innate and adaptive immune responses, 

dendritic cells activated by augmented extracellular sodium concentrations stimulate T 

lymphocytes to produce pro-hypertensive cytokines. By contrast, regulatory T cells (Tregs) can 

protect against hypertension and associated kidney injury.

Summary—Rodent studies reveal diverse mechanisms via which cells of the innate and adaptive 

immune systems drive blood pressure elevation by altering the inflammatory milieu in the kidney, 

vasculature, and brain.
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Introduction

High blood pressure (BP) or hypertension is the most prominent risk factor for 

cardiovascular disease worldwide, with the number of people with hypertension reaching 
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1.13 billion in 2015 [1]. Current therapies for human hypertension include angiotensin II 

(Ang II) type 1 receptor blockers (ARBs), angiotensin-converting enzyme inhibitors 

(ACEIs), calcium channel antagonists, beta-blockers, and diuretics. The effective use of 

pharmacologic and non-pharmacologic therapies for hypertension has significantly reduced 

the mortality and morbidity attributable to this disorder. Nevertheless, BP remains poorly 

controlled in up to half of patients with treated hypertension [2]. While poor access to care 

or noncompliance accounts for persistent hypertension in many patients, novel therapies are 

also urgently needed to address biologically resistant hypertension.

Elevations in levels of circulating cytokines and CRP mark hypertension as a low-grade 

inflammatory condition involving both the innate and adaptive immune systems [3, 4]. Cells 

of the immune system contribute to the development of hypertension via actions in the 

kidney, vasculature, skin, and nervous system [5–11]. High-salt intake in susceptible humans 

and rodents raise blood pressure, reflecting salt-sensitive hypertension [12–15]. While the 

etiology of salt-sensitive hypertension is complex, experimental models suggest that 

inappropriate immune activation is a major contributor to salt sensitivity [16–19]. Several 

laboratories including our own have tried to explore the immune-mediated mechanisms that 

may underpin salt-sensitive hypertension and related end-organ damage.

Within the innate immune system, myeloid cell populations such as the monocytes, 

neutrophils, and dendritic cells can all promote BP elevation via actions in the vasculature 

and kidney [20–22]. Macrophages regulate sodium storage in the skin with consequent 

downstream effects on salt sensitivity [23, 24]. Within the adaptive immune system, 

activated B and T lymphocytes have each been shown to increase BP [25, 26] although the 

effects of B cells on BP appear to require Tcell help. Multiple groups have reported that 

Tcells augment hypertension by promoting oxidative stress and sodium reabsorption in the 

kidney [17, 27]. In this review, we will summarize pre-clinical experimental data illustrating 

how cells of the innate and adaptive immune systems modulate functions of cardiovascular 

control tissues to drive BP elevation.

Inflammation and Hypertension

Diverse stimuli including infection, Ang II, or a high-salt diet activate innate immune 

responses leading to the accumulation of inflammatory cells in target organs that regulate 

BP, including the kidney, vasculature, and brain (Fig. 1). Whereas infection causes 

vasodilation and hypotension, sterile stimulation of immune responses is associated with BP 

elevation, possibly reflecting an evolutionary development to prevent circulatory collapse in 

the face of overwhelming sepsis. More than 50% of elderly populations carry a diagnosis of 

hypertension [28], associated with elevated markers of inflammation [29]. In general, 

hypertensive patients have increased circulating levels of inflammatory cytokines, including 

IL-6, IL-1β, and TNF-α [30–33]. Similarly, in animal studies, feeding a high-salt diet to 

Dahl salt-sensitive (Dahl-S) rats provokes both hypertension and elevated plasma levels of 

inflammatory mediators [34]. Inversely, genetic deletion and/or pharmacologic blockade of 

TNF-α [35], IL-17a [36], IFN-γ [37], and IL-6 [38] in mice attenuates the chronic 

hypertensive response.
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Inflammatory mediators called cytokines are released by immune, endothelial, and epithelial 

cells following injury or stimulation. Different immune cells serve diverse functions during 

hypertension or organ damage. At present, more than 120 immune cell subsets have been 

characterized in humans [39]. Cells of the innate immune system, which include monocytes, 

macrophage, dendritic cells, and neutrophils, produce several pro-hypertensive cytokines, 

such as TNF-α, IL-6, and IFNs [40]. Following an injurious stimulus such as Ang II or high-

salt diet, the innate immune system engages and activates cells of the adaptive immune 

system. For example, T lymphocytes undergo activation via antigen presentation on the 

surface of a macrophage, dendritic cell, and B cell. Among the T cells subsets, CD8+ T cells 

express IFN-γ, TNF-α, and IL-12 [41]. Among the CD4+ T helper cells, pro-inflammatory 

Th1 cells produce IFN-γ and TNF-α [42]; Th2 cells release IL-4, IL-5, and IL-13 [43]; 

Th17 produce pro-hypertensive cytokines IL-17 and IFN-γ [44] whereas regulatory T cells 

(Tregs) secrete the immunosuppressive cytokines IL-10 and TGF-beta [45]. We will now 

discuss the role of several immune cell lineages in hypertension, beginning with cells of the 

innate immune system.

Monocytes

Upon stimulation, circulating monocytes can release pro-inflammatory cytokines such as 

IL-6, IL-1β, and TNF-α [46]. In humans, CD16+ “intermediate” monocytes activated by 

stretching of the vasculature produce these pro-hypertensive cytokines [47]. On a high-salt 

diet, Dahl-S rats develop significant hypertension and elevations in total circulating numbers 

of monocytes compared to Dahl salt-resistant (Dahl-R) rats [48]. Moreover, monocytes 

contribute to blood pressure elevation and renal damage in several experimental models of 

hypertension, including high diet, deoxycorticosterone acetate (DOCA)-salt, aldosterone-

salt, and Ang II–induced hypertension [49–53]. Regarding underlying mechanisms for these 

effects, LysM-positive monocytes appear to drive increases in BP during chronic Ang II 

infusion by instigating oxidative stress in the vasculature [20]. In addition, IL-1 is the 

prototypical monocyte/macrophage cytokine, and we have found that activation of the 

receptor for IL-1 potentiates sodium retention and blood pressure elevation by releasing the 

NKKC2 sodium co-transporter from tonic inhibition by nitric oxide. Thus, monocytes likely 

act both in the kidney and vasculature to promote hypertension.

Macrophages

As a simplification, macrophages can be dichotomized into pro-inflammatory M1 and anti-

inflammatory M2 phenotypes depending on the milieu of activation. Macrophages 

accumulate in the kidney in various pre-clinical models of hypertension [7, 52–54], and 

multiple groups have been able to demonstrate a functional role for these macrophages in 

modulating BP. For example, deleting macrophage colony-stimulating factor (m-CSF) or 

depleting macrophages blunts the hypertensive response to Ang II or DOCA-salt and 

attenuates renal scar formation and thereby limits target organ damage [7, 55, 56]. Similarly, 

depleting macrophages in DOCA-salt-hypertensive rats has analogous favorable effects by 

restoring appropriate neuronal functions in resistance arteries [57]. Accordingly, just as with 

their monocyte precursors, tissue macrophages exert effects on blood pressure via actions in 

the kidney and vasculature. On the other hand, as elucidated in unique studies from Dr. 
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Titze’s group, macrophages in the dermal layer of the skin may mobilize and facilitate 

clearance of interstitial sodium by stimulating lymphangiogenesis with consequent 

protection from salt sensitivity [23]. Accordingly depleting these mononuclear phagocytes 

with clodronate liposomes augments salt-sensitive hypertension and volume retention in the 

skin [58]. Corroborating these findings, deletion of PGE2 type 4 (EP4) receptor in 

macrophages increases BP following chronic high-salt exposure both by impairing sodium 

clearance in the kidney and by permitting increased non-osmotic sodium retention in the 

skin [24] Thus, macrophages and their precursor monocytes exert complex effects on blood 

pressure acting both within and outside the kidney.

Neutrophils/NK Cells

The roles of neutrophils and NK cells are less well documented. For example, adoptive 

transfer of neutrophils cannot restore the hypertensive response in mice depleted of myeloid 

cells [20]. On the other hand, induction of apoptosis in neutrophils by CD39 on regulatory T 

cells (Tregs) attenuates hypertension during activation of the renin angiotensin system 

(RAS), suggesting that neutrophils in this context may foster BP elevation [59]. Moreover, in 

several human populations, elevated neutrophil levels correlate significantly with the risk of 

developing hypertension [60, 61]. While NK cells contribute to vascular dysfunction during 

RAS activation [62], their role in BP regulation requires further study.

Dendritic Cells

As the most potent antigen-presenting cells in the body, dendritic cells (DCs) can invite the 

participation of the adaptive immune system after injury by stimulating T lymphocytes that 

carry a receptor specific for the antigen displayed on the DC surface. In 2002, Muller et al. 

reported that immunosuppression with dexamethasone prevents DC maturation in the 

injured kidney during Ang II infusion [5]. Interactions between DCs and T cells resulting in 

the generation of memory effector T cells are required for a full hypertensive response [63, 

64], pointing to a vital role for DCs in the pathogenesis of hypertension. In landmark 

studies, Kirabo and colleagues established that hypertensive stimuli generate oxidant stress 

within DCs with consequent modification of isolevuglandins that are then presented as pro-

hypertensive antigens to T cells [22]. Through this mechanism, DCs can promote vascular 

dysfunction and BP elevation. Conversely, the sodium retained in the initial stages of 

hypertension may alter DC function to drive further changes in BP. Excess sodium enters the 

DC through amiloride-sensitive transporters and sodium hydrogen exchanger 1, activating 

the DC to produce more IL-1β, ultimately provoking T cell elaboration of the pro-

hypertensive cytokines IL-17a and IFN-γ [65]. Accordingly, adoptive transfer of DCs 

activated by exposure to high levels of extracellular sodium renders the recipient susceptible 

to hypertension induced by a suppressor dose of Ang II. The importance of DCs to 

experimental hypertension has been confirmed by a separate group who showed that 

ablation of myeloid CD11c+ cells prevents the development of hypertension in response to 

Ang II infusion plus a high-salt diet [66]. These studies indicate that hypertension may be an 

antigen-specific autoimmune disease which is mediated by DCs. While DCs appear to exert 

their effects on BP by modulating Tcell function, DCs can also produce cytokines IL-1β and 

IL-6, which could alter BP independently of T cells. Nevertheless, as detailed below, the 
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adaptive immune system constituted by T and B lymphocytes plays a critical role in the 

pathogenesis of hypertension.

T Lymphocytes

The specificity of T lymphocytes accrues from their expression of a Tcell receptor (TCR), 

permitting clonal expansion of precisely targeted T cells following exposure to a putative 

antigen. Very early studies pointed to a role for lymphocytes in hypertension. For example, 

in 1976, Svendsen and colleagues showed that nude mice have a blunted elevation of BP 

with DOCA-salt treatment whereas grafting thymus from wild-type mice into nude mice 

restores the hypertensive response and intrarenal vascular disease [67]. In experimental 

hypertension, others and we have shown that T cells infiltrate the kidney, accumulating 

around the renal vasculature [6, 27, 68]. On susceptible rodent strains, accumulation of T 

cells in the kidney provokes renal damage as preventing renal T cell infiltration during 

hypertension ameliorates kidney damage and/or BP elevation [16, 69]. In 2007, conclusive 

evidence of the role of T cells in the pathogenesis of Ang II–induced hypertension was 

provided by Guzik et al. In these studies, mice lacking the recombination activating gene-1 

(Rag1) and therefore deficient of functional T and B cells do not develop hypertension 

during Ang II infusion. Adoptive transfer of T but not B cells restores the hypertensive 

responses [26]. Studies in transgenic rats corroborate this finding and further implicate T 

cells in engendering salt sensitivity and hypertension-associated renal damage [70]. 

Similarly, human hypertensive patients feature both renal infiltration of T cells and elevated 

circulating levels of C-X-C chemokine receptor type 3, suggesting that T cells may be 

important both in experimental and clinical hypertension [71].

Whereas conventional T cells largely promote hypertension, immunosuppressive regulatory 

T cells (Tregs) blunt adaptive immunity and have been shown to mitigate hypertension and 

target organ damage [72–74]. For example, deficiency of Tregs exaggerates RAS-dependent 

hypertension and organ damage whereas adoptive transfer of Tregs blunts the BP elevation 

and vascular damage seen in this model [73, 75]. The protective effects of Tregs may accrue 

from modulation of neutrophil function as discussed above or from alterations in the 

complement system. In this regard, the attenuated hypertensive response noted in animals 

lacking the complement receptors C3aR and C5aR is abolished by Treg depletion [76]. 

Thus, Tregs impart protection from hypertension via unusual actions impacting other arms 

of the immune system. Nevertheless, as with other cell lineages, retained interstitial sodium 

may interfere with the protective functions of Tregs and thereby limit their capacity to 

defend against hypertension [77].

Conventional T cells and also gammadelta T cells [78] can promote hypertension not only 

by provoking oxidative stress in the brain, kidney, and vasculature but also by elaborating a 

panel of pro-hypertensive cytokines. The inflammatory mediators propagated by infiltrating 

T cells can increase sodium reabsorption of the kidney, exacerbate systemic 

vasoconstriction, and stimulate sympathetic nerve activity. T cells from animals stimulated 

by Ang II or high salt produce IL-17a, INF-γ, and TNF-α. IL-17a can be produced by 

several kinds of cells, but more prominently by Th17 cells. Culturing naïve T cells in high-

salt media enhances their differentiation into Th17 cells via an SGK1-dependent pathway 
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[79, 80]. Accordingly, mice lacking SGK1 solely on T cells have blunted hypertension and 

renal injury during chronic Ang II infusion or DOCA-salt treatment [81]. Moreover, genetic 

deletion or pharmacologic blockade of IL-17a limits the induction of hypertension and 

consequent renal injury [37, 82]. IFN-γ and TNF-α are produced by CD4+ and CD8+ T 

cells, but also by macrophages and intrinsic parenchymal cells in target organs. As with 

IL-17a, IFN-γ and TNF-α deletion or blockade protects against hypertension and/or 

associated kidney injury [37, 83]. Interestingly, others and we have found that TNF 

produced in the kidney itself rather than in immune cells may play an important role in renal 

sodium retention during RAS activation [84, 85], but these effects are highly dependent on 

local levels of TNF [86]. IL-6 is produced by T cells in the kidney [87] and mediates BP 

elevation induced by high salt [87] or RAS activation [88], possibly via effects on collecting 

tubule epithelial function [89]. Finally, immunosuppressive cytokines can have salubrious 

effects on BP as IL-10 produced by Tregs ameliorates hypertension by mitigating vascular 

oxidative stress [90]. While all of these studies demonstrate the capacity of T cells to 

modulate BP via cytokine elaboration, reports of direct interactions between T cells and the 

kidney epithelium are emerging. For example, CD8+ T cells interact with distal convoluted 

tubule cells during DOCA-salt treatment, leading to the upregulation and activation of the 

Na-Cl co-transporter (NCC), with consequent BP elevation [91].

B Lymphocytes

Similar to T cells, B lymphocytes express both a specific B cell receptor (BCR) and a B cell 

co-receptor. Antigens activate B cells through the BCR triggering their differentiation into 

plasmablasts, plasma cells, and/or memory B cells. Initiate adoptive transfer of B cells into 

lymphocyte-deficient recipients suggested that B cells were not critical to the pathogenesis 

of hypertension [26]. However, in the presence of an other-wise intact immune system, B 

cells marked by the expression of B cell–activating factor are absolutely required to mount a 

full hypertensive response and play a vital role in precipitating perivascular fibrosis during 

RAS activation [25]. Thus, the contributions of B cells to hypertension appear to require 

help from T cells in the inflammatory milieu.

Conclusions

While the primary instigators of hypertension are inappropriate sodium retention in the 

kidney and increased vascular resistance driven by intrinsic vascular wall malfunction and/ 

or increased sympathetic outflow, evidence from pre-clinical and clinical studies indicates 

that inflammatory responses contribute to the pathogenesis of hypertension by augmenting 

these defects in the cardiovascular control organs. Mild increases in pro-hypertensive factors 

like Ang II and high-salt diet activate both the innate and adaptive immune systems. As a 

result, activated inflammatory monocytes and macrophages promote vasoconstriction and 

renal sodium retention whereas DCs provoke BP elevation at least in part by engaging T 

lymphocytes. In turn, T cell subsets can have a variety of effects on BP. For example, Th17 

cells stimulate sodium transport in the kidney whereas Tregs blunt vascular reactivity. These 

effects of inflammatory responses in hypertension are therefore complex as summarized in 

Fig. 1.
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Currently, anti-inflammatory drugs are not approved to treat hypertension, and very selective 

manipulation of the immune system may be required to protect against organ damage in 

hypertension without rendering the patient susceptible to dangerous immunosuppression. 

Nevertheless, MMF, which inhibits the proliferation of T cells and B cells, lowers BP in 

several experimental hypertension models [6, 16, 54, 92] and even in human hypertensive 

patients with rheumatic disease [93]. While tacrolimus attenuates hypertension in Dahl-S 

rats [27], this medication is less attractive as chronic tacrolimus therapy in human transplant 

patients is associated with renal sodium retention and hypertension [94]. In the aggregate, 

currently available immunosuppressives appear to raise cardiovascular risk [95]. Thus, 

further research investigating the anti-hypertensive benefits of targeting specific functions in 

selected inflammatory cell subpopulations is warranted. Meanwhile, medications developed 

for other cardiovascular benefits may afford protection in hypertensive patients by 

diminishing levels of inflammatory cytokines such as TNF-α, IL-1, and IL-6 [96, 97]. 

Therefore, the use of regular anti-hypertensive medicines in combination with older, 

adjuvant drugs represents a reasonable therapeutic strategy to control hypertension and 

mitigate end-organ damage while newer, more incisive immuno-therapies are in 

development.
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Fig. 1. 
Role of immune cells in inflammation in hypertension. In response to hypertensive stimuli 

such as high-salt diet, Ang II, and DOCA-salt, neoantigens are generated leading to the 

activation of the immune system. Innate immune cells such as monocytes, macrophages 

(MØ), neutrophils, and dendritic cells (DCs) release pro-hypertensive cytokines that 

promote the BP elevation via actions in the vasculature, kidney, and sympathetic nervous 

system. However, dermal macrophages can increase expression of vascular endothelial 

growth factor-C (VEGF-C) during high-salt stress, limiting dermal storage of sodium, and 

buffering high salt induced BP elevation. Antigen-presenting cells including dendritic cells, 

macrophages, and B cells can polarize T cells towards pro-inflammatory T helper cells, such 

as Th1 and Th17, and anti-an inflammatory phenotype known as Tregs. Th1 and Th17 cells 

produce IL-6, IL-1β, IFN-γ, TNF-α, and IL-17a, increasing sodium retention in the kidney, 

augmenting vascular dysfunction, and stimulating sympathetic outflow, all of which 

exacerbate BP elevation and target organ damage. In contrast, Tregs release anti-

inflammatory cytokines such as IL-10 and TGFβ to suppress innate and adaptive immune 

responses
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