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Emerging infectious diseases (EIDs) present global health threats, and their
emergences are often linked to anthropogenic change. Artificial light at night
(ALAN) is one form of anthropogenic change that spans beyond urban
boundaries and may be relevant to EIDs through its influence on the behav-
iour and physiology of hosts and/or vectors. Although West Nile virus
(WNV) emergence has been described as peri-urban, we hypothesized
that exposure risk could also be influenced by ALAN in particular, which
is testable by comparing the effects of ALAN on prevalence while control-
ling for other aspects of urbanization. By modelling WNV exposure
among sentinel chickens in Florida, we found strong support for a nonlinear
relationship between ALAN and WNV exposure risk in chickens with peak
WNV risk occurring at low ALAN levels. Although our goal was not to
discern how ALAN affected WNV relative to other factors, effects of
ALAN on WNV exposure were stronger than other known drivers of risk
(i.e. impervious surface, human population density). Ambient temperature
in the month prior to sampling, but no other considered variables, strongly
influenced WNV risk. These results indicate that ALAN may contribute to
spatio-temporal changes in WNV risk, justifying future investigations of
ALAN on other vector-borne parasites.
1. Introduction
Emerging infectious diseases (EIDs) are among the greatest threats to public
health today [1,2]. Most EIDs are zoonotic in origin (70%), in that causative
agents spill over to human populations from other species [3,4]. Anthropogenic
effects on wildlife, such as habitat fragmentation, sensory pollutants and toxin
exposure, can become detrimental to humans in places where humans and
wildlife come into contact [5–7]. The recent surge in many EIDs can be attrib-
uted to various forms of global change, including climate change and the
structure and biological composition of landscapes [3,8,9]. One recent example
of an anthropogenically driven zoonotic EID is West Nile virus (WNV), which
was introduced to the United States in 1999 [10]. WNV decimated susceptible
bird populations, especially corvid species, within the first several years of its
arrival, and its propensity to be transmitted by many vector species also
made it a source of substantial human and livestock (i.e. horse) disease
[11–14]. Now, 20 years since its introduction, WNV continues to cause harm
to diverse animal populations, particularly in or near highly human-modified
habitats [15,16].

WNV is recognized as a peri-urban arbovirus, as human incidence and
songbird seroprevalence are much higher in or near urban habitats [17,18].
Historically, a higher incidence of WNV in or near cities was linked to aspects
of environments that influence mosquito success such as local climate and
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Figure 1. ALAN intensity at sentinel chicken sites across Florida. Sentinel
chicken sampling locations (white circles) throughout Florida overlaid on
the artificial component of night sky brightness in radiance (μcd/m2) esti-
mates from Falchi et al. [46]. (Online version in colour.)
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availability of breeding sites [18,19]. The Florida Department
of Health surveillance system has closely monitored arbo-
virus transmission in mosquito breeding hotspots, such as
peri-urban drainage systems, since the late twentieth century
[20,21]. WNV dynamics resemble other zoonoses in that
urban and agricultural predominance affect emergence and
transmission [22]. For instance, Lyme disease (caused by Bor-
relia burgdorferi) and flavivirus infections (including yellow
fever, dengue and chikungunya) emerge where competent
host and vector communities occur in close proximity to
humans [23–25]. Some anthropogenic stressors have been
found to affect zoonotic risk, but many conspicuous and
common ones have never been considered, including light
pollution. One form of light pollution, artificial light at
night (ALAN), now covers 18.7% of the continental US and
affects 99% of the human population with increases antici-
pated in the future (e.g. 2.2% increase globally per year
from 2012 to 2016 [26]). Further, small areas of urban devel-
opment can emit light into distant suburban and rural
landscapes, suggesting that light pollution effects, and sky-
glow in particular, may be widespread [27,28].

Light pollution affects multiple host traits with conse-
quences for disease transmission. For instance, in night shift
workers, ALAN can affect non-communicable disease risk
(e.g. cancer, diabetes, etc.) [29], probably because vertebrate
immune systems are ‘fundamentally circadian in nature’
[29–31]. House sparrows, a common passerine reservoir of
WNV, experimentally infected with WNV and exposed to
modest ALAN (i.e. 5 lux; a full moon on a clear night is 0.3
lux) maintained transmissible WNV titres for 2 days longer
than controls but did not experience higher mortality
[32,33]. Epidemiologically, this extension of the infectious-
to-vector period was estimated to increase outbreak potential
by 41% [32]. Host population characteristics also have the
capacity to alter disease transmission. For example, avian species
diversity is known to affect WNV transmission, but there are no
studies to our knowledge that have quantified direct effects of
ALAN on avian community composition [34,35].

ALAN also probably alters a multitude of vector traits
that affect arbovirus transmission. Arthropod vectors of
WNV, mainly Culex spp., are renowned for their flight-to-
light behaviours; for those vectors that survive desiccation
or depredation, flight-to-light behaviour might concentrate
infection risk where light pollution is common [36,37].
WNV can be transmitted by as many as 45 vector species,
many of which bite wildlife (including songbirds) and
humans, and are abundant across Florida [38–40]. WNV vec-
tors are dense in urban areas, as surface imperviousness is
one of the strongest predictors of Culex spp. distribution
[41]. Interestingly, Culex spp. are more abundant in areas of
moderate ALAN than low or high ALAN during late
summer months during peak transmission [42].

Given the current pervasiveness of ALAN, we asked
whether light pollution can affect infectious disease dynamics
in a part of the US where arboviruses are common and influ-
ential, both economically and socially [42]. Specifically, we
investigated whether ALAN affected the risk of WNV
exposure across several counties of Florida where emergence
and spillover has occurred in the recent past [43]. We chose to
focus on WNV because it is the most broadly distributed
arbovirus and the most common causative agent of viral
encephalitis worldwide [44,45]. Using data from the Florida
Department of Health (FDOH) sentinel chicken WNV
surveillance programme [21], we tested whether WNV
exposure, as estimated by the number of sentinel chickens
undergoing antibody seroconversion, would be related to
ALAN exposure. We used mixed-effect models with and
without spatial correlation structure to assess the effects of
ALAN (in radiance, millicandela m−2) on WNV exposure
for four recent years across five counties based on 6468
samples from individual chickens from 1126 surveillance
events across 105 unique geographical coordinates, including
many peri-urban regions (figure 1). These models also
accounted for previously documented and other hypothesized
predictors of WNV risk (i.e. variation in temperature, precipi-
tation, soil moisture and several aspects of urbanization).

We hypothesized that WNV exposure risk would have a
nonlinear relationship with ALAN, being greatest in areas
of moderate ALAN, and lowest in non- and intensely light-
polluted areas. We made this specific and yet complex predic-
tion because we expected vector density and/or host
competence to be highest in areas with intermediate light pol-
lution [32]. As above, house sparrows were more infectious
under these ALAN conditions than natural light-dark
conditions. Also, we found previously that some Culex mos-
quitoes were most abundant in areas of moderate ALAN
during WNV transmission season, indicating there might
be combined effects of flight-to-light behaviour from dark
areas, but increased vector predation in intensely illuminated
areas [42,47–49]. Active avoidance of ALAN by passerines,
likely in part due to increased predation risk or negative phys-
iological effects, could also decrease host density in brightly
illuminated places, subsequently reducing opportunities for
transmission [34,48,50–52].
2. Methods
(a) Sentinel data
Sentinel chicken data were shared by the Florida Department of
Health offices in Leon, Manatee, Nassau, Sarasota, St. Johns,
Volusia and Walton counties for the years 2015–2018. The data
were provided as the monthly total number of sentinel chickens
per site that tested positive for WNV antibodies. WNV case
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counts result from a weekly sampling of either 6 (89.5% of obser-
vations) or 4 (10.5% observations) sentinel chickens located at
each site [43]. Once a chicken tested positive for WNV antibodies,
it was removed from a coop and replaced with a WNV-naïve
chicken, ensuring that all positives are new exposures. Coops
housing sentinel chickens were occasionally moved small
distances (typically less than 0.001 degrees or less than approxi-
mately 100 m, but as much as 11 km), resulting in small
differences in coop locations across years. As such, we used the
unique coordinates from each sentinel chicken sampling location
to determine the anthropogenic components of night sky bright-
ness in radiance (ALAN), weather variables (soil moisture,
temperature, precipitation) and urbanization variables (human
population density, anthropogenic impervious surface extent,
human footprint index, see below) at the time and place of
sampling of each chicken coop.

(b) Environmental data
Because multiple dimensions of the environment, including
ALAN, vary along an urbanization gradient, understanding
which aspects are responsible for elevated WNV risk is challen-
ging. As such, we assembled geospatial data reflective of
several dimensions of urbanization: percentage anthropogenic
impervious surface from the 2011 National Landcover Database
(30 m resolution [53]), human population density from the 2010
US Census (1 km resolution [28]), human footprint index data
reflective of conditions in 2009 (1 km resolution [54]), plus
ALAN estimates from the world atlas of artificial night sky
brightness (30-arc seconds, i.e. approx. 1 km resolution [46]),
which is an improved measure of NASA’s VIIRS data using
zenith sky brightness confirmed with handheld sky quality
monitors [55]. This resource provides the anthropogenic com-
ponent of night sky brightness in radiance (microcandela/m2,
henceforth denoted as μcd m−2) and is regarded as the most
relevant available option at the spatial scale of our study, particu-
larly as zenith sky brightness is more highly correlated with
ground-level ALAN exposure than VIIRs satellite data [56]. We
temporally harmonized high-resolution monthly cumulative pre-
cipitation and monthly mean temperature data (0.8 km
resolution) from the PRISM database [57] and monthly mean
soil moisture estimates (3 km resolution) generated from
NASA’s Sentinel 1/SMAP platform [58] to match the month of
sentinel chicken sampling. Additionally, to account for potential
lags in conditions that could favour vector abundance, we also
collected data for these variables from the month prior to
sampling. Because greater than 94% of the positive detections
of WNV occurred after May of each year, which is similar to
other studies [59,60], we restricted our analyses to June–Decem-
ber. Additionally, because mean soil moisture estimates for the
month of surveillance and the prior month were not available
for all records, we restricted analyses to those records with com-
plete environmental data, resulting in a final dataset of 6468
samples from individual chickens from 1126 surveillance events
spanning 80 sites and 105 unique spatial locations.

(c) Data analysis
We modelled incidence of WNV seroprevalence using mixed-
effect models with and without a spatially explicit exponential
correlation structure with negative binomial error and
implemented in the fitme function of the R package spaMM
2.7.5 [61] and the glmm.nb function of the R package lme4 1.1-
21 [62]. We used a negative binomial error rather than a Poisson
error in our models as many preliminary Poisson models did not
converge. Models that did converge received less support from
the data than identical models with negative binomial error
(i.e. ΔAIC≥ 30). Because of the high number of zeros in the
response variable, we also checked models for zero-inflation
using the testZeroInflation function in the R package DHARMa
0.2.4 [63] but found no evidence that a zero-inflated term was
necessary.

Given the hierarchical and repeated sampling regime of sen-
tinel chicken surveillance programs, we included nested random
effects of sampling month within site within the county. For
fixed effects, we built a model that included ALAN, the three
variables reflective of urbanization (i.e. impervious surface
extent, population density, human footprint) and monthly
mean soil moisture, precipitation total and mean temperature,
plus a year to account for inter-annual variation. All continuous
variables were centred and scaled to facilitate direct comparisons
of effects and, based on our hypothesis that WNV seroprevalence
would peak at intermediate ALAN exposure levels, we also
modelled the effect of ALAN as a second-order polynomial.
Preliminary data exploration revealed a nonlinear relationship
between WNV seroprevalence and monthly mean temperature,
which was also best explained by a second-order polynomial.

From the fully parameterized model described above, we
explored whether substituting monthly soil moisture, precipi-
tation total and mean temperature values with the
corresponding values from the previous month improved
model performance using Akaike information criterion (AIC)
values. We retained soil moisture and precipitation totals from
the months in which chickens were sampled. However, sub-
sequent analyses included the monthly mean temperature of
the prior month because this time-lagged form of the tempera-
ture variable received stronger support than the monthly mean
temperature of the month of sampling (ΔAIC > 90). We used
AIC scores to gauge whether polynomial terms for ALAN and
mean temperature of the previous month improved model per-
formance over linear effects of each. We also used AIC scores
to arbitrate between spatial and non-spatial models, to evaluate
the support for using an offset to account for the number of
chickens sampled per site per month, and to test whether there
was any evidence for polynomial effects of predictor variables
other than ALAN that reflected urbanization. We considered
models with ΔAIC scores ≤ 2.0 as equally competitive and deter-
mined that a parameter had a strong effect on WNV
seroprevalence patterns when its 95% confidence interval (95%
CI) did not overlap zero. Finally, because different approaches
to model selection can result in different results [64], we evalu-
ated relative model support using two additional information
criteria in the spaMM package: the conditional AIC (cAIC) [65],
which is conditional on the realized values of the random effects,
and the dispersion AIC (dAIC), which focuses on dispersion
parameters [66].

Finally, we conducted two forms of model diagnostics. First,
we checked for potential multicollinearity and redundancy
among predictor variables with variance inflation factor (VIF)
and considered VIF > 10 as potentially problematic [67]. The
mean temperature of the previous month, and its quadratic
term, were the only parameters with suspect VIF scores. How-
ever, centring this variable at its mean resulted in VIF < 2.0 for
each variable. Second, we assessed model performance with
qqplots and residual versus expected value plots using the simu-
lateResiduals function in the R package DHARMa 0.2.4 [63].
3. Results and discussion
ALAN was a strong but nonlinear predictor of WNV
exposure risk in Florida (figure 2a). Models with and without
spatial correlation structure (or an offset to account for vari-
ation in the number of chicken samples per site; see
electronic supplementary material, text) were equally com-
petitive (table 1) and included qualitatively similar
parameter estimates for ALAN. Alternative model selection
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Table 1. WNV exposure models with spatial, non-spatial and offset options near-equivalent. Rankings among models with and without spatial correlation
structure and offsets to account for variation in number of sentinel chickens surveyed. All models contained the following fixed effects: second-order polynomial
terms for mean temperature of the previous month and natural log of ALAN, plus human footprint index, human population density, percentage impervious
surface, monthly total precipitation, monthly soil moisture and year.

model logLik AIC ΔAIC cAIC dAIC

spatial −727.492 1492.981 0 1460.878 1466.981

non-spatial −729.772 1493.544 0.563 1467.355 1467.544

non-spatial with offset −729.939 1493.878 0.897 1471.652 1467.878

spatial with offset −729.272 1496.545 3.564 1470.341 1470.545
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criteria also confirmed model rankings via AIC and relative
competitiveness. Specifically, we found that WNV risk rises
rapidly from dark conditions and peaks at low anthropogenic
radiance intensities (i.e. less than 0.5), but then declines with
higher ALAN exposure (figure 3a). This peak was slightly
lower than expected but overall consistent with our
hypothesis.

Besides the consistent influence of ALAN, all models pro-
vided strong evidence for a lag effect of temperature whereby
high temperature (greater than 25°C) during the previous
month strongly and positively influenced WNV seropreva-
lence (figures 2b and 3c). By contrast, increases in monthly
cumulative precipitation were negatively related to WNV
seroprevalence (figure 3d ), which is also consistent with
prior work [68]. By contrast with previous reports [17,18],
we found no influence of two metrics of urbanization,
human footprint index or percentage anthropogenic imper-
vious surface, on WNV seroprevalence in chickens. We
found mixed support for an influence of human population
density on WNV seroprevalence where two of the four
models suggested there was a positive relationship (figure 3b;
electronic supplementary material, text). Additionally, there
was also some evidence for inter-annual variation in WNV
prevalence; nonetheless, we found consistent polynomial
ALAN effects on WNV risk across several years (figure 3a).
To ensure that the relationship between WNV seropreva-
lence and ALAN did not reflect nonlinear effects of other
variables characteristic of urbanization, we also tested for
polynomial effects of human population density, human foot-
print index and percentage anthropogenic impervious
surface on WNV exposure risk. No polynomial terms for
these variables were supported, and the model with only
linear terms for all predictors (including weather variables
and ALAN) received the least support (table 2). Alternative
model selection criteria (cAIC and dAIC) led to the same con-
clusions. Finally, based on the polynomial effects of both
temperature of the previous month and the natural log of
ALAN, we conducted a post hoc analysis with a model con-
taining the interaction between the two, but the interaction
decreased model performance (ΔAIC = 7.564; table 2).

The use of radiance in units of microcandelas per m2 in
this study is admittedly hard to translate into values of
light pollution measurable at fine spatial scales. Radiance
values in our dataset appear relatively low, but electronic
supplementary material, figure S1 shows most ALAN
values at coop sites range from 0 to 2.5, so the peak in
WNV cases around less than 0.5 can be interpreted as low-
intensity light pollution. Previous experimental studies
measured ALAN in units of lux using handheld light
metres in enclosed facilities, which served as the foundation
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for our hypotheses [50]. Whereas others have emphasized
that data from the new world atlas of artificial night sky
brightness that we chose to use here are highly related to
light pollution levels at ground level [55,69], a critical
component to future work involving ALAN will be under-
standing how remotely sensed values translate to other
common metrics for quantifying light exposure, such as lux
[70]. Thus, although our models suggest that WNV risk
increases from the darkest sites in our dataset to peak in
areas exposed to some degree of light pollution, we are
limited by the current availability of data, namely, that
our ALAN measure captures only the artificial component
of night sky brightness. Notwithstanding the importance
of developing methods to better describe light pollution at
finer spatial scales, below we discuss how light pollution
might exacerbate the risk of WNV and other EIDs,
and why WNV risk exhibited a nonlinear relationship
with ALAN.
(a) Why does artificial light at night affect West Nile
virus exposure?

The relationship between ALAN and WNV exposure risk we
described was not altogether surprising. As highlighted
earlier, ALAN can extend the infectious period of one avian
host; perhaps similar effects occur in other host species [42].
Other studies strongly suggest that ALAN could also increase
the local density and feeding period of crepuscular
vectors, which might significantly alter opportunities for
transmission [71]. Such effects are particularly likely because
many vectors exhibit flight-to-light behaviour, which could
further concentrate risk spatio-temporally [37].
(b) Nonlinearity of artificial light at night effects on
West Nile virus exposure risk

Our results suggest that although WNV exposure risk
initially increased with ALAN, it subsequently declined
towards the most intensely lit sites in our study. Previously,
we found that hosts exposed to broad-spectrum ALAN
incurred greater mortality risk to WNV, which may create a
disease ‘sink’ for some avian hosts in highly light-polluted
areas [50]. As above, surveys of Culex mosquitoes in the
Tampa Bay region also suggest that vectors are more abun-
dant in moderately light-polluted areas than non- and
highly light-polluted areas during the WNV transmission
season [42]. Hosts and vectors are probably both at higher
risk of predation under a full moon or street lights or other



Table 2. Polynomial ALAN and polynomial average temperature of the previous month were the best predictors of WNV exposure risk. Rankings among models
where anthropogenic predictors and mean temperature of the previous month were modelled with linear or polynomial effects. All models contained the
following fixed effects: mean temperature of the previous month (temp), natural log of ALAN, human footprint index (hum foot), human population density
(pop den), percentage impervious surface (imp sur), monthly total precipitation, monthly soil moisture and year. For each model, all predictors remained in
each iteration of the model and we denote which parameters were included as polynomial effects with ‘poly’. ‘All linear’ reflects a model with no polynomial
terms. ‘poly ALAN × poly temp’ reflects the post hoc analysis of adding an interaction to the top ranked model in table 1. All models were spatially explicit and
did not contain an offset (i.e. such as top ranked model from table 1).

model logLik AIC ΔAIC cAIC dAIC

poly ALAN, poly temp −727.492 1492.981 0.000 1460.880 1466.98

poly temp −730.790 1497.580 4.596 1463.940 1473.58

poly pop den; poly temp −730.753 1499.506 6.522 1465.320 1473.51

poly imp sur; poly temp −730.754 1499.508 6.524 1465.544 1473.51

poly hum foot; poly temp −730.781 1499.561 6.577 1465.450 1473.57

poly ALAN −736.806 1509.611 16.627 1478.040 1485.61

all linear −740.050 1514.100 21.116 1481.260 1492.11

poly ALAN × poly temp −727.272 1500.545 7.564 1468.182 1466.54
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sources of ALAN, which may contribute to lower host and
vector densities in intensely light-polluted areas [48,72]. Simi-
larly, individual birds avoid light exposure at night, which
would further decrease host density in intensely light-pol-
luted areas [34]. Many characteristics of highly light-
polluted areas (e.g. fragmented habitat) support fewer hosts
and fewer vector breeding sources and may be subject to
extensive vector control efforts [73–75]. Altogether, the
recruitment of vectors to light-polluted areas, combined
with reduced viral resistance, predator avoidance behaviour,
and/or host or vector mortality effects could all contribute to
the observed nonlinear relationship between ALAN intensity
and WNV exposure risk. To better understand the mechan-
isms underlying the nonlinear relationship between WNV
exposure and ALAN, we advocate for future research on
the light intensity-dependent effects of ALAN on vector
survival, vector bite rate and host susceptibility [71].
(c) Weather, precipitation and West Nile virus
In addition to ALAN, an average temperature of the prior
month predicted WNV exposure in parts of Florida. It is
unsurprising that this climate component was important in
our models, as many aspects of WNV transmission are temp-
erature dependent (e.g. vector development, survival and
competence) [76]. Indeed, most vectors of WNV thrive
when temperatures increase over summer months, as high
temperatures accelerate vector growth rates and extrinsic
incubation periods (i.e. the time required to develop a trans-
missible virus in salivary glands) [77]. Periods of heavy
rainfall and the availability of water sources for breeding
can also sustain large populations of Culex nigripalpus, a mod-
erately competent WNV vector in south Florida [78,79].
Relatedly, irrigation in the Western United States has
sustained populations of WNV vectors during dry periods,
creating suburban hotspots [80]. Although water sources
are required for mosquito breeding, drought is a significant
predictor of high WNV infection rates in Culex pipiens and
restuans [81]. Drought can indirectly increase vector abun-
dance by decreasing mosquito predator density during
drought years; however, these effects are typically time-
lagged [82,83]. Alternatively, contradicting data indicate
that higher WNV incidence may reflect changes in host com-
petence rather than vector success [68]. While drought could
be considered in future studies, we argue that the inclusion of
rainfall data here enhanced our ability to control for natural
factors at a higher resolution when asking how other
variables affect WNV exposure risk.

(d) Urbanization and zoonotic exposure risk
Urbanization has long been viewed as a driver of WNV
prevalence [18], but here, multiple metrics of urbanization
had no to little explanatory power for WNV risk. Other
studies have concluded that urban land use and human
population density were important predictors of inter-
annual WNV prevalence over large geographic regions
[22,84,85]. These environmental features are hypothesized
to drive WNV incidence due to decreased host diversity in
urban areas, altered vector ecology (e.g. small water sources
ideal for mosquito breeding) and/or increased host suscepti-
bility to infection [86,87]. However, besides mixed support
for a positive influence of human population density,
we found minimal effects of urbanization on risk. One
potential reason we did not detect relationships with urban-
ization might be due to a lack of data from the most
urbanized areas of Florida. However, our study did include
locations where anthropogenic surface was 67% and the
human footprint index was 46.28 on a scale of 0–50, so we
were able to capture diverse intensities of human inhabita-
tion [54]. It is also possible that our urbanization metrics
are distinct from the ones used in previous studies, as sentinel
chicken sites typically are not located in city centres (elec-
tronic supplementary material, text). Further exploration of
how ALAN interacts with other aspects of urbanization
across the landscape to influence WNV risk will be valuable.

(e) Conclusions and implications
Our study suggests that light pollution might affect arbovirus
infection risk in Florida and perhaps elsewhere. Investigating
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how host and vector responses to ALAN vary with the inten-
sity level of light will be required to fully understand patterns
in WNV exposure risk. The consideration of wild bird or
vector data in the future would provide a more comprehen-
sive description of how light at night might be affecting
WNV outbreaks, whether it be Culex spp. derived or reservoir
driven, and provide information regarding effective interven-
tion strategies. Although additional studies are needed to
assess the commonness of relationships between ALAN
and WNV risk in other areas, mitigation opportunities
exist that could ameliorate the negative consequences of
ALAN on wildlife and humans [29]. Furthermore, we empha-
size the need to investigate effects of ALAN on other
passerine reservoirs of WNV, as songbirds, rather than
sentinel chickens, drive transmission [88]. In particular, we
should consider important peri-urban and rural reservoirs
such as northern cardinals (Cardinalis cardinalis) and
American robins (Turdus migratorius) as they dominate
avian communities in areas with low-intensity ALAN and
are quite competent for WNV [35].
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