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Abstract
Background  Health state utility values (‘utilities’) are an integral part of health technology assessment. Though tradition-
ally categorised by disease status in oncology (i.e. progression), several recent assessments have adopted values calculated 
according to the time that measures were recorded before death. We conducted a simulation study to understand the limita-
tions of each approach, with a focus on mismatches between the way utilities are generated, and analysed.
Methods  Survival times were simulated based on published literature, with permutations of three utility generation mecha-
nisms (UGMs) and utility analysis methods (UAMs): (1) progression based, (2) time-to-death based, and (3) a ‘combination 
approach’. For each analysis quality-adjusted life-years (QALYs) were estimated. Goodness of fit was assessed via percentage 
mean error (%ME) and mean absolute error (%MAE). Scenario analyses were performed varying individual parameters, 
with complex scenarios mimicking published studies. The statistical code is provided for transparency and to aid future 
work in the area.
Results  %ME and %MAE were lowest when the correct analysis form was specified (i.e. UGM and UAM aligned). Under-
estimates were produced when a time-to-death element was present in the UGM but not included in the UAM, while the 
‘combined’ UAM produced overestimates irrespective of the UGM. Scenario analysis demonstrated the importance of the 
volume of available data beyond the initial time period, for example follow-up.
Conclusions  We show that the use of an incorrectly or over-specified UAM can result in substantial bias in the estimation 
of utilities. We present a flowchart to highlight the issues that may be faced.

Key Points for Decision Makers 

A mismatch between the data structure and analysis 
method results in biased and inaccurate estimates of util-
ity values.

Unexpectedly, analysing utilities as a combination of 
progression- and TTD-based values performed poorly, 
even if utilities were generated within a corresponding 
framework. Over-specification of analyses should there-
fore be avoided.

The volume of data available has a marked impact on the 
accuracy of estimates; this especially means the duration 
of follow-up and number of long-term survivors.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4025​8-020-00620​-6) contains 
supplementary material, which is available to authorized users.
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1  Introduction

Health state utility values are pivotal in cost-utility analy-
sis—the preferred form of cost-effectiveness analysis for 
health technology assessment (HTA) agencies in the UK, 
and others internationally. Utility values are used to for-
mally capture changes in patient health-related quality of 
life (HRQL), which then impact the estimation of quality-
adjusted life-years (QALYs), and consequently the incre-
mental cost-effectiveness ratio (ICER). The ‘true’ HRQL 
of patients (and the pattern this follows through the course 
of a disease) is not possible to objectively measure, and 
so preference-based measures such as the EQ-5D may 
instead be used to capture key determinants of HRQL. 
These measures capture HRQL through self-reporting of 
a patient’s current health state, and how this affects their 
capabilities in different health dimensions (such as self-
care and anxiety/depression). Patient responses are then 
converted into utilities, which are then grouped to pro-
duce health state utility values that can populate economic 
models [1].

The method of grouping utilities by health state in 
oncology has generally centred around disease progres-
sion. In cancer cost-utility analyses, this approach implic-
itly assumes that progression status is the most important 
driver of HRQL. Recent literature, however, suggests that 
progression is not always a good proxy for HRQL [2], an 
issue magnified with immune-oncology (IO) agents where 
there can be issues with ‘pseudo-progression’ where the 
action of the treatment is mistaken for disease progres-
sion [3]. The reasons for progression being imperfectly 
correlated with HRQL may include delays from the effect 
of cancer growing to the experience of symptoms, and 
that the impact of disease progression will vary by dis-
ease area (for instance, haematological vs. solid tumour 
cancers). Similarly, there may be differences between 
tumours growing or spreading to different locations—both 
of which may be classified as disease progression. Conse-
quently, alternative methods of analysing HRQL data have 
been proposed, including grouping observations by when 
the HRQL measure was taken prior to a patient’s death, 
termed ‘time to death’ (TTD) [4], with other approaches 
classifying patients by different health states, for instance 
by response to treatment.

A number of published economic evaluations of IO 
treatments have used the approach of TTD-based utility 
values, noting that such an approach avoids a number of 
issues typically attributed to progression-based analyses 
[5–7]. A recent review of IO appraisals performed by the 
National Institute for Health and Care Excellence (NICE) 
found that of the 21 identified company submissions, 11 
defined health states by progression status, seven by TTD, 

and three by using a model that had aspects of both ele-
ments [8]; a per-appraisal summary is presented in the 
Online Supplementary Materials (OSM).

Under ideal circumstances, the most appropriate health 
states could be determined by analysis of complete patient-
level data from clinical trials—unfortunately this is not always 
possible due to issues that are common in contemporary stud-
ies. These include limited follow-up (many trials include a 
substantial proportion of survivors who are administratively 
censored), the absence or limited amount of HRQL data post-
progression, the previously highlighted issue of pseudo-pro-
gression, the interval between HRQL observations, and the 
role of missing data. As an example, a previous study con-
sidered trial data for seven licensed IO indications, for which 
overall survival data were available for a mean of 1.95 years 
after treatment initiation (range 1.38–3.95) with a mean of 
40.6% of patients still alive at the end of follow-up (range 
9.4–70.0) [8].

Due to such limitations, both progression- and TTD-based 
methods seek to assign observations in homogenous groups, 
noting that there may be small differences within the group that 
may need to be accounted for by covariates (such as treatment 
assignment). If complete data were available for all patients 
from treatment initiation until death, the results of each analy-
sis would be identical (as modelled groups would reflect the 
mean). Even in practice with complete data, results using the 
two approaches are likely similar as they are correlated; most 
patients will experience disease progression before their death, 
with progression being irreversible. There may, however, be 
important differences in how each of the approaches perform 
when data are more limited; particularly with regard to the 
features seen in IO studies—one of which is the presence of 
long-term survivors, who will represent a substantial amount 
of censored data and were atypical for studies in end-stage 
cancer until recently.

To understand the relative performance of progression- 
and TTD-based methods in analysing HRQL under different 
study designs (informed by recent IO trials), we conducted a 
simulation study. The use of such an approach allows us to 
understand how the application of the different methods varies 
when the data generation mechanism is known—something 
that is not possible with ‘real’ data. Based on the findings of 
this study, we highlight when bias and error may arise with 
different methods of analysis, and the possible impacts these 
may have when estimating QALYs in economic models.

2 � Methods

2.1 � Data Simulation

A simulation study was programmed in the statistical 
software package R version 3.6.1 [9] following published 
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guidance on simulation studies [10, 11]. In each simulation, 
survival and utility data were resampled, with 2500 simula-
tions performed for each scenario; at this point results were 
seen to have converged visually, with Monte Carlo Standard 
Errors of all outcomes an order of magnitude smaller than 
the results.

The simulation took approximately 10 days to run 
(including scenario analyses) on an Intel 8th generation i5 
laptop. The statistical code is provided as supplementary 
material for transparency and to aid future work in the area 
(see OSM).

2.2 � Survival Data

Time-to-event data were simulated for a hypothetical IO 
treatment. In order to mimic published studies, three groups 
of patients were assumed to exist, with different proportions 
of each sampled from parametric survival functions. These 
three groups were those with poor outcomes (in published 
studies a large number of patients experience only a few 
months of progression-free survival), those with intermedi-
ate outcomes (from several months to several years), and a 
final group who do not experience disease progression—the 
‘plateau’ seen in IO studies of patients with durable survival.

To simulate survival data each patient had a ‘natural’ life 
expectancy sampled from UK Office for National Statistics 
Life Tables [12] based on their age and gender; this was 
then used as the upper limit of their survival. Each patient 
was then randomized to the poor, intermediate, or long-term 
survival groups, with a time to progression (TTP) sampled 
from a corresponding survival distribution. Post-progression 
survival (PPS) was then sampled for all patients from a fur-
ther distribution, with overall survival for each patient then 
given as the minimum of TTP and PPS added together, or 
alternatively the patient’s natural life expectancy.

To produce patient characteristics (age and sex) from 
which to sample life expectancy, similar figures were used to 
studies previously conducted for IOs in non-small-cell lung 
cancer, melanoma, and renal cell carcinoma [8]. The values 
used to generate survival data such as patients sampled to 
each group, and survival models used to sample survival 
times are shown in Table 1. The resulting approach mimics 
well the patterns of survival seen with existing IOs (Fig. 1). 
Functional R code to demonstrate the approach is presented 
in the supplementary material.

2.3 � Utility Data and Generation of Quality‑Adjusted 
Life‑Years (QALYs)

Patient utility values were assumed to be correlated at the 
individual level, using a parameter for simulated underly-
ing health. This underlying health was then used to give 
three approaches for generating utilities: health decreasing 

on progression (progression-derived), health decreasing as 
a patient is approaching death (TTD-derived), and health 
decreasing on progression and as a patient is approaching 
death (combination-derived)—the three approaches found 
in the review of previous NICE appraisals (Supplementary 
Table 1, OSM).

Using the simulated survival duration and patients’ 
underlying health status, utility values were then simulated 
for each day a patient was alive using a beta distribution. 
This dataset was duplicated for utilities to be produced for 
the three utility generation mechanisms (UGMs). To each 
dataset appropriate decrements were applied if: a patient had 
progressed disease (progression-derived); was in the ‘close-
to-death’ window (TTD-derived); was progressed or in the 
‘close-to-death’ window (combo-derived). These different 
approaches are shown stylistically in the OSM Appendix. 
The utility values for each patient day were then summed 
across datasets to calculate the QALYs experienced by each 
cohort.

To ensure the simulation mimics trial data, utility values 
were sampled according to a measurement interval—120 
days in the base case, up to the point at which administrative 
censoring in the simulated trial was assumed to occur (48 
months in the base case). This restricted dataset was then 
used with each form of analysis to estimate QALYs for the 
population, which could be compared to the QALYs expe-
rienced in the full dataset.

2.4 � Analytical Approaches

Following the derivation of the full datasets for each of the 
UGMs, the restricted datasets (with measurement intervals 
and administrative censoring applied) were then analysed via 
general estimating equation (GEE) regressions using TTD-
based and/or progression-based approaches, for a total of 
three UGMs, and three utility analysis methods (UAMs). 
GEE regressions were used as observations would likely be 
correlated at the patient level (as in real life) due to being 
reported by the same patient (in our study applied using each 
patients’ ‘underlying health’) [13].

In the simulations, survival was assumed to be known 
so as to isolate the effect of utility estimation methods (and 
not conflate this with a survival extrapolation approach). To 
compare between the three analysis approaches, the esti-
mated utility for each health state from regression models 
was multiplied by the (known) time spent in each health 
state, to produce estimated QALYs. For clarity the simula-
tion study design is shown visually in Fig. 2.

2.5 � Outcomes

The percentage mean error (%ME) and the percentage 
mean absolute error (%MAE) in estimated versus ‘actual’ 
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QALYs were calculated for each analysis method, using 
each dataset. The result of these measurements over 2500 
simulations were the main outcomes of the study.

These metrics were selected as the %ME gives an esti-
mation of bias, i.e. whether a method is systematically 
under/over predicting, while the %MAE gives a measure of 
the absolute error. Percentages were used as the number of 
QALYs generated in each scenario (and under each UGM) 
were slightly different, and would also vary between sce-
narios. As a result the same level of percentage error 
would result in different levels of absolute error, masking 
the magnitude of any differences between scenarios.

2.6 � Scenario Analyses

Scenario analyses were conducted where common features 
of clinical trials were varied individually to understand the 
impact on each data generation mechanism and analysis 
method (Table 1).

Settings relating to trial design and/or patient characteris-
tics included the age and number of patients, interval of util-
ity observation, and duration of time before administrative 
censoring. The effect of different mechanisms for missing 
data were also tested (in the base case, data are assumed 
to be complete)—the mechanisms included data missing 

Fig. 1   Example of simulated time to event data compared to published immuno-oncology trials

* Censoring includes removing all data unavailable for the analysis including utility measurement intervals, administrative censoring, and 
missing data rules 

Generate survival data for each pa
ent

Generate underlying health

Generate progression based u
li
es

Apply censoring* and analyse using:

TTD Progression Combina
on

Generate TTD based u
li
es

Apply censoring* and analyse using:

TTD Progression Combina
on

Generate combina
on based u
li
es

Apply any censoring* and analyse using:

TTD Progression Combina
on

Fig. 2   Visual representation of the generation and analysis of each scenario
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completely at random (MCAR) either as individual values 
censored or patients assumed to be lost to follow-up, missing 
related to the known event of death date (formally known 
as missing at random, MAR), and missing linked to lower 
utility values (formally known as missing not at random, 
MNAR). Further sensitivity analyses were performed vary-
ing survival parameters, including the number of long-term 
survivors, and the role of pseudo-progression.

A set of more complex scenario analyses were also 
undertaken, which mimicked the design of IO studies pub-
lished in the literature. The studies chosen include those of 
ipilimumab, nivolumab, pembrolizumab and atezolizumab. 
These scenarios attempted to synthesize multiple issues and 
understand how each approach would fare when faced with 
the trial conditions that IO therapies have been studied under 
(Table 2), given the assumptions inherent in the simulation 
study.

3 � Results

The results of the base-case analysis are shown numerically 
in Table 3 and visually in the OSM Appendix. In the base 
case it can be seen that although %MAE is non-zero (due to 
variability and sampling of utility values), progression and 
TTD-based UAMs were unbiased and accurate when used 
appropriately (i.e. when the UGM and UAM matched, ME 
of 0.0% and − 0.4%, MAE of 0.4% and 0.6%). When there 
was a mismatch between UGM and UAM (e.g. analysing 
progression-based utilities as TTD), both methods were less 
accurate, though not majorly so. The UAM of a combination 
of progression and TTD (combination-based approach) fared 
much worse with results showing lower accuracy (MAE 
0.7–5.9%) and a degree of bias shown in the ME being non-
zero, even when the UGM used this approach (a 5.5% over-
estimate in QALYs in the base-case scenario). This may be a 
result of the multicollinearity between progression and TTD, 
and difficulty in estimating multiple parameters based on a 
limited number of observations.

Scenario analyses demonstrate how different assump-
tions around study design impacted the results. Varying 
patient numbers (scenarios 1 and 2) and patient age (sce-
narios 3 and 4) did not greatly affect results, nor did the 
frequency at which utility was measured (scenarios 5 and 
6). More important, however, was the duration of follow-
up data available; having only 18 months of data available 
(scenario 7) led to exaggerated errors where the UGM and 
UAM were misaligned (e.g. analysing a TTD UGM within 
a progression-based UAM increased the ME from − 3.5% in 
the base case to − 7.4%), although more data did not change 
the results noticeably from the base case (scenario 8, using 
a follow-up of 60 months). This pattern of increased error 
with less information available continued with scenarios 9 
and 10, where data were either not collected following the 
visit where progression was determined, or collected for a 
limited period; results are more imprecise than when the 
same length of study is available with all data.

Where data are assumed to be missing, the impact on 
results depended on the type of missingness. For mecha-
nisms involving data MCAR (whether individual values, 
scenario 11, or individuals lost to follow-up, scenario 12), 
this led to increased uncertainty, without necessarily intro-
ducing bias (an increase in %MAE, but little change in 
%ME). This, however, was not the case when values were 
not missing completely at random—for example, missing 
data linked to observable outcomes such as death (scenario 
13) or unobservable characteristics such as underlying health 
(scenario 14). In these scenarios, %MAE was increased for 
all UAMs, but importantly %ME was shown to move further 
from zero; demonstrating the presence of bias.

Scenarios changing the nature of survival data did have 
a sizable impact, depending on the changes made. When 
varying the number of long-term survivors from none (sce-
nario 15), to half the base case (scenario 16),to double the 
base case (scenario 17), the impact varies by UGM and 
UAM—despite scenario 15 effectively having no adminis-
trative censoring (as nearly all deaths are within the study 
period), combination-based UAMs continued to perform 

Table 2   Setup of ‘real’ scenarios, mimicking previous immunotherapy studies

# Scenario Scenario analysis value(s)

A Ipilimumab in melanoma [19], ipilimumab monotherapy arm N = 137; utility data available for 54 months for all patients; 
pseudo-progression present (assumed 25% of long-term 
survivors)

Age = 57; 59% male; survival plateau = 17%
B Nivolumab in renal cell carcinoma [20], nivolumab monotherapy arm N = 410; utility data available for 32 months for all patients

Age = 62; 77% male; survival plateau = 20%
C Pembrolizumab in non-small-cell lung cancer [21], pembrolizumab 3 weekly 

arm
N = 287; utility data available for 27 months for all patients
Age = 64; 51% male; survival plateau = 30%

D Atezolizumab in urothelial carcinoma [22], atezolizumab monotherapy arm N = 467; utility data available for 23 months for all patients
Age = 67; 76% male; survival plateau = 22%
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Table 3   Scenario analysis results

Scenario Utility generation 
mechanism (UGM)

True QALYs Utility analysis method (UAM)

% Mean error (ME) % Mean absolute error 
(MAE)

Prog TTD Combo Prog TTD Combo

Base case Prog-derived 3.4 0 0.2 − 0.7 0.4 0.5 0.7
TTD-derived 3.3 − 3.5 − 0.4 5.8 3.5 0.6 5.9
Combo-derived 3.1 − 3.4 − 0.2 5.5 3.4 0.6 5.5

Scenario 1 Prog-derived 3.4 0 0.2 − 0.7 0.4 0.5 0.8
N = 150 TTD-derived 3.3 − 3.4 − 0.4 6 3.5 0.7 6

Combo-derived 3.1 − 3.4 − 0.3 5.6 3.5 0.7 5.6
Scenario 2 Prog-derived 3.4 0 0.2 − 0.7 0.2 0.3 0.7
N = 300 TTD-derived 3.3 − 3.4 − 0.4 5.8 3.4 0.6 5.9

Combo-derived 3.1 − 3.4 − 0.3 5.4 3.5 0.5 5.5
Scenario 3 Prog-derived 4.5 0 0.3 − 0.5 0.4 0.5 0.6
Age = 55 years TTD-derived 4.5 − 3.1 − 0.4 4.3 3.1 0.7 4.3

Combo-derived 4.2 − 3.1 − 0.3 4 3.1 0.7 4
Scenario 4 Prog-derived 2.4 0 0 − 1 0.4 0.4 1
Age = 75 years TTD-derived 2.3 − 4.6 − 0.4 8.6 4.7 0.6 8.6

Combo-derived 2.2 − 4.6 − 0.3 8 4.7 0.6 8.1
Scenario 5 Prog-derived 3.4 0 0.4 − 0.7 0.3 0.5 0.7
Utility interval = 90 TTD-derived 3.4 − 5.6 − 0.4 5.3 5.6 1.1 5.5

Combo-derived 3.2 − 5.6 − 0.6 4.9 5.6 0.8 5.1
Scenario 6 Prog-derived 3.4 0 0 − 0.7 0.5 0.5 0.8
Utility interval = 180 TTD-derived 3.3 − 1.2 − 0.4 6.1 1.4 0.5 6.1

Combo-derived 3.1 − 1.2 − 0.1 5.7 1.4 0.6 5.7
Scenario 7 Prog-derived 3.4 0 0.7 − 0.7 0.5 0.8 0.8
Length = 18 months TTD-derived 3.3 − 7.4 − 0.4 5 7.4 1.8 5.4

Combo-derived 3.1 − 7.7 − 1 4.6 7.7 1.5 5
Scenario 8 Prog-derived 3.4 0 0.1 − 0.7 0.4 0.4 0.8
Length = 60 months TTD-derived 3.3 − 2.5 − 0.4 5.9 2.5 0.5 5.9

Combo-derived 3.2 − 2.4 − 0.2 5.5 2.5 0.6 5.5
Scenario 9 Prog-derived 3.3 0 0.1 − 0.7 0.4 0.4 0.8
Length = 60 months or progression TTD-derived 3.3 − 2.5 − 0.4 5.9 2.6 0.5 5.9

Combo-derived 3.1 − 2.5 − 0.2 5.5 2.6 0.6 5.6
Scenario 10 Prog-derived 3.4 0 0.1 − 0.7 0.4 0.4 0.8
Length = 60 months or progression + 30 days TTD-derived 3.3 − 2.7 − 0.4 5.9 2.7 0.5 5.9

Combo-derived 3.1 − 2.6 − 0.2 5.6 2.7 0.6 5.6
Scenario 11 Prog-derived 3.4 0 0.1 − 0.7 0.4 0.5 0.8
Missing data = 10% randomly MCAR​ TTD-derived 3.3 − 1.8 − 0.4 6 1.9 0.5 6

Combo-derived 3.1 − 1.8 − 0.1 5.6 1.9 0.6 5.6
Scenario 12 Prog-derived 3.4 0 0.2 − 0.7 0.4 0.5 0.8
Missing data = 10% of patients MCAR​ TTD-derived 3.3 − 3.7 − 0.4 5.8 3.7 0.7 5.8

Combo-derived 3.1 − 3.6 − 0.3 5.4 3.7 0.7 5.4
Scenario 13 Prog-derived 3.4 0.2 0.4 − 0.5 0.5 0.5 0.7
Missing data = proportional to utility (MNAR) TTD-derived 3.3 − 2.7 − 0.4 5.9 2.7 0.6 5.9

Combo-derived 3.2 − 2.6 − 0.1 5.7 2.7 0.6 5.7
Scenario 14 Prog-derived 3.4 0 0.2 − 0.7 0.4 0.5 0.8
Missingness increases closer to death TTD-derived 3.4 − 3 − 0.4 5.8 3 0.6 5.9

Combo-derived 3.2 − 2.9 − 0.2 5.4 2.9 0.6 5.5
Scenario 15 Prog-derived 1 0 − 0.5 − 2.5 0.4 0.6 2.5
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poorly. This is explained by the limited amount of data 
available to the model to estimate parameters for patients 
post progression and close to death (which are highly cor-
related). As a result, when this UAM was also misspecified 
(i.e. used to analyse data from a different UGM), the errors 
were extremely large—over 20% in ME and MAE when ana-
lysing a TTD UGM using combination-based UAM with no 
long-term survivors (scenario 15). Conversely, increasing 
the number of long-term survivors reduced errors for all 
UAMs under all UGMs—the larger number of long-term 
survivors allowed for more data points from patients achiev-
ing long-term survival, i.e. in the ‘tail’ of the curve. This 
meant that even where the UAM was misspecified, the num-
ber of data points available ensured the mean values were 
approximately correct.

Pseudo-progression (scenario 18) was implemented to 
the study as patients being misclassified as progressed and 
gaining a group assignment of a short- or medium-term 
survivor’s PFS, when in reality they were in the long-term 

survivor group. This misclassified progression led to an 
overestimate of utility values under UAMs that used pro-
gression status (i.e. increasing the mean value for the 
post-progression group). It may be the case that a TTD 
approach is more accurate as whether a patient is within 
the TTD window is known, while progression is no longer 
a reliable marker of health state (even with only 10% of 
patients misclassified). To an extent this finding is similar 
under the assumption of shorter studies (though not as 
pronounced), where if few progressions have occurred, 
a TTD approach may have comparable performance to a 
progression-based UAM (such as in scenario 7) despite 
ostensibly being the incorrect analysis form. The results, 
however, did not seem to be impacted by whether post-
progression survival and response to treatment were linked 
(scenario 19), where although the magnitude of results 
changed, similar patterns to the base case were seen.

Scenarios A–D mimic existing immunotherapy trials 
(with assumptions around parameters that are not publicly 

Table 3   (continued)

Scenario Utility generation 
mechanism (UGM)

True QALYs Utility analysis method (UAM)

% Mean error (ME) % Mean absolute error 
(MAE)

Prog TTD Combo Prog TTD Combo

No long-term survivors TTD-derived 0.8 − 4.5 − 0.4 27.5 4.6 1.1 27.5
Combo-derived 0.7 − 4.6 − 0.5 25 4.8 1.3 25

Scenario 16 Prog-derived 2.2 0 0.1 − 1.1 0.4 0.5 1.1
Lower rate of long-term survivors TTD-derived 2.1 − 6.5 − 0.4 8.8 6.5 1 9.1

Combo-derived 2 − 6.7 − 0.7 8.1 6.7 1 8.5
Scenario 17 Prog-derived 4.3 0 0.2 − 0.6 0.5 0.5 0.7
Higher rate of long-term survivors TTD-derived 4.3 − 1.4 − 0.4 4.6 1.5 0.5 4.6

Combo-derived 4.1 − 1.4 − 0.1 4.3 1.5 0.5 4.3
Scenario 18 Prog-derived 3.4 0.1 0.2 − 0.5 0.5 0.5 0.6
10% Pseudo-progression included TTD-derived 3.3 − 10 − 0.4 5.5 10 0.6 5.7

Combo-derived 3.2 − 8.1 − 0.2 5.4 8.1 0.6 5.5
Scenario 19 Prog-derived 3.3 0 0.2 − 0.7 0.4 0.5 0.8
Link between pre- and post-progression survival TTD-derived 3.2 − 4.5 − 0.4 6 4.5 0.7 6.1

Combo-derived 3 − 4.4 − 0.3 5.7 4.5 0.7 5.7
Scenario A Prog-derived 4 0.1 0.2 − 0.4 0.2 0.3 0.4
Ipilimumab melanoma TTD-derived 4 − 14.2 − 0.4 4.3 14.2 0.7 4.5

Combo-derived 3.7 − 12 − 0.4 4.3 12 0.6 4.4
Scenario B Prog-derived 3.7 0 0.4 − 0.6 0.2 0.5 0.6
Nivolumab RCC​ TTD-derived 3.7 − 4.4 − 0.4 5 4.4 0.9 5.1

Combo-derived 3.5 − 4.5 − 0.5 4.6 4.5 0.7 4.7
Scenario C Prog-derived 4.6 0 0.5 − 0.5 0.2 0.5 0.5
Pembrolizumab NSCLC TTD-derived 4.7 − 3 − 0.4 4.1 3 0.8 4.1

Combo-derived 4.4 − 2.9 − 0.3 3.8 2.9 0.7 3.8
Scenario D Prog-derived 3.5 0 0.5 − 0.7 0.3 0.6 0.7
Atezolizumab UCC​ TTD-derived 3.4 − 5.3 − 0.4 5.3 5.3 1.1 5.4

Combo-derived 3.2 − 5.5 − 0.5 4.9 5.5 0.9 5
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reported or knowable such as utility measurement intervals). 
It is apparent from these results that the potential for error 
with an incorrect analysis framework could have a meaning-
ful impact on adoption decisions using contemporary study 
designs. Using progression and TTD based UAMs under the 
opposing UGM led to an average MAE of 3.6%, whereas 
using each UAM in the correct framework had only a 0.6% 
MAE. In none of the ‘real’ scenarios did the combination-
based approach perform well, with generally the largest 
MAE, and non-zero MEs in all cases, even when matched 
to the correct UGM.

4 � Discussion

Under ideal conditions, provided the approach used to ana-
lyse HRQL matches that of the data-generation mechanism, 
both progression- or TTD-based utilities are likely to pro-
duce good estimates of QALYs. This finding is based on 
%ME and %MAE, which are anticipated to be low, though 
not zero (as not all data are observed, and thus estimates 
produced will never match exactly). An unexpected find-
ing was the poor performance of the combination-based 
approach to analysis—even where combination-derived 
utilities were present. This is likely due to the multicollin-
earity between the values, i.e. it would be expected that the 
majority of patients progress before dying (with none mov-
ing backwards), and limited numbers of patients to estimate 
coefficients.

As it is not possible to know a priori (and never possi-
ble to conclude absolutely) what the main drivers of patient 
HRQL are, the evidence to support the assumed mechanism 
of utility generation should be presented, and alternative 
frameworks explored in any analysis plan. This would be 
mean in practice fitting both progression- and TTD-based 
models, then selecting between them for the final analysis 
based on goodness of fit. This finding is especially strong 
in the presence of TTD-generated utilities, where this mis-
specification of progression-based analyses can markedly 
underestimate the QALYs generated (also shown in the vio-
lin plot presented in the OSM Appendix). Although there 
is no standard threshold for an important level of error in 
total QALYs estimated, in our simulated example this error 
can reach 5.4% (scenario 15), which would seem sufficient 
to impact adoption decisions. It should also be noted that a 
difference in the mean QALYs would also impact the prob-
ability of cost effectiveness at different thresholds, likely in a 
non-linear fashion. Any utilities generated may also be used 
in assessments of future products, which would exacerbate 
the impact of errors in estimation.

The poor performance of the combination-based approach 
indicates that given the potential for error, a higher bar 

should be used for justifying such an approach over more 
simple specifications. Although overspecification of the 
model is superficially appealing to capture any impacts (even 
if weak), this has clear negative consequences for accuracy if 
unjustified. Even if justified, where insufficient data is avail-
able to accurately estimate parameters (such as in shorter 
trials), the potential for error remains high, and it may be 
preferred to selection either a progression- or TTD-based 
UAM, depending on which element has the stronger effect.

Although seemingly a self-evident finding, the effects of 
pseudo-progression and informative missing data should 
also be considered. In such instances further analysis may 
be warranted prior to the analysis of utility data—such as 
reclassifying the progression status of long-term survivors, 
and multiple imputation for data missingness. In the authors’ 
experience, though imputation (or at the very least, Last 
Observation Carried Forward) is common for use within 
efficacy analysis, this is seldom used with HRQL data when 
deriving utilities and may be an oversight as approaches for 
missing data with health outcomes become more standard-
ised [14, 15].

The recommendations that we have derived from our 
findings are summarised in Fig. 3, and give a suggested 
approach to analysis of HRQL data in cancer studies (and 
of IO treatments in particular). This involves first accounting 
for any issues within the data (such as missing data), before 
fitting a variety of models. At this stage we would suggest 
statistical tests and plotting of values may inform the best 
fitting models and help justify the approach used. We would 
then also suggest presenting scenario analyses to investigate 
the impact of structural choices in analysis framework. It 
should also be noted that the approach we have explored is 
based on a single dataset with a given intervention; a study 
with multiple arms (potentially with interventions that have 
different mechanisms) may need more complex forms of 
analysis, or indeed analysis by arm.

4.1 � Limitations

There are a number of important limitations with the work 
presented, the most prevalent of these being the use of 
simulated data. In having to assume how utility falls when 
approaching death, or on progression, this does not neces-
sarily represent the way HRQL is reported, or how changes 
in health are experienced by patients. We have attempted 
to account for this (for example with variability within 
patient observations for ‘good’ and ‘bad’ days) though this 
is unlikely to be perfectly representative. In particular we 
would highlight that the influence of progression on HRQL 
is highly uncertain (and likely to vary between cancers). 
For instance, the timing of HRQL falling related to pro-
gression could be when a cancer begins to rapidly grow, 
whereas tumour imaging would only document this at the 
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Fig. 3   Recommendations for selection of analysis framework for health-related quality of life (HRQL) data
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next follow-up appointment held between patient and clini-
cian. Alternatively, patients may not experience symptoms 
until well after radiographic progression has occurred. 
Understanding when HRQL is impacted around progression 
would therefore seem relevant for future research in quality 
of life, as this may not coincide with the timepoint at which 
progression is measured in practice.

A similar assumption is that survival (in terms of indi-
vidual survival times) is assumed to be known, whereas in 
reality many of these would be based on extrapolations. 
This assumption was imposed to avoid conflating survival 
modelling questions with those regarding analysis of HRQL 
data. The shape of these survival curves however is a bigger 
assumption; for IOs we have assumed background survival 
for a proportion of patients—should this not be the case (and 
there be future disease relapse) this may affect our findings, 
though the durability of survival in IO treated patients is an 
open question in the medical literature at present, despite 
encouraging data [16, 17].

A further limitation is in the analysis frameworks used, 
which are in many ways a ‘straw man’; the timepoint at 
which HRQL falls prior to death in each analysis is assumed 
to be known, and be a single decrement. In reality this will 
likely involve some form of continuous decline over time. 
To account for this, most published work group periods of 
time together, (for instance the 30 days before death), though 
the justification for the groups selected is often arbitrary. 
Similarly, the combination-based approach was implemented 
in our simulation regardless of the significance of the coef-
ficients in the analysis, which may be an oversimplification. 
The development of a standardised strategy and associated 
algorithm to account for issues such as the appropriate 
grouping of time to death health states, and model selection 
would be helpful in establishing best practice for analyses.

5 � Conclusion

The simulation study performed demonstrates that a number 
of factors can influence accuracy and bias when analysing 
HRQL data, the most important of which would appear to be 
the selection of an appropriate analysis framework. Rather 
than a de facto standard approach of progression or TTD-
based utilities, or the inclusion of all possible coefficients 
(as seen in the combination-based approach), practitioners 
should investigate the structure of their dataset, and justify 
the approach taken.

While the simulation study demonstrates the important lim-
itations of different approaches and the importance of adequate 
data, further work is needed to develop appropriate protocols 
for analyses and apply these to ‘real’ datasets.
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