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Directed evolution for high 
functional production and stability 
of a challenging G protein‑coupled 
receptor
Yann Waltenspühl, Jeliazko R. Jeliazkov, Lutz Kummer & Andreas Plückthun*

Membrane proteins such as G protein-coupled receptors (GPCRs) carry out many fundamental 
biological functions, are involved in a large number of physiological responses, and are thus important 
drug targets. To allow detailed biophysical and structural studies, most of these important receptors 
have to be engineered to overcome their poor intrinsic stability and low expression levels. However, 
those GPCRs with especially poor properties cannot be successfully optimised even with the current 
technologies. Here, we present an engineering strategy, based on the combination of three previously 
developed directed evolution methods, to improve the properties of particularly challenging GPCRs. 
Application of this novel combination approach enabled the successful selection for improved 
and crystallisable variants of the human oxytocin receptor, a GPCR with particularly low intrinsic 
production levels. To analyse the selection results and, in particular, compare the mutations enriched 
in different hosts, we developed a Next-Generation Sequencing (NGS) strategy that combines long 
reads, covering the whole receptor, with exceptionally low error rates. This study thus gave insight 
into the evolution pressure on the same membrane protein in prokaryotes and eukaryotes. Our long-
read NGS strategy provides a general methodology for the highly accurate analysis of libraries of point 
mutants during directed evolution.

G protein-coupled receptors (GPCRs) play crucial roles in human physiology1,2. This biological importance is 
further reflected in their therapeutic relevance. As such, GPCRs constitute the largest class of single drug targets, 
with an estimated 35% of marketed FDA approved drugs acting through these receptors3,4. In recent decades, 
substantial efforts have thus been invested to elucidate the structural rationales for aiding the development of 
therapeutics acting on GPCRs. For a long time, biophysical experiments, including structural studies, have been 
complicated by most of the receptors’ low natural abundance, low functional expression levels in recombinant 
hosts, and poor stability after removal from the membrane5,6.

To address these difficulties intrinsic to GPCRs, several methodologies have been developed, including 
advances in recombinant overexpression, purification strategies7,8, crystallization platforms9,10, and protein 
engineering11–15. This has increased the number of high-resolution structures, providing fundamental insights 
into the mechanistic understanding of at least some GPCRs16,17. To advance drug discovery programs and to 
obtain a more comprehensive understanding of GPCR dynamics, complementary approaches to the structural 
studies are also necessary, including techniques such as surface plasmon resonance (SPR)18,19 and nuclear mag-
netic resonance (NMR)20.

For such challenging experiments, GPCRs need to be sufficiently stable in detergent for a prolonged time 
period, and they need to be functionally expressible in a recombinant host suitable for isotope labelling. In addi-
tion, many receptors of great interest exhibit particularly low yields and/or low stability and have thus remained 
inaccessible to most biophysical and/or structural studies, despite the above-mentioned technological advances 
and the large interest in the field.

For the most challenging receptors, however, even the methods developed so far, when individually applied, 
have not been sufficient. In the present study, we have thus analysed the performance of these methods, and 
devised analysis tools to help understand why the serial use of different strategies of directed evolution is par-
ticularly successful.
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We have previously developed several evolutionary technology platforms to overcome the biophysical limita-
tions of challenging receptors21–24. These methods are all based on the powerful common principles of directed 
evolution: initially, the wild-type (wt) sequence of a protein is randomised, then, through application of a selec-
tion pressure, variants with increased functional expression21,23,24 or—directly—mutants with increased stability 
in detergent22 are enriched from a library. In these directed evolution experiments, the selection pressure is con-
trolled by probing ligand binding with a fluorescently labelled ligand, thereby simultaneously ensuring functional 
folding of the receptor. The power of these directed evolution methods is underlined by the so enabled structural 
and functional studies of several reported GPCRs with improved the biophysical characteristics21,22,24–28.

The initially developed evolution methods require expression in Escherichia coli (E. coli). E. coli-based 
evolution21 for improving functional receptor surface expression is not applicable to all GPCRs—some GPCRs 
cannot be functionally expressed at any meaningful level, possibly due to the missing secretory quality control 
machinery of the eukaryotic cell and/or differences in membrane lipid composition. A second E. coli-based 
method, aimed at improving protein stability in detergent by cellular high-throughput encapsulation solubili-
zation and screening (CHESS)22, i.e., by encapsulating E. coli cells and converting them into nanoscale dialysis 
tubes, is only accessible to receptors that can be functionally expressed in E. coli. These limitations were overcome 
with the development of a third selection method based on a eukaryotic host24: Saccharomyces cerevisiae-based 
receptor evolution (SaBRE) has opened the door to selection for challenging receptors that were not previously 
amenable to selection and evolution technologies in prokaryotic hosts. Nonetheless, SaBRE alone has also not 
been able to bring all receptors to the required level of stability.

We were interested in determining the structure of the human oxytocin receptor (OTR) and discovered that it 
is one of the most challenging targets for selection, as it expresses very poorly in almost all hosts—even in insect 
cells29. To solve this problem, we decided to combine our methods, and we hypothesized that the implementation 
of SaBRE makes previously inaccessible receptors subsequently amenable to CHESS.

Due to its biologically conserved role in organizing both sexual reproduction and social behavior30 the OTR 
is clinically targeted not only for preventing spontaneous premature labour, but also for the treatment of mental 
health disorders including Asperger’s syndrome and schizophrenia31–34. However, novel drug discovery programs 
targeting the OTR were so far complicated by the receptor’s challenging in vitro behaviour, and this would be 
greatly facilitated by identification of stable, well-expressing OTR mutants which could also be crystallised.

Here we present a strategy that successfully combines SaBRE and CHESS by bridging the two distinct evolu-
tion strategies with an additional series of selection steps to produce stable and highly expressing human OTR 
variants. First, we applied the SaBRE method, selecting for well-expressing OTR variants in a eukaryotic host 
(S. cerevisiae) from a randomised library of the wild-type OTR (wtOTR) gene. Then, we switched to E. coli as 
the selection host. We pursued several rounds of selection for functional expression and stability in E. coli prior 
to applying the CHESS approach, where variants are selected for stability in detergent. Crucially, CHESS would 
not have been possible with a direct transition from SaBRE-selection in E. coli for functional expression is an 
essential intermediate step.

To investigate exactly why these additional steps are necessary, we wished to trace the directed evolution 
across the eukaryotic and prokaryotic host. We wanted to use next-generation sequencing (NGS), but to do so we 
had to overcome the challenge of requiring extremely long reads (the whole ORF of the GPCR) with extremely 
high accuracy. For this purpose, we developed a high-throughput sequencing pipeline based on single-molecule 
real-time (SMRT) sequencing with careful intrinsic control of technical sequencing read errors. The long reads 
generated by this particular NGS approach allowed sequencing of full-length OTR variants, and therefore infor-
mation of mutational linkage was maintained. Overall, we generated more than 55,000 unique sequences, which 
allowed the identification of critical mutations in the OTR gene important for the overall selection success.

Results
Evolution of well‑expressing OTR variants.  It is not uncommon for GPCRs to have poor biophysi-
cal properties. One such GPCR is the human OTR, which has very low intrinsic stability and especially low 
functional expression levels29,35. When wild-type OTR (wtOTR) is overexpressed in E. coli or S. cerevisiae, no 
surface expression is detected in flow cytometry experiments (data not shown). In fact, wtOTR even appears to 
be toxic to E. coli cells, even when expressed under optimised conditions, i.e., low-copy number plasmid, low 
temperatures, and with N- and C-terminal fusion proteins to help translocation of the overexpressed receptor to 
the inner membrane. The toxicity of OTR overexpression to E. coli might be related to the lack of cholesterol in 
E. coli membrane, which is equally important for OTR stability and integrity36,37. The poor biophysical behaviour 
of the wtOTR as a starting structure and its biological importance make it an ideal target to employ previously 
developed engineering strategies for increasing expression and stability, such as CHESS22.

However, to perform CHESS with the OTR, it has first to be expressible in E. coli at least at some modest 
level, which is not the case. Thus, to obtain receptor variants that can be expressed in E. coli, we chose a succes-
sive selection strategy starting with SaBRE, using yeast as a eukaryotic expression host, before switching to a 
prokaryotic expression system. For selection with SaBRE, we randomised the wtOTR gene with an error-prone 
polymerase chain reaction (epPCR). S. cerevisiae was subsequently transformed with the created DNA library 
(SaBRE 1.0). The library was expressed, and surface expression was probed with the fluorescently labelled peptide 
antagonist PVA38 (HiLyte Fluor 647-Lys8 PVA). However, no specific signal was observed for the naïve library, 
even at several different ligand concentrations tested, well above the dissociation constant of the ligand (Fig. 1a, 
Supplementary Fig. S1). On the contrary, we observed an increasing nonspecific signal at increasing fluorescent 
ligand concentrations, indicating that high concentrations of labelled ligand complicate the selection process.

Therefore, the highest concentration of fluorescent ligand where single specific events were still observed 
in flow cytometry was used to probe receptor expression levels during selection. In the first round of SaBRE 
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(Supplementary Fig. S2a), a very stringent gating strategy was pursued to maximise selection of specific bind-
ing events. After three consecutive sorting steps comprising re-cultivating sorted yeast cells, re-expression of 
OTR variants, and selection with fluorescence-activated cell sorting (FACS), a pool was enriched (SaBRE 1.4) 
that showed significantly increased surface expression (Fig. 1b). From this pool, plasmid DNA was isolated and 
multiple clones were sequenced, but only one OTR variant (termed OT-y01) was identified multiple times. This 
single enriched clone contained five amino acid point mutations (A19N-termT, R651.58H, V1203.33M, S3227.46C 
and N3257.49K; Ballesteros and Weinstein numbering39 denoted as superscript). With the exception of A19T, 
all mutations are located within transmembrane (TM) helix interfaces and most likely contribute to improved 
helix packing (Fig. 1e).

To generate a more diverse starting point for selection in E. coli or CHESS, an additional round of SaBRE 
was conducted (Supplementary Fig. S2). OT-y01 was randomised once again by epPCR and S. cerevisiae was 
transformed with the created library (SaBRE 2.0). This library already showed an increased expression level when 
probed in flow cytometry compared to the initial library SaBRE 1.0 (Fig. 1a,c). In total, four subsequent steps of 
enrichment were carried out after the second randomization (Fig. 1d, Supplementary Fig. S1a). The plasmid DNA 
from the last two rounds of SaBRE (SaBRE 2.3 and SaBRE 2.4) were isolated, and 48 clones from each pool were 
sequenced and analysed. Sequencing determined that the SaBRE 2.3 pool has greater diversity (43 individual 
variants, with the most enriched clone appearing twice) compared to the SaBRE 2.4 pool (30 individual clones, 
with the most enriched clone appearing nine times). The more diverse pool, SaBRE 2.3, was chosen as a starting 
point for switching the expression host from yeast to bacteria to allow the broadest possible sampling of variants.

For this purpose, yeast-evolved OTR variants enriched in pool SaBRE 2.3 were isolated and subsequently E. 
coli was transformed with these constructs. However, only a poorly specific binding signal could be detected in 
E. coli for variants of the SaBRE 2.3 pool (Fig. 2a,b). While now functional expression was observed, the switch 
from S. cerevisiae to E. coli proved more difficult than expected. Unsurprisingly, no specific binding signal was 
consequently detected for variants enriched from the SaBRE 2.3 pool when probed in CHESS. In this method, the 
E. coli cells of the library are first encapsulated by a polymer layer, such that each cell is wrapped individually and 
subsequently solubilised in detergent (Fig. 2e,f). Thereby, each cell is converted into a nanoscopic dialysis bag.

,E. coli. OTR variants isolated from the SaBRE 2.3 pool were randomised a third time by epPCR and E. coli 
was transformed with this library (termed E. coli 3.0). The E. coli,2,E. coli, a notable increase in surface expres-
sion was observed (E. coli,2d). This pool also showed a clearly delineated binding signal shift when used in 
CHESS[22] (Fig. 2,E. coli,E. coli.

Figure 1.   Identification of well-expressing OTR variants with SaBRE. (a,b) Histogram plots of fluorescent 
ligand binding data measured by flow cytometry. The total signal (red curves) and nonspecific signal (in the 
presence of unlabelled ligand, black curves) are shown for the starting pool SaBRE 1.0 (a) and the final pool 
SaBRE 1.4 (b) of the first round of SaBRE. (c,d) Histogram plots of fluorescent ligand binding flow cytometry 
data with total signal (red curves) and nonspecific signal (black curves) are shown for the starting pool SaBRE 
2.0 (c) and the final pool SaBRE 2.3 (d) of the second round of SaBRE. (e) Mutations (pink spheres) of the single 
clone, OT-y01, identified in pool SaBRE 1.4, mapped on the OTR structure (grey, PDB ID: 6TPK) in complex 
with retosiban (turquois).
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Next‑generation sequencing of selection pools.  To analyse the mutations enriched in single OTR 
variants during selection, we initially determined the sequence of 48 clones (by Sanger sequencing) from pools 
SaBRE 2.3, SaBRE 2.4, E. coli 3.4 and E. coli 3.5. Surprisingly, all of the sequenced pools proved to be diverse. 
For example, the SaBRE 2.3 pool had a total of 43 unique sequences identified (38 singly occurring clones and 
5 doubly occurring clones). High diversity precludes comprehensive analysis by Sanger sequencing, due to its 
small sampling size. To facilitate sequence analysis of the diverse pools enriched by evolution, we developed an 
NGS sequencing strategy for this purpose.

We required a sequencing strategy that fulfilled two main criteria: (1) the sequencing method must provide 
very accurate single reads to allow the identification of point mutations in a single variant, and (2) the sequencing 
platform must generate reads long enough to ensure sequencing of a single complete OTR gene in one stretch 
(read lengths > 1000 base pairs (bp)), thus allowing not only the identification of mutations but also capturing 
their co-occurrences. The method best matching these criteria was single-molecule real-time (SMRT) sequenc-
ing, offered by PacBio. In a SMRT sequencing experiment, single circularised gene variants are sequenced in 
individual wells, constituting zero mode waveguides (ZMW). A rolling circle amplification approach is used 
in which the complementary strand is synthesised by an immobilized polymerase, with fluorophore release 
upon nucleotide incorporation, achieving read lengths of up to 100,000 bp40. A single circularised OTR variant 
(1056 bp) present in a ZMW should result in a read with multiple passes (subreads) because of its comparably 
small length compared to the maximum read length of the rolling circle amplification approach. These subreads 
should later allow generation of accurate circular consensus sequencing (CCS) reads of the OTR variants present 
in the according ZMW.

The individual pools were simultaneously sequenced on a single SMRT cell using a PacBio Sequel instrument. 
A total of 624,145 ZMW reads were generated with a mean read length of 23,661 bp and a median subread length 
of 1,112 bp, resulting in a mean subread number of 20.6 (Fig. 3b,c). During data analysis we found, analogously 
to previous reports41, that individual subreads contained a high number of insertions and deletions (indels). 
These indels are not an expected by-product of our evolution strategy (and none have been found by Sanger 
sequencing from the same pool and other pools from other evolution projects), but rather a direct consequence 
of the sequencing approach. As incorrectly identified indels critically impact the quality of the sequence analysis 
by shifting the reading frame of the sequenced gene, we developed a novel analysis approach.

To overcome the low quality of the subreads and generate consensus sequences from single ZMW outputs 
with high accuracy, we implemented a processing strategy that included five steps (Fig. 3a). First, only reads with 
at least 20 subreads were considered. Second, the single subreads were aligned to the wtOTR gene sequence. The 
aligned subreads were then used to generate consensus sequences. Consensus sequences with incorrect read 

Figure 2.   Selection for high functional expression and detergent stability in E. coli. (a) Schematic representation 
of the probing with fluorescently labelled (red star) ligand (blue rod) for well-expressing OTR variants (yellow 
rods) in the membrane of intact E. coli cells. (b,d) Histogram plots of flow cytometry detecting binding of 
fluorescent ligand on intact E. coli cells. Total signal (red curves) and nonspecific signal (black curves) are shown 
for the pools SaBRE 2.3 (b) E. coli 3.0 (c) and E. coli 3.4 (d), expressed in E. coli. (e) Schematic representation of 
a polymer-encapsulated (black lines) E. coli cell, whose internal space is subsequently solubilised with detergent, 
as performed in CHESS, converting the cells essentially to nanoscopic dialysis bags. (f,h) Histogram plots of 
flow cytometry detecting binding of fluorescent ligand within polymer capsules. Total signal (red curves) and 
nonspecific signal (black curves) are shown for the pools SaBRE 2.3 (f) E. coli 3.0 (g) and E. coli 3.4 (h), after E. 
coli expression,encapsulation and solubilisation.
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lengths were excluded from analysis, as we did not expect our evolution strategy to produce indels. In a final 
control step, consensus sequences were translated and the top 1% of sequences with the highest mutation rates, 
typically caused by a frameshift in the open reading frame, were excluded. Applying this stringent protocol on 
the raw sequencing data resulted in a retention rate of around 10% (Fig. 3d).

To test the validity and accuracy of the obtained sequences generated by this approach, we compared these 
NGS sequences with the sequences obtained from Sanger sequencing. For all four pools sequenced, we found 
almost identical mutation rates per gene and similar occurrences of single point mutations and amino acid 
changes on the protein level (Supplementary Fig. S3) when comparing the two sequencing methods. Further-
more, we found in the datasets of NGS sequences and Sanger sequences the same clones to be most enriched for 
both final pools (SaBRE 3.4 and E. coli 3.4) (Table S3). We thus concluded that the NGS sequences so obtained 
and processed had the same quality as the sequences obtained from Sanger sequencing.

Additional variations to the data processing pipeline, such as different software for alignment and consensus 
calling as well as the implementation of more stringent cut-offs, were tested without substantially improving the 
retention rate or accuracy (compared to Sanger sequencing).

Despite only 10% of all ZMW reads resulting in translatable consensus sequences of high accuracy, we still 
obtained 8000–20,000 sequences for each individual pool and thus a total of 58,050 sequences from one NGS run.

In‑depth analysis of enriched selection pools.  Our NGS approach dissected a large number of vari-
ants suitable for an in-depth analysis of the selection outcome. We found a median mutational rate of 9 amino 
acid changes per OTR variant after SaBRE, and a median mutational rate of 12 amino acid changes per OTR var-
iant in the E. coli-derived selection pools. Certain positions were enriched for mutations across the entire pool, 
independent of the specific OTR variant or of other mutations. Preponderance of single amino acid mutations 
at a particular position is likely due to their beneficial effect on the biophysical properties of the receptor. These 
mutations and positions were identified by calculating the frequency of the most dominant non-wt (fnon-wt) 
amino acid occurring at every position on the OTR gene (Fig. 4, Supplementary Fig. S3).

Five amino acid positions are observed to all have single non-wt amino acid in 100% of analysed sequences. 
These mutations (A19N-termT, R651.58H, V1203.33M, S3227.46C, and N3257.49K) stem from the single clone, OT-y01, 
used as the source for the second round of SaBRE and, while their occurrence is not surprising, their com-
plete uniformity confirms the fidelity of NGS processing pipeline. In the selection outcome of SaBRE, the most 

Figure 3.   Single-molecule real-time sequencing of OTR selection pools. (a) NGS data processing work-flow. 
(b) Histogram representation of all reads and the respective read lengths generated during SMRT sequencing. 
(c) Histogram representation of all subreads and the respective subread lengths generated during SMRT 
sequencing. Blow-up of the main peak is depicted in the top right corner. (d) Diagram of read counts retained 
after the indicated processing steps (top right corner) for all four pools sequenced. (e) Scatter plot of the cluster 
sizes and the fraction of clusters observed within the indicated (top right corner) sequence pools. The cluster 
size represents the number of times a particular unique sequence is observed. The fraction of clusters is obtained 
by counting all clusters of size x divided by the total number of clusters.
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frequently observed non-wt mutations are D1534.42N and T3338.47M, occurring at a frequency of 21% and 56%, 
respectively (Fig. 4a,b). Mutations in both these positions, D1534.42 and especially T3338.47, occur more frequently 
than the top three single clones (accounting for 19.5% of pool diversity in SaBRE 2.4, Supplementary Table S3), 
indicating their phenotypic selection in different sequence backgrounds. Both positions are located at the ends 
of transmembrane helices (TM 4 and TM 7, respectively) and both point into the receptor core (Fig. 4e). We 
hypothesise that these mutations might optimise helix–helix packing interactions. Our hypothesis is further 
strengthened by the observation these interactions are independent (i.e., the frequency of each observed amino 
acid pair is almost equal to the product of the individual frequencies, Supplementary Fig. S5) and this independ-
ence is not system-dependent—it is observed throughout the evolution process in E. coli and in S. cerevisiae.

In the final pool of the selection in E. coli (E. coli 3.4), position H1734.62Y (45%), R178EL2C (45%), and 
I2045.42N (51%) all occur at a higher frequency (Fig. 4c) than the most enriched clones of the corresponding pools 
(top three clones account for 41.1%, Supplementary Table S3), again underlining that they have been phenotypi-
cally selected in different backgrounds. I204 is pointing into the binding pocket of the receptor (Fig. 4e) and has 
previously been shown to be crucial for functional integrity of the binding pocket42. Mutations in this position 
could possibly be caused by an accompanying affinity maturation for the fluorescent ligand used for selection. 
Interestingly, mutations in position H173 and R178 both occur linked together, yet never in combination with a 
mutation in position D153, which otherwise occurs frequently, possibly indicating that they together would be 
unfavourable. H173 is located at the end of TM helix 4, and R178 is located in the β-hairpin formed by extracel-
lular loop 2 of the receptor. All three positions (H173, R178 and I204) were not mutated at a high frequency in 
SaBRE, indicating that the positions might be crucial especially for increased production in E. coli.

While these observed mutational frequencies indicate how frequent the most popular non-wt amino acid is 
at a given position of the OTR, the data do not hold any information on the degeneracy of non-wt amino acids 
at that position (i.e., they do not describe whether or not there are multiple new residue types observed). This 
metric is captured by the Shannon entropy, which can be calculated from the sequencing data. We calculated 
the Shannon entropy for each amino acid position along the OTR gene (Fig. 4a–d). To provide context for the 
less-than-intuitive entropy values, we additionally plotted hypothetical curves for the Shannon entropy assum-
ing a uniform distribution for a given number of non-native amino acids. This formula (Eq. (1)) depends only 

Figure 4.   Observed mutational frequencies. (a–d) Shannon entropy calculated with Eq. (1) for every individual 
amino acid position (black circles) on the OTR, plotted against fraction of non-wtOTR amino acid occurrence. 
To help visualise the theoretical Shannon entropy for n = 1 (blue), n = 2 (orange), n = 3 (green) and n = 4 
(red), non-wt amino acids observed are depicted as dashed lines. Individual positions being mutated with a 
higher frequency than the most enriched clone of a pool are indicated with a label, as they must have been 
independently selected several times. (e) Amino acids positions with a high non-wtOTR frequency are mapped 
on the OTR (grey, PDB ID: 6TPK) bound to retosiban (turquois). Mutations occurring at a high frequency after 
SaBRE are coloured pink, positions mutated at a high frequency after E. coli-based selection are coloured light 
purple.
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on the frequency of the wt amino acid (fwt) in the respective position (i) and the total number (n) of non-wt 
amino acids observed.

Adapted Shannon entropy (S):

By comparing the calculated values to the theoretical curves, we can determine, at a glance, roughly how 
many different mutations are observed at each position. For most mutated positions only a single non-wt amino 
acid is observed (because of the low mutation rate) and thus the observed Shannon entropies fall along the 
theoretical line for n = 1 (Fig. 4). This outcome is expected, based on the underlying statistical nature of library 
creation by epPCR resulting in few mutations, and the accompanying limitation posed by codon bias, limiting 
the type of codon changes.

Nonetheless, exceptions were observed. For example, one of the few exceptions with a high entropy, i.e., a 
position with multiple different amino acids occurring, was position D153 (Fig. 4). Position D153 was found be 
mutated to either tyrosine, asparagine, histidine, valine and even glycine. Therefore, in position D153 five out of 
the seven amino acids which are accessible with just one base pair change to the respective codon are observed. 
This high entropy emphasizes the detrimental effect the aspartate in position D153 apparently exerts on receptor 
integrity, as it seems that any other amino acid is preferred at this position.

To capture the diversity of each pool, we calculated the cumulative density function of cluster size (Fig. 3e). 
Cluster size here is defined as the number of observations of each unique sequence. Unsurprisingly, we observed a 
negative correlation between cluster size and frequency of occurrence, i.e., there are many observations of unique 
single sequences and only few observations of clusters of many identical sequences (Fig. 3e). For all NGS pools, 
there is a single, dominant cluster with ~ 100–1000 observations of one sequence, clearly indicating enrichment 
by the selection methods.

The SaBRE 2.4 pool is more enriched than the SaBRE 2.3 pool, as demonstrated by a higher fraction of large 
clusters and simultaneously a drop in the frequency of small clusters (Fig. 3e). Interestingly, after one sorting 
round with CHESS, the enriched pool E. coli 3.5 appears to be more diverse than its parental pool E. coli 3.4. This 
might be an effect caused by the new selection pressure applied during sorting for stability with CHESS and the 
subsequent need to amplify the receptor gene by PCR (introducing more mutations), as re-cultivation of course 
is impossible from the permeabilised bacterial cells.

To finally assess purification yield and stability of the most enriched single OTR variants, they were expressed 
in HEK293T cells, and subsequently solubilised and purified. We probed purification yield and assessed thermo-
stability by monitoring protein unfolding as a function of temperature using the previously described 7-dieth-
ylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM) assay43 (Fig. 5, Supplementary Table S3). Because 
wtOTR could not be purified in sufficient yield, we could not determine its melting temperature (Tm). Therefore, 
we selected the parental variant OT-y01 as reference for all tested OTR clones. As described previously, we 
found a trend that higher purification yield correlates with higher stability, even though this correlation is not 
very strong. Most tested variants show higher thermostability and expression yield compared to OT-y01, which 
indicates a clear selection for these properties.

Interestingly, we also observed that purification yields from mammalian cells does not seem to correlate 
with enrichment after SaBRE or selection in E. coli. The most stable clone tested was OT-e02 with a melting 

(1)S = −fwt × ln
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fwt
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n
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Figure 5.   Characterization of most enriched single clones. (a) Occurrence of the most enriched variants of 
all four pools sequenced as determined by NGS. Variants identified in SaBRE pools (OT-yXX) are coloured 
in salmon, and variants identified in pools enriched during E. coli-based selection (OT-eXX) are coloured 
blue. Sequences were numbered according to their occurrence in initial Sanger sequencing results. (b) The 
purification yield of OTR purified from HEK293 cells, normalised to OT-y01, is compared to the apparent Tm 
derived from CPM-based thermostability measurements.
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temperature of 59.2 °C and OT-y02 with a melting temperature of 58.8 °C. Noteworthy, OT-y02 is also the clone 
that served as the basis for the construct later successfully crystallised in LCP42.

Discussion
GPCRs commonly require protein engineering to enable detailed biophysical studies and structure determina-
tion. While several receptors were sufficiently stabilized by using a particular directed evolution strategy, the 
most challenging receptors could not. The otherwise intractable human OTR serves as an example.

Among the available engineering strategies, CHESS, the selection method for stability in detergent, has proven 
to be an especially powerful technique for the identification of suitable receptor mutants. While mutants, stabi-
lized through mutagenesis, can display conformational restraints compared to wt receptors14, their great potential 
is underlined by CHESS-improved GPCR mutants utilised in challenging biophysical and ligand-binding studies, 
including SPR18,19, NMR44–46 and X-ray crystallography47. However, until now, the limiting factor for applying 
CHESS has been that it requires some level of functional protein expression in E. coli.

Here we presented a strategy to make the otherwise intractable human OTR accessible to CHESS by a strategic 
combination of two directed evolution approaches: starting with selection for improved functional expression in 
yeast (SaBRE), followed by a subsequent selection for functional expression in E. coli, followed by CHESS. After 
transferring the SaBRE-selected clones to E. coli, we observed that the variants were still not expressing well in 
E. coli, precluding the direct application of CHESS.

In contrast, higher functional expression was retained when switching in the opposite direction, bringing 
mutants selected in E. coli or S. cerevisiae to a higher eukaryotic host, such as insect cells or mammalian cells21,24. 
A possible explanation for this observation might be the difference of protein quality-control machinery. Thus, 
a protein that is only able to fold in the presence of a complex machinery in higher eukaryotic cells would not 
fold in cells lacking that machinery, while the converse is not true, and a biophysically improved mutant may 
still show improvements in the presence of a more complex machinery.

With the goal of ultimately applying CHESS, which takes place in E. coli, the yeast-evolved variants provided 
an excellent starting point for subsequent selection for high expression in E. coli, while the wtOTR did not. We are 
confident that this strategy can be further adapted not only for other GPCRs, but also other membrane proteins 
that are initially toxic to E. coli. Such a stepwise strategy may be needed when membrane proteins need to be 
expressible in E. coli, e.g., for isotope labelling, or when they are to be examined in experiments which require 
long-time stability in a given detergent.

As we sought to determine the sequence features that led to enhanced stability in our evolution experiments, 
we turned to SMRT sequencing, an NGS approach that allowed us to sequence the entire 1056 bp target gene, 
and thus without losing the connections between mutations distant in the sequence. For this purpose, we devel-
oped a sequencing pipeline for the analysis of SMRT-sequencing-derived NGS libraries with very high accuracy, 
such that the very few true point mutations were clearly distinguishable from technical sequencing errors. With 
this approach we were able to acquire over 55,000 unique high-accuracy sequences from four different pools. 
By comparing sequences obtained from NGS with sequences obtained by Sanger sequencing, we were able to 
validate their correctness.

The limiting factor for the overall number of sequences obtained by our NGS approach was the low subread 
sequence quality, caused by the high occurrence of indels from SMRT sequencing. Consequently, we found 
the key to correctly assembling circular consensus sequencing reads was to first align each subread to the wt 
gene before generating the consensus sequence. Multiple strategies, programs, and parameters were empirically 
screened to find the best working solution. We restricted our approach to the use of pre-existing software, as 
the challenge of correctly identifying variants from indel-heavy data is an area of active research48 and beyond 
the scope of this manuscript.

To our knowledge, this is the first report of a long-read sequencing technology implemented to analyse DNA 
pools from directed evolution, where every single DNA molecule contains individual information. In future 
experiments, our NGS approach could simplify and accelerate the analysis of any diversified DNA pool. With the 
ability to simultaneously generate and analyse high sequence numbers, very quantitative and complete analyses 
of diverse pools become possible. Furthermore, this sequencing approach could provide a suitable platform 
to fully exploit selections based on rationally designed synthetic libraries, e.g., by removing the need for DNA 
barcodes for sequence identification in deep mutational scanning studies49.

Our analyses of the NGS-derived sequences allowed us to identify several co-enriched positions during the 
distinct evolution rounds. We observed D153X (where X = N, Y, V, G, & H, ordered according their observed 
frequency) and T333M to be present in several individual OTR variants enriched in yeast. Because of their high 
frequency of appearance, we reasoned that these mutations are particularly critical to the S. cerevisiae-based 
selection outcome. Conversely, in the sequences of E. coli-based OTR variants, we frequently observed either 
the co-occurrence of mutations H173Y and R178C or the mutation I204N. Interestingly, none of these three 
mutations are facing towards the helix bundle. Simultaneously, none of these three mutations were frequently 
observed in yeast-derived OTR variants. We thus speculate that these three mutations contribute to increased 
functional expression of the receptor in the E. coli, even though we cannot pinpoint yet the exact step where the 
optimized OTR performs better in the more demanding expression environment in E. coli.

With few exceptions, we found that most positions had only mutated to one other type of amino acid. This is 
most likely due to a fundamental limitation in exploring sequence space by epPCR, which will typically explore 
only explore codon changes accessible by a one-base mutation. As previously reported by Schlinkmann et al.26,50, 
comprehensive synthetic libraries containing all desired codons at given positions are needed to optimise the 
directed evolution outcome. With key positions identified in our selections and the subsequent elucidation of the 
OTR structure42, the rationalization of such binary libraries for the OTR as well as the closely related vasopressin 
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receptors51 can now be successfully implemented. The transferability of these critical mutations from the OTR 
to vasopressin receptors could be directly assessed by grafting the corresponding mutations into the vasopres-
sin receptors, similarly to the previously reported successful transfer of the SaBRE-derived mutations from the 
κ-opioid receptor24 to the δ-opioid receptor52.

In conclusion, while GPCRs with especially poor properties cannot be successfully optimised even with 
individual directed evolution technologies, we could show that an engineering strategy, based on the subsequent 
use of functional expression in yeast (SaBRE), followed by E. coli, and then the use of the especially powerful 
CHESS was able to solve this problem. The successful selection for improved and crystallisable variants of the 
human oxytocin receptor, a GPCR with particularly low intrinsic production levels, serves as an example. Our 
study has also shown, by the different nature of enriched mutations, that the evolution pressure on the same 
membrane protein in prokaryotes and eukaryotes is different. The very accurate long-read NGS strategy that we 
have developed for this purpose provides a general methodology for the highly accurate analysis of libraries of 
point mutants during directed evolution.

Methods
DNA library construction and transformation.  Human OTR (2–389) was randomised using the  
GeneMorph II random mutagenesis kit (Agilent), aiming for a mean of two amino acid changes per gene. Two 
reactions with 200 ng template DNA were either amplified for 20 or 25 cycles, respectively. The created librar-
ies from both reactions were column-purified (QIAquick PCR purification kit, Qiagen) and combined at a 1:1 
molar ratio.

S. cerevisiae strain BY474153 (EUROSCARF) was transformed as previously described24. In brief, sites homolo-
gous to the linearised yeast expression vector pMS003het24 (NheI/BamHI digested) were added at each end of 
the OTR gene during epPCR by the primers, to allow homologous recombination in yeast. To obtain sufficient 
DNA yields for transformation, the created OTR libraries were further amplified by standard PCR. BY4741 cells 
were transformed by square wave electroporation on a GenePulser Xcell electroporator (BioRad) analogously to 
a previously published method54. After electroporation, cells were allowed to recover in YPD medium without 
shaking at 30 °C before pelleting and resuspending in 500 ml SDD-Leu-medium (Synthetic Defined Medium 
without Leu; 6.9 g L−1 yeast nitrogen base without amino acids (Formedium), 690 mg L−1 complete supplement 
mixture without leucine (Formedium), 20 g L−1 glucose, 35 mM sodium citrate tribasic, 35 mM citric acid) for 
selective growth at 30 °C for 24 h, and finally stored as glycerol stocks at − 80 °C until use. Libraries had a diversity 
of 5 × 107 (SaBRE 1.0) and 7 × 107 (SaBRE 2.0).

For efficient library creation in E. coli, restriction sites (BamHI and SpeI) were introduced by the primers 
during amplification to both ends of the created library. To obtain the plasmid pEC01, pRG/III55 was modified 
by replacing the C-terminal thioredoxin and the polyhistidine-tag by an SGSGGGSG linker, followed by super-
folder Green Fluorescent Protein (sfGFP)56 followed by a C-terminal Avi-tag. The amplified and digested library 
(BamHI and SpeI) was ligated into linearised pEC01 overnight at 16 °C. Ligated vector was purified (QIAquick 
PCR purification kit, Qiagen) and eluted in distilled H2O. Electrocompetent DH5α cells (Thermo Fisher) were 
transformed with clean and concentrated ligation product by electroporation. Directly after electroporation, 
cells were allowed to recover in 4 mL SOC medium under shaking at 37 °C for 1 h. Thereafter, ampicillin (100 ng 
uL-1) was added, and cells were allowed to grow for another 2 h. To remove non-transformed cells, which fail 
to divide under ampicillin selection and grow to aggregating filaments instead, the recovered cells were passed 
through a 5-μm filter (Millipore). Cells collected from the flow-through were further incubated in 40 mL fresh 
2YT containing 7% sucrose (w/v), 1% glucose (w/v) and 100 ng uL−1 ampicillin for 17 h and finally stored as 
glycerol stocks at − 80 °C. The total library size (E. coli 3.0) was 4 × 106 as estimated from determining colonies 
in dilution series.

Fluorescent ligand binding with yeast cells.  A pre-culture was inoculated to OD600 = 0.2 in Synthetic 
Defined Medium without Leu (SDD-Leu–) and cultivated for 16–18 h at 30 °C. For expression, yeast cells from 
the pre-culture were collected and resuspended in SDG-Leu– medium (identical to SDD-LEU– with galactose 
instead of glucose) to an OD600 = 1.0 and incubated for 24 h at 20 °C. After expression, 5 × 108 cells were collected 
and washed once in TELi (50 mM Tris–HCl pH 9.0 (at 4 °C), 100 mM lithium acetate, 1 mM EDTA), before 
resuspending in TELi supplemented with 50 mM DTT. To allow efficient permeabilization of the cell wall, cells 
were incubated at 20 °C for 30 min and finally washed twice in ice cold TELi. 1 × 108 washed and permeabilised 
yeast cells were collected and resuspended in 2 mL TELi supplemented with 50 nM HiLyte Fluor 647-Lys8 PVA 
(Eurogentec) for 2 h on ice without exposure to light. To assess unspecific binding, corresponding samples were 
additionally supplemented with 2.5 μM unlabelled PVA as competitor. Before measuring flow cytometry, cells 
were collected by centrifugation and resuspended in 1 mL TELi.

Fluorescent ligand binding with bacterial cells.  A pre-culture was inoculated to an OD600 = 0.05 in LB 
medium containing ampicillin (100 ng μL−1) and 1% glucose (w/v) and cultivated for 2–3 h at 37 °C. The pre-
culture was subsequently used to inoculate 5 mL 2YT containing 0.2% glucose and 100 ng μL-1 ampicillin to an 
OD600 = 0.05. When the expression culture had grown to OD600 = 0.5–0.6, expression was induced by addition of 
250 μM IPTG and was allowed to proceed for 20 h at 20 °C. Then, 109 cells were collected and washed twice with 
1 mL ice-cold TKCl (50 mM Tris–HCl, 150 mM KCl, pH 7.4). 107 washed cells were incubated in 250 μL TKCl 
containing 100 nM HiLyte Fluor 647-Lys8-PVA for 2 h on ice without exposure to light. To assess unspecific 
binding, corresponding samples were additionally supplemented with 2.5 μM unlabelled PVA for competition. 
Before measuring flow cytometry, cells were collected by centrifugation and resuspended in 200 μL TKCl.
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Fluorescent ligand binding with polymer‑encapsulated solubilised bacterial cells.  1 × 1010 
receptor-expressing E. coli cells were collected and encapsulated with one layer of chitosan and one layer of 
alginate, strictly following the procedure published previously22. Encapsulated cells were solubilised in PBS-ED 
(137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4, 1 mM EDTA, cOmplete protease 
inhibitor EDTA-free tablets (Roche), 1% n-dodecyl-β-d-maltopyranoside (DDM, Anatrace) (w/v), 0.1% choles-
teryl hemisuccinate (CHS, Sigma Aldrich) (w/v)) containing 50 nM HiLyte Fluor 647-Lys8-PVA (binding buffer) 
or 50 nM HiLyte Fluor 647-Lys8-PVA and 2.5 μM unlabelled PVA (competition buffer) at 4 °C for 1 h. Solubilised 
cells, i.e., polymer capsules, were washed once with either binding or competition buffer. Washed capsules were 
incubated for another 3 h in the respective buffer. Before carrying out flow cytometry measurements, capsules 
were collected by centrifugation and resuspended in 500 μL PBS-ED.

Flow cytometry and FACS.  Flow cytometry was performed on a BD FACSCanto II cytometer (BD Bio-
sciences) and fluorescence-activated cell sorting was performed on a BD FACSAria III sorter (BD Biosciences). 
During FACS, the top 0.5% of the fluorescent events were retained. Cells were directly sorted into growth 
medium and subsequently cultivated to stationary phase at 30 °C (yeast) or 37 °C (bacteria), respectively. Cap-
sules were sorted into distilled H2O and the DNA encoding OTR was amplified by PCR. Amplified DNA was 
re-cloned as described above. Flow cytometry data were analysed with FCS Express 5 Flow (De Novo Software).

Thermostability measurements.  HEK293T/17 cells (ATCC) were cultivated in Dulbecco’s modified 
medium (Sigma Aldrich) supplemented with 100 units/mL penicillin, 100 µg/mL streptomycin (Sigma Aldrich) 
and 10% (v/v) fetal calf serum (BioConcept). Cells were maintained at 37 °C in a humidified atmosphere of 5% 
CO2, 95% air. Transient transfections of OTR containing an N-terminal fused FLAG-tag were performed with 
TransIT-293 (Mirus Bio) according to the manufacturer’s protocol.

HEK293T cells were seeded and transfected in 6-well plates (Falcon) at a cell density of 1.5 × 106 cells per 
well. 48 h after transfection cells were harvested, washed once in PBS (pH 7.4) and stored at − 20 °C. Purification 
of expressed OTR constructs was performed as published in detail (Schöppe et al., manuscript submitted). In 
brief, cells were lysed in hypotonic solution by resuspending in low salt buffer (10 mM HEPES pH 7.5, 20 mM 
KCl, 10 mM MgCl2, 50 µg mL−1 Pefabloc SC (Carl Roth), 1 µg mL−1 Pepstatin A (Carl Roth)) and subsequently 
solubilised in solubilization buffer (low salt buffer supplemented with 500 mM NaCl, 0.5% DDM (w/v), 0.1% 
CHS (w/v), 200 μM PVA). Insoluble cell debris was removed by centrifugation and the cleared supernatant was 
incubated with Anti-FLAG M2 magnetic beads (Sigma Aldrich) at 4 °C for 2.5 h. The receptor-bound resin was 
washed with 25 column volumes (CV) of Wash Buffer I (50 mM HEPES pH 7.5, 500 mM NaCl, 10 mM MgCl2, 
10% (v/v) glycerol, 1.0% (w/v) DDM, 0.2% (w/v) CHS, 8 mM ATP, 50 µM PVA) followed by 35 CV of Wash Buffer 
II (50 mM HEPES pH 7.5, 500 mM NaCl, 10% (v/v) glycerol, 0.05% (w/v) DDM, 0.01% (w/v) CHS, 50 µM PVA). 
PVA-bound OTR was eluted in one CV of Elution Buffer (50 mM HEPES pH 7.5, 500 mM NaCl, 3 mg mL−1 
3× FLAG Peptide (Sigma Aldrich), 10% (v/v) glycerol, 0.05% (w/v) DDM, 0.01% (w/v) CHS, 50 µM PVA). CPM 
dye was added to eluted pure PVA-bound OTR and thermostability was assessed on a Mx3005P QPCR System 
(Agilent) qPCR machine. Data were analysed GraphPad Prism software (version 8.1.1, GraphPad Prism).

SMRT sequencing.  The OTR genes (2–353) enriched in pools SaBRE 2.3, SaBRE 2.4, E. coli 3.4 and E. coli 
3.5 were amplified by PCR and individualised and simultaneously circularised by ligating a unique barcode 
adapter using the SMRTbell Express Template Prep Kit 2.0 (PacBio) and Barcoded Overhang Adapters (PacBio) 
(Supplementary Fig. S2b). Amino acids 354–389 of the OTR C-terminus were excluded from analysis to increase 
overall CCS read accuracy by shortening the subread length and thus consequently increasing the mean number 
of subreads achieved from a single read. Sequencing was performed on a PacBio Sequel instrument (Pacific Bio-
informatics) using one 1 M SMRT cell (Pacific Bioinformatics) as service by the Functional Genomics Centre 
Zurich (FGCZ).
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