Table 1.
Site | MRI scanner | TR (ms) | TE (ms) | Flip angle (degree) | Age (year) |
---|---|---|---|---|---|
Caltech | SIEMENS | 2,000 | 30 | 75 | 17–56.2 |
CMU | SIEMENS | 2,000 | 30 | 73 | 19–40 |
KKI | PHILLIPS | 2,500 | 30 | 75 | 8–12.8 |
Leuven | PHILLIPS | 1,656 | 33 | 90 | 12.1–32 |
MaxMun | SIEMENS | 3,000 | 30 | 80 | 7–58 |
NYU | SIEMENS | 2,000 | 15 | 90 | 6.5–39.1 |
OHSU | SIEMENS | 2,500 | 30 | 90 | 8–15.2 |
OLIN | SIEMENS | 1,500 | 27 | 60 | 10–24 |
PITT | SIEMENS | 1,500 | 25 | 70 | 9.3–35.2 |
SBL | PHILLIPS | 2,200 | 30 | 80 | 20–64 |
SDSU | GE | 2,000 | 30 | 90 | 8.7–17.2 |
Stanford | GE | 2,000 | 30 | 80 | 7.5–12.9 |
Trinity | PHILLIPS | 2,000 | 28 | 90 | 12–25.9 |
UCLA | SIEMENS | 3,000 | 28 | 90 | 8.4–17.9 |
UM | GE | 2,000 | 30 | 90 | 8.2–28.8 |
USM | SIEMENS | 2,000 | 28 | 90 | 8.8–50.2 |
Yale | SIEMENS | 2,000 | 25 | 60 | 7–17.8 |
These differences may lead the machine-learning models learn site-specific variations leading many machine-learning models give better average accuracy (for whole ABIDE data set) than the site-specific accuracy.